
Milan j. math. Online First
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1. Introduction

Algebraic geometry and topology share a long history of interaction, cross-
fertilization and competition. The latest phase involves the newly created
field of motivic homotopy theory. This can be thought of as an expansion of
homotopy theory to a setting that directly involves algebraic geometry, and
has enabled the introduction of techniques of algebraic topology to problems
in algebra, number theory and algebraic geometry. We will discuss the
sources of this development together with a look at the recent applications
of the theory. For further reading, we recommend the texts [2, 3, 10, 27,
33, 56].

2. Two parallel worlds

Algebraic topology and algebraic geometry deal with rather different ob-
jects, but often borrow methods and approaches from one another. Here is
a very rough dictionary listing some of the parallels:
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Algebraic topology Algebraic geometry

singular (co)chains ↔ algebraic cycles
cup product ↔ intersection theory
homology ↔ adequate equivalence relations
singular cohomology ↔ motivic cohomology
topological K-theory ↔ algebraic K-theory

In the last 15 years or so, constructions of Morel-Voevodsky [36], Morel
[35, 33], Voevodsky [55], Jardine [16] and others have given a framework to
make the rough parallel more precise. The Morel-Voevodsky theory fills in
the dictionary:

Algebraic topology Algebraic geometry

homotopy theory ↔ motivic homotopy theory
spaces ↔ algebraic varieties + . . .
[0, 1] ↔ A1

S1 ↔ A1/{0, 1} and A1 \ {0}
generalized cohomology ↔ generalized cohomology
of space: spectra of varieties: T -spectra
complex cobordism ↔ algebraic cobordism
homotopy groups of spheres ↔ Witt groups +?

Still, the most studied part of this parallel is in the area of singular
cohomology. One can make a tour through the singular cohomology of topo-
logical spaces, starting with the most concrete and steadily increasing the
level of abstraction. One begins with a vague notion of geometric “cycles”
on a manifold, refining this to the complex of singular (co)chains, and then
generalizing to abstract sheaf cohomology. Finally, one gives this all a cat-
egorical framework by introducing the derived category of sheaves. Via the
derived push-forward functor to a point, one can recover cohomology (with
constant coefficients) on some X as the morphisms in the derived category
D(Ab) with source the singular chain complex C∗(X).
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The parallels in algebraic geometry are

Algebraic topology Algebraic geometry

geometric cycles ↔ algebraic cycles
and intersection theory

singular (co)homology ↔ Suslin homology
and motivic cohomology

sheaf theory ↔ sheaves with transfer
D(Ab) and the ↔ DM(k) and the
functor X �→ C∗(X) functor X �→ CSus(X)

3. Cohomology in topology and algebraic geometry

Let’s first discuss the parallel worlds of cohomology.

3.1. Algebraic topology

Algebraic topology began with the introduction of homology and the fun-
damental group. Basic constructions include:
• In many ways, the path integral started the ball rolling. This was gener-
alized to allow integrals over geometric figures of various dimensions.
• A good theory of homology needs the notion of the singular chain complex
C∗(X) of a CW complex X. This in turn relies on the n-simplex

∆n := {(t0, . . . , tn) ∈ Rn+1 |
∑

i

ti = 1, ti ≥ 0}.

These fit together via the coface and codegeneracy maps

δn
i : ∆n → ∆n+1

(t0, . . . , tn−1) �→ (t0, . . . , ti−1, 0, ti, . . . , tn)

sn
i : ∆n → ∆n−1

(t0, . . . , tn) �→ (t0, . . . , ti−1 + ti, ti+1, . . . , tn).

The collection of spaces {∆n} with the coface maps δn
i and codegeneracy

maps sn
i is a particular example of a cosimplicial space. The group of sin-

gular chains on X of dimension n, Cn(X), is just the free abelian group on
all continuous maps

σ : ∆n → X.
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Make the Cn(X) into a complex by defining

dn−1σ :=
n∑

i=0

(−1)iσ ◦ δn−1
i .

The singular homology of X is

Hn(X,Z) := Hn(C∗(X)).

Cohomology is defined by using the complex of duals of Cn(X):

Cn(X,A) := Hom(Cn(X), A)

with differential dn : Cn(X,A) → Cn+1(X,A) the dual of dn. Cohomology
with values in a commutative ring A has a ring structure, the cup product.

For a compact manifold M , one can use Poincaré duality to transfer
the cup product on cohomology to the intersection product on homology.
Lefschetz described how to make this product directly on homology chains
by moving singular chains into good position.
• For reasonable spaces, the singular cohomology can be given by Čech
cohomology, which in turn is directly related to sheaf cohomology. The
introduction of sheaf cohomology and the allied theory of homological al-
gebra lead to a much better conceptual understanding of cohomology the-
ories, giving for example a very clear explanation of the de Rham theorem
identifying singular cohomology with de Rham cohomology.
• A systematic development of sheaf cohomology and homological algebra
leads to the derived category of sheaves and the whole theory of triangulated
categories. This in turn gave generalizations of many important construc-
tions, for instance, the generalization of the Serre spectral sequence of a
fibration to the Leray spectral sequence for the cohomology of a sheaf.

3.2. Algebraic geometry

Let us now give a discussion of parallel developments in algebraic geometry
• Algebraic cycles and intersection theory. Very early on, algebraic geome-
ters were interested in giving a purely geometric version of the intersection
product in homology. They used the geometric approach of Lefschetz to
define an intersection product on algebraic cycles on a smooth projective
variety X.

Definition 3.2.1. An algebraic cycle Z of dimension d on a variety X (over
a field k) is a formal sum

Z :=
∑

i

niZi
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with the ni ∈ Z and the Zi integral subschemes of X of dimension d over
k. Let zd(X) be the set of all such, this is a group under componentwise
addition. For Z :=

∑
i niZi, set |Z| := ∪iZi.

If X has dimension dX , set

zd(X) := zdX−d(X).

By various means, one can define the intersection of two cycles Z,W on
a smooth variety X, assuming the intersection had the proper dimension,
i.e., for Z ∈ zp(X), W ∈ zq(X) each component of |Z| ∩ |W | should have
codimension p+q onX. This gives the partially defined intersection product

Z ·W :=
∑

T

m(T ;Z,W )T

where T runs over the components of |Z|∩ |W | and the m(T ;Z,W ) are the
intersection multiplicities.

Roughly speaking the intersection multiplicity m(T ;Z,W ) is a mea-
sure of how tangent W and Z are at the generic point of T . For instance,
if W and Z are manifolds along an open subset U of T and intersect trans-
versely along U , then m(T ;Z,W ) = 1. The most direct method of defining
the multiplicities was found by Serre [42], who gave a formula using homo-
logical algebra.

Intersection theory is interesting to algebraic geometers since many
geometric problems can be phrased as the computation of an intersection
multiplicity. For instance: the number of lines in the plane that are simul-
taneously tangent to a curve D of degree d and a curve E of degree e is
the intersection degree of the dual curves D′ and E′ to D and E, if one
counts the lines with the correct multiplicity. The degrees of D′ and E′ are
d′ = d(d−1), e′ = e(e−1) and Bezout’s theorem shows that the intersection
number of D′ and E′ is ed(e − 1)(d − 1).
• Cycles and (co)homology. The idea that algebraic cycles are somehow like
singular cycles is an old one, but there is a problem in this analogy: What
replaces the singular chains? There is an evident algebraic analog of the
singular simplex ∆n, the algebraic n-simplex ∆n

k , defined as the hyperplane
in affine n+ 1 space over k given by the equation

t0 + . . .+ tn = 1.

The co-face and co-degeneracy maps for ∆n are all linear maps in the
barycentric coordinates ti, so they have a direct extension to maps among
the ∆n

k . Formally speaking, this makes the assignment n �→ ∆n
k into a



6 Marc Levine

cosimplicial scheme. The coordinates t1, . . . , tn give an isomorphism of ∆n
k

with the affine n-space An
k .

For a k-variety X, one could just extend the singular chain complex
construction by taking Calg

n (X) to be the free abelian group on the set of
algebraic maps ∆n

k → X. However, for most X, there are no non-constant
maps An → X, so this theory would be rather uninteresting.

Andrei Suslin [44] came up with the correct definition, using the Dold-
Thom theorem as a guide. This result states that the reduced homology
groups of a pointed CW complex X are the same as the homotopy groups
of the infinite symmetric product of X:

H̃n(X,Z) ∼= πn(Sym∞X).

Suslin defined the algebraic analogy of maps of Sn to Sym∞X as the group
of finite cycles:

CSus
n (X) := Z{W ⊂ ∆n ×X |W is irreducible and

W → ∆n
k is finite and surjective}.

Such a W gives formally a map ∆n
k → Sd(X) by sending t ∈ ∆n

k to the
cycle W · (t×X) on X, where we view

W · (t×X) = w1(t) + . . .+ wd(t)

as a sum of d points of X, d being the degree of W over X.
Pull-back by the alternating sum of the co-face maps for ∆∗

k defines a
differential for CSus∗ (X); the resulting homology is the Suslin homology of
X:

HSus
n (X) := Hn(CSus

∗ (X)).

What about cohomology? Here the situation exposes a crucial differ-
ence from the topological case, in that there are two types of S1s that
naturally occur in algebraic geometry. In topology, one has “wrong-way”
or Gysin maps on cohomology for a closed codimension d immersion of ori-
ented manifolds i : V → W . The Gysin map is constructed by identifying
a tubular neighborhood T of V in W with the normal bundle NV/W , and
using the Thom isomorphism

Hn+d(NV/W /(NV/W \ 0V )) ∼= Hn(V ).

Excision gives us an isomorphism

Hn+d(NV/W /(NV/W \ 0V )) ∼= Hn+d(T/(T \ V )) ∼= Hn+d(W/(W \ V ))
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and pull-back by the quotient map W →W/(W \V ) gives the natural map

Hn+d(W/(W \ V )) → Hn+d(W ).

Putting these all together gives the Gysin map

i∗ : Hn(V ) → Hn+d(W ).

One can perform an analogous construction in algebraic geometry with
the help of the Morel-Voevodsky category of spaces over k, Spc(k), and the
motivic unstable homotopy category H(k) (see [36]). More about these con-
structions later; for the purpose of our discussion, we want to concentrate
on a crucial difference between the Thom space construction in topology
and in algebraic geometry. In the case of V a point v of W , the normal
bundle is just the tangent space TW,v and the Thom space is homotopy
equivalent to the quotient of real projective spaces

TW,v/(TW,v \ 0) ∼ RP(TW,v ⊕ R)/RP(TW,v) ∼ Sd

where d is the dimension of W . If now V and W are algebraic varieties, we
replace the real projective spaces with the scheme-versions:

TW,v/(TW,v \ 0) ∼ P(TW,v ⊕ e)/P(TW,v)

where e→W is the trivial rank one bundle. This latter quotient is not the
same as a topological sphere in H(k). In fact, if we take the simplest case of
dimension one, we just get P1, pointed by ∞. Noting that P1 is a union of
two A1s over their intersection Gm := A1 \ 0, and that A1 is contractible in
the Morel-Voevodsky homotopy category, it follows that P1 is isomorphic
in H(k) to the suspension of Gm, i.e.,

P1 ∼ S1 ∧ Gm,

while S2 ∼ S1 ∧ S1. The space S2, P1 are not homotopy equivalent, so
one needs to keep track of how many “Tate circles” Gm go into the pro-
duction of a sphere-like object. This number is called the “weight” of the
algebro-geometric sphere, and we use the notation Sa,b to denote the sphere
(S1)∧a−b ∧ (Gm)∧b. For example, the sphere Pd/Pd−1 that occurs in the al-
gebraic Thom space is an S2d,d.

Once we have noted this crucial difference, we can follow the topolog-
ical lead in defining the algebraic version of cohomology, known as motivic
cohomology. The Dold-Thom theorem [9] tells us that the infinite sym-
metric product Sym∞Sd is an Eilenberg-MacLane space K(Z, d), i.e., has
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exactly one non-zero homotopy group πd = Z. By obstruction theory, one
can compute cohomology by

Hn(X) = πd−n(Maps(X,Sym∞(Sd)))

for n ≤ d. Replacing Sd with S2d,d gives us

Hp,d(X,Z) := π2d−p(Maps(X,Sym∞(Pd/Pd−1)).

Now we need to make sense of the mapping space, using Suslin’s construc-
tion as a guide. To define πn(Maps(X,Sym∞(Y )), let

CSus
n (Y )(X) := Z{W ⊂ ∆n ×X × Y |W is irreducible, and

W → ∆n ×X is finite and surjective

onto some component of ∆n ×X}.
The CSus

n (Y )(X) form a complex CSus∗ (Y )(X), which is contravariantly
functorial in X and covariant in Y . For a closed immersion Z → Y , define

CSus
n (Y/Z)(X) := CSus

n (Y )(X)/CSus
n (Z)(X).

The homology of CSus∗ (Y/Z)(X) is a good replacement of the homotopy
groups of the “mapping space” Maps(X,Sym∞(Y/Z)), which leads to

Definition 3.2.2. Let X be a smooth variety over X. The weight d motivic
cohomology of X is

Hp,d(X,Z) := H2d−p(CSus
∗ (Pd/Pd−1)(X)).

One often sees the notation Hp(X,Z(d)) for Hp,d(X,Z).

Remark 3.2.3. The analogy suggests that our definition of Hp,d(X,Z)
should only be valid for p ≤ 2d, and that one needs to extend the defi-
nition for larger p by a stabilization process, i.e.,

Hp,d(X,Z) := lim
N→∞

Hp+2N,d+N (X ∧ (PN/PN−1),Z).

In fact, the limit is constant, equal to its value at N = 0, so we do have
the correct definition. The fact that the limit is constant follows from Vo-
evodsky’s cancellation theorem [57, Chapter 5, Theorem 4.3.1].

• Sheaves and the derived category. There is an algebraic version of the
derived category D(Ab), which contains the Suslin complex of algebraic
varieties, or more generally, the complexes computing weight n motivic
cohomology. This is Voevodsky’s triangulated category of motives over k,
DM eff− (k) (see [57]). The objects of D(Ab) are just complexes of abelian
groups, and morphisms are given by starting with the category of chain
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homotopy classes of maps of complexes and then inverting the quasi-iso-
morphisms, i.e., the maps f : C → C ′ which induce an isomorphism on
all cohomology groups. DM eff− (k) is defined similarly, but one needs to
incorporate the sheaf theory of smooth algebraic varieties over k

To do this, and have at the same time a relation with the Suslin com-
plex construction, one must first enlarge the category of smooth algebraic
k-scheme, Sm/k, to the category of finite correspondences SmCor(k). The
objects are the same, but one defines

HomSmCor(k)(X,Y ) := CSus
0 (Y )(X)

i.e., the group of cycles on X × Y which are finite over X, as explained
above. If we think of a finite cycle W ⊂ X × Y as a map X → Sd(Y ),
then we are led to a good idea of the composition law. One can define the
composition of correspondences purely in terms of intersection theory by

W ′ ◦W := pXZ∗(W × Z ·X ×W ′)

forW ⊂ X×Y ,W ′ ⊂ Y×Z, with the intersection taking place onX×Y×Z.
Sending a map f : X → Y to its graph Γf ⊂ X × Y gives the inclusion
functor

i : Sm/k → SmCor(k),

which shows how SmCor(k) is an enlargement of Sm/k.
A presheaf (of abelian groups) on Sm/k is just a functor

P : Sm/kop → Ab;

similarly, define a presheaf with transfers on Sm/k to be a presheaf on
SmCor(k), that is, a functor P : SmCor(k)op → Ab. We write PST(k) for
the category of presheaves with transfers on Sm/k.

For sheaves, one needs a topology. We won’t go into the whole story of
Grothendieck topologies here, except to say that, roughly speaking, one can
generalize standard point-set topology by replacing open subsets U ⊂ X

with maps U → X, and intersection U∩V of open subsets with fiber product
U×X V . In this way, one can define a Grothendieck topology on X ∈ Sm/k
by selecting an appropriate collection of maps, called covering families,
which need to satisfy certain axioms (see [1, 29, 58]). This makes sense not
just for one X, but for the whole category Sm/k. Once we have selected
a Grothendieck topology τ on Sm/k, we have the notion of a sheaf for τ ,
namely a presheaf P such that, for all covering families {fα : Uα → U}, the
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sequence
0 → P (U) →

∏

α

P (Uα) →
∏

α,β

P (Uα ×U Uβ)

is exact, where the first map is the product of the “restriction” maps for
Uα → U , and the second is the difference of the two restriction maps for
p1 : Uα ×U Uβ → Uα, p2 : Uα ×U Uβ → Uβ .

The topology we need is the Nisnevich topology. In this topology, a
covering family of U is a collection of étale (i.e., flat and unramified) maps
{fα : Uα → U} such that, for each finitely generated field extension L of k,
the map on L-points

�αUα(L) → U(L)
is surjective. Another way to say the same thing: for each point x ∈ U , there
is an α and a point xα ∈ Uα with fα(xα) = x and with f∗α : k(x) → k(xα)
an isomorphism on the residue fields.

Example 3.2.4. Let U = A1 \ {0} = Spec k[t, t−1]. Let

V = Spec k[t, t−1, y]/y2 − t,

with projection f : V → U dual to the inclusion of rings of functions
k[t, t−1] → k[t, t−1, y]/y2 − t. Since d(y2 − t) = 2ydy − dt (and we have
inverted t, so y = 0 is not in V ), we see that V → U is étale and surjective.
However, not every residue field extension is an isomorphism, for example,
the extension over the generic point Speck(t) is the degree two extension
k(t)[y]/y2 − t. Thus V → U is not a Nisnevich cover. However, if we add
the open subscheme V ′ = Spec k[t, t−1, (t− 1)−1] = A1 \ {0, 1}, then {V →
U, V ′ → U} is a Nisnevich cover. In fact, V ′ → V covers all points t �= 1,
and over t = 1, we can solve the equation y2 − t (namely y = ±1) so the
residue field extension

k = k(1) ⊂ k(1, 1) = k

is an isomorphism.

The category Shtr
Nis(k) is the subcategory of PST(k) consisting of the

presheaves P whose restriction to Sm/k is a Nisnevich sheaf. Most im-
portantly for us, the presheaves X �→ Cn(Y )(X) are Nisnevich sheaves,
so CSus∗ (Y ) forms a complex in the abelian category Shtr

Nis(k). Thus, we
can consider the complexes CSus∗ (Pn/Pn−1) as substitutes for the singular
cochain complex functor X �→ C∗

sing(X).
In fact, one can further modify the category of complexes of sheaves

with transfer, just as we modify the category of complexes of abelian groups,
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by inverting certain maps. We first invert the maps which are Nisnevich local
quasi-isomorphisms, i.e., maps f : C → C ′ which are quasi-isomorphisms
on all Nisnevich stalks. We also need to invert maps to impose the A1-
homotopy invariance property. To do this, the projection map X×A1 → X

gives a map of sheaves

p∗1 : CSus
0 (X × A1) → CSus

0 (X)

and we invert all these maps. This gives us Voevodsky’s category of motives
DM eff− (k) [57, Chapter 5, section 3] (the subscript − comes from a tech-
nical point which we have not mentioned, namely, that we only consider
complexes of sheaves C∗ with Cn = 0 for n >> 0).

We have the analog of the singular chain complex functor by sendingX
to the image of complex CSus∗ (X) in DM eff− (k); we write this as M(X). We
denote the complex CSus∗ (Pn/Pn−1)[−2n] by Z(n), and one has the following
formula for motivic cohomology:

Hp(X,Z(q)) ∼= HomDMeff
− (k)(M(X),Z(q)[p]),

analogous to the formula for cohomology of a topological space T with
coefficients in an abelian group A:

Hp(T,A) ∼= HomD−(Ab)(C∗(T ), A[p]).

Here the operation C �→ C[p] is the usual shift operator on complexes:

C[p]n := Cn+p.

It is a nice exercise to show that HomD(Ab)(C∗, A[p]) calculates the pth
cohomology of the Hom-complex HomAb(C∗, A) if C∗ is a complex of free
abelian groups.

Remark 3.2.5. Voevodsky’s definition of DM eff− (k) is different from what
we have presented here. His definition starts with the derived category
D−(Shtr

Nis(k)), which is formed from the category of complexes of Nisnevich
sheaves with transfer by inverting Nisnevich local quasi-isomorphisms, just
as we did above. Now, instead of inverting the A1-weak equivalences, Vo-
evodsky defines DM eff− (k) to be the full subcategory of D−(Shtr

Nis(k)) con-
sisting of those complexes C∗ whose Nisnevich cohomology sheaves Hn(C∗)
are homotopy invariant:

Hn(C∗)(X) ∼= Hn(C∗)(X × A1)
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for all X ∈ Sm/k. A fundamental theorem [57, Chapter 5, Theorem 3.1.12]
of Voevodsky’s implies that this condition does in fact define a triangu-
lated subcategory of D−(Shtr

Nis(k)). Voevodsky goes on to prove that the
definition of DM eff− (k) we gave here, as a localization of D−(Shtr

Nis(k)),
is equivalent to his definition as a subcategory of D−(Shtr

Nis(k)) (see [57,
Chapter 5, Theorem 3.2.6]).

Beside the book [57], we recommend [27] as a good source for further
reading on Voevodsky’s category of motives and [10] for a nice overview of
related topics.

4. Homotopy theory

We turn to a discussion of classical homotopy theory and the parallel world
of motivic homotopy theory.

4.1. Topology

In our bird’s eye view of homotopy theory, the basic ingredients are:

1. Spaces Spc (i.e., simplicial sets).

2. The (unstable) homotopy category H. This construction relies on two
special spaces: the interval I = [0, 1] and the circle S1 := I/{0, 1}. Using I,
one defines the notion of homotopy of maps: f, g : X → Y are homotopic if
there is a map H : X × I → Y with f = H ◦ i0, g = H ◦ i1. The homotopy
relation ∼ leads in turn to the notion of homotopy equivalence of spaces,
f : X → Y being a homotopy equivalence if there is a homotopy inverse
g : Y → X, i.e., gf ∼ idX , fg ∼ idY .

The circle S1 plus the homotopy relation leads to the homotopy groups
of a pointed space, as follows: S1 has as natural base-point ∗ the image of
{0, 1}, For pointed spaces (X, ∗), (Y, ∗), we have the smash product

X ∧ Y := X × Y/X × ∗ ∪ ∗ × Y.

The n-sphere Sn is just the n-fold smash product of S1, and the nth ho-
motopy group πn(X, ∗) is the set of homotopy classes of pointed maps
(Sn, ∗) → (X, ∗). This works even for n = 0, where S0 := {0, 1} with
base-point 0.
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Once we have homotopy groups, we can define the unstable homotopy
category H by inverting the weak equivalences in Spc(k):

H := Spc[WE−1]

where WE is the collection of weak equivalences: a map of spaces f : X →
Y which induces an isomorphism on all homotopy groups. Since we are
dealing with simplicial sets, it turns out the WE is just the collection of all
homotopy equivalences, but never mind. Performing the same construction
on the category of pointed spaces gives us the pointed homotopy category
H•. We write

[A,B] := HomH•(A,B).

3. Generalized cohomology and the stable homotopy category SH. To rep-
resent cohomological functors E∗ from Spc to graded abelian groups, one
enlarges Spc to spectra Spt and H to the stable homotopy category SH.
Roughly, we want functors which satisfy

En(X) = En+1(ΣX)

where ΣX := X ∧ S1, so we replace a space E with a sequence of pointed
spaces E0, E1, . . . together with bonding maps εn : ΣEn → En+1.

Given a pointed space X, we use the bonding maps to send
[ΣN−nX,EN ] to [ΣN−n+1X,EN+1], giving us the inductive system of sets

N �→ [ΣN−nX,EN ].

We define En(X) by

En(X) := lim
N→∞

[ΣN−nX,EN ];

it is easy to see that X �→ En(X) satisfies the suspension property we
want. Such a gadget E := (E0, E1, . . .), together with the maps εn : ΣEn →
En+1, is a spectrum. This gives us the category of spectra, Spt, by taking
a morphism E → F to be a sequences of maps En → Fn which respect the
bonding maps.

Since S1 is a co-group and S2 a commutative co-group (in H•), the
En(X) are not just sets, but have a natural abelian group structure. Note
also that En(X) is defined for all n ∈ Z, not just n ≥ 0. Taking X = S0,
we have the stable homotopy groups of E:

πs
n(E) := E−n(S0).
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A map of spectra E → F is a stable weak equivalence if πs
n(E) → πs

n(F )
is an isomorphism for all n; inverting the stable weak equivalences in Spt
gives us the stable homotopy category SH := Spt[sWE−1].

The Brown representability theorem (see, e.g., [43, Chapter 7, section
7]) tells us that SH is exactly the category of (generalized) cohomology
theories: given a cohomology theory E∗ on spectra, there is an E ∈ SH
(unique up to unique isomorphism) with E∗(F ) = HomSH(F,Σ∗E) for all
spectra F . Some well-known cohomology theories and their representing
objects are:

1. Singular cohomology H∗(−, A) is represented by the Eilenberg-
MacLane spectrum HA, with HAn = K(n,A), the space with

πm(K(n,A)) =

{
A for n = m

0 else.

For A = Z, we can use the Dold-Thom theorem to give a nice model
for K(n,Z): K(n,Z) = Sym∞Sn.

2. Topological K-theory. A complex vector bundle on a space X is given
by a map into the space with a universal bundle, namely BU , the
(doubly) infinite Grassmann variety. Bott periodicity says Ω2BU ∼=
BU , which gives a map Σ2BU → BU . Thus, topological K-theory is
represented by the K-theory spectrum

K := (BU × Z,ΣBU,BU,ΣBU, . . .)

using the Bott map Σ2BU → BU for ε2n+1 and the identity for ε2n.
3. Complex cobordism MU∗ is represented by the Thom spectrum MU ,

formed from the Thom spaces of the universal bundles En → BUn:

MU := (pt, S1,MU1,ΣMU1,MU2,ΣMU2, . . .)

where MUn is the Thom space

MUn := Th(En) = En/(En \ 0BUn).

We need a map Σ2MUn → MUn+1; this comes from the embedding
in : BUn → BUn+1, noting that i∗nEn+1 = En ⊕ C, so

Th(i∗nEn+1) = Th(En) ∧ S2.

This gives us the map

Σ2Th(En) = Th(En) ∧ S2 = Th(i∗nEn+1)
in∗−−→ Th(En+1).
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4.2. Algebraic geometry

Morel and Voevodsky [36] have shown us how to translate these basic con-
structions in homotopy theory into the world of algebraic geometry.

1. Spaces over k, Spc(k). Taking a hint from our replacement of abelian
groups by presheaves on Sm/k, we replace the category of spaces Spc
by the category Spc(k) of presheaves of spaces on Sm/k, i.e., functors
P : Sm/kop → Spc.

The category Spc(k) mixes the two categories Spc and Sm/k together
in a very useful way. Sending X ∈ Sm/k to the presheaf of sets Y �→
HomSm/k(Y,X) gives a full embedding i : Sm/k → Spc(k). In other words,
each smooth k-scheme is a presheaf of discrete spaces. Given a space K, we
have the constant presheaf: K(Y ) = K, giving the embedding ι : Spc →
Spc(k).

Even more, Spc(k) inherits constructions from Spc by doing them to
the “values” of various presheaves. For instance, if P and Q are pointed
presheaves of spaces on Sm/k, we can form the presheaf P ∧Q by

(P ∧Q)(Y ) := P (Y ) ∧Q(Y ).

This allows us to define, e.g., the suspension operator on pointed spaces
over k, Spc∗(k), by

ΣP := P ∧ S1.

This makes sense even for P = i(X), X ∈ Sm/k.
To define the homotopy relation, we could just use the homotopy rela-

tion on Spc, promoted up to presheaves in the same way as we did smash
product or suspension. However, we want to incorporate two new ingredi-
ents that come from Sm/k and not from Spc: the Nisnevich topology and
the contractibility of the affine line. We build these into the construction
through the homotopy category H(k).

2. The unstable homotopy category H(k). To reflect the Nisnevich topology,
we have

Definition 4.2.1. A map of spaces over k f : P → Q, is a Nisnevich local weak
equivalence if, for each for x ∈ X ∈ Sm/k, f induces s a weak equivalence
of spaces on each Nisnevich stalk fx : Px → Qx.

Here, the Nisnevich stalk of P at x is the limit

Px := lim→ P (U),
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where U runs over Nisnevich neighborhoods of x in X, i.e., étale maps
U → X plus a section x → U over x ∈ X. Inverting all Nisnevich local
weak equivalences in Spc(k) gives us the first approximation HNis(k) to
H(k).

To make A1 contractible, we first look at spaces for whichX andX×A1

look the same: call a space Z A1-local if HomHNis
(X,Z) → HomHNis

(X ×
A1, Z) is an isomorphism for all X ∈ Sm/k. A map f : P → Q is then
an A1-weak equivalence if f∗ : HomHNis

(Q,Z) → HomHNis
(P,Z) is an iso-

morphism for all A1-local Z. Let WEA1(k) be the A1-weak equivalences in
Spc(k).

Definition 4.2.2. Define the Morel-Voevodsky unstable homotopy category
of spaces over k, H(k), by

H(k) := HNis(k)[WEA1(k)−1],

i.e., by inverting all A1-weak equivalences in HNis(k).

Note that X × A1 → X is automatically an A1-weak equivalence, so
we have made A1 “contractible” by this process. We have pointed versions,
Spc•(k), HNis•(k) and H•(k), defined similarly.

By the way, what we’ve done is a standard procedure in the theory
of model categories, called Bousfield localization (see e.g. [14]). Under ap-
propriate hypotheses, this gives a good way of selecting all the maps one
needs to invert, given a collection of maps that one wants to invert: in our
case, we wanted to invert the maps X ×A1 → X, and Bousfield tells us we
should really invert all the A1-weak equivalences.

One basic result, the purity theory of Morel-Voevodsky [36, Theorem
3.2.23], makes the classical tubular neighborhood construction available in
H•(k). As we have mentioned before, for i : V → W an embedding of
manifolds, a tubular neighborhood T of V in W is homeomorphic to the
normal bundle N of V in W , leading to the homeomorphism

W/(W \ V ) ∼= N/(N \ 0V ) =: Th(N)

where 0V is the zero-section of N . The analog of this is not true in Spc•(k),
but is so in H•(k): for i : Y → X a closed embedding of algebraic manifolds,
with normal bundle Ni, we have an isomorphism in H•(k)

X/(X \ Y ) ∼= Ni/(Ni \ 0Y ) =: Th(Ni).

If nowNi is a trivial bundle, then, as we saw before, we have an isomorphism
in H•(k)

Th(Ni) ∼= Pd/P d−1 ∧ Y+
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with d = codimXY , replacing the homeomorphism Th(N) ∼= Sn ∧ V+,
n = codimWV in the topological setting (assuming N is the trivial bundle).

3. The stable homotopy category of T -spectra. Replacing Spc• with
Spc•(k) and S1 = Th(R) with P1 = Th(A1) in our definition of spectra
gives us the category of T -spectra over k, Spt(k). Objects are sequences of
pointed spaces over k, E0, E1, . . ., with bonding maps

εn : En ∧ P1 → En+1.

Morphisms E → F are as before families of maps En → Fn commuting
with the bonding maps. Noting that P1 is an S2,1, we have the presheaf of
bi-graded stable homotopy groups

πs
a,b(E)(X) := lim→

N

HomH•(k)(S
a+2N,b+N ∧X+, EN ); X ∈ Sm/k,

and the associated Nisnevich sheaf πs
a,b(E)Nis.

A stable weak equivalenceis a map f : E → F of T -spectra which
induces an isomorphism of sheaves πs

a,b(E)Nis → πs
a,b(F )Nis for all a, b. This

gives us the stable homotopy category of T -spectra, SH(k), by

SH(k) := Spt(k)[sWE−1].

The operator − ∧ P1 on H•(k) extends to the invertible “T -suspension”
operator ΣT on SH(k).

Thus, the objects E of SH(k) represent bi-graded cohomology theories
on Sm/k:

Ea,b(X) := lim→
N

HomH•(k)(S
2N−a,N−b ∧X,EN ) = πs

−a,−b(E)(X).

All the theories we have described in the topological setting have al-
gebraic analogs:

1. Motivic cohomology. Replacing the space K(n,Z) = Sym∞Sn with
the space over k, Sym∞(Pn/Pn−1), gives us the motivic cohomology
spectrum HZ

HZ := (Sym∞(S0,0),Sym∞(S2,1), . . . ,Sym∞(S2n,n), . . .).

At least for k a field of characteristic zero, HZ does indeed represent
the motivic cohomology defined in the section on cohomology; see the
comments on the Eilenberg-MacLane functor below.
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2. Algebraic K-theory. Morel-Voevodsky show that the (doubly) infinite
Grassmann variety BGL represents the (reduced) algebraic K0 functor
of Grothendieck (see [36, Theorem 4.3.13]). Also, one has the projective
bundle formula for K0, which, for P1, tells you

K0(X × P1) = K0(X) ⊕K0(X)

or K0(X ∧ P1) = K0(X). Since P1 = S2,1, this is just the algebraic
form of Bott periodicity. Thus, one can define a T -spectrum

K := (BGL× Z, BGL, . . .)

with map BGL∧P1 → BGL coming from Bott periodicity. In fact, K
does represent higher algebraic K-theory on Sm/k.

3. Algebraic cobordism MGL. Replacing BUn with BGLn = Gr(n,∞),
we have the purely algebraic universal bundle En → BGLn and the
Thom spectrum

MGL := (Th(E0), Th(E1), . . . , Th(En), . . .).

The associated cohomology theory MGL∗∗ is called algebraic cobor-
dism. With Morel, we have defined a geometric version Ω∗ of this
theory (also called algebraic cobordism, see [23]). Ω∗ comes with natu-
ral maps Ωn(X) →MGL2n,n(X) for X ∈ Sm/k, which we conjecture
are isomorphisms. This should be the analog of the isomorphisms

CHn(X) ∼= H2n,n(X,Z).

Additionally, there is an Eilenberg-MacLane functor

DM(k) EM−−→ SH(k).

The category DM(k) is a “T -spectrum” version of the category of motives
DM eff− (k) defined in the previous section. The functor EM is the analog of
the Eilenberg-MacLane functorD(Ab) → SH in classical homotopy theory.
Work of Röndigs-Østvær [40] show that the functor EM identifies DM(k)
with the homotopy category of “HZ-modules”; this shows in particular that
motivic cohomology is indeed represented by the T -spectrum HZ.

5. Applications and perspectives

We conclude our overview of motivic homotopy theory with some of the
most striking applications, together with a few thoughts on open problems.
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5.1. The Bloch-Kato conjecture

This far-reaching conjecture is concerned with the Galois symbol

θn,F,q : KM
q (F )/n → Hq

Gal(F, µ
⊗q
n ).

To explain: F is a field, n is an integer prime to the characteristic of F , µn

is the Gal(F )-module of nth roots of unity in F̄ , q ≥ 1 is an integer, KM
q (F )

is the qth Milnor K-group of F , and Hq
Gal(F,−) is Galois cohomology, i.e.,

group cohomology for the profinite group Gal(F ). The map θn,F,q is defined
as follows. For q = 1, we consider the Kummer sequence of Gal(F )-modules

1 → µn → F̄× xn−→ F̄× → 1.

The relevant part of the long exact Galois cohomology sequence is

H0
Gal(F, F̄

×) xn−→ H0
Gal(F, F̄

×) ∂−→ H1
Gal(F, µn) → H1

Gal(F, F̄
×).

But H0
Gal(F, F̄

×) = F× and Hilbert’s theorem 90 tells us H1
Gal(F, F̄

×) = 0,
so we have the isomorphism

F×/(F×)n ∂−→ H1
Gal(F, µn).

Now, the Milnor K-groups KM∗ (F ) are defined as the quotient of the
tensor algebra on the group of units F× by the two-sided ideal generated
by the elements x ⊗ (1 − x), x ∈ F \ {0, 1} (the Steinberg relation). Since
K1(F ) = F×, we define θn,F,1 := ∂.

In general, we use the cup product in Galois cohomology to define

(KM
1 (F )/n)⊗q

θ⊗q
n,F,1−−−→ H1

Gal(F, µn)⊗q ∪−→ Hq
Gal(F, µ

⊗q
n ).

One then shows that this map kills the Steinberg relation, and thus descends
to the desired map θn,F,q.

Milnor [30] noted a connection between quadratic forms (via the Witt
groupW (F ), the group of quadratic forms over k modulo hyperbolic forms),
mod 2 Milnor K-theory and Galois cohomology. He conjectured that, not
only is θ2�,F,q an isomorphism for all 
, but that another map

ψF,q : KM
q (F )/2 → Iq/Iq+1

is an isomorphism for all F and q. Here I ⊂W (F ) is the augmentation ideal,
i.e., the quadric forms of even rank, and ψF,q sends the symbol {a1, . . . , aq}
(the image in KM

q of the tensor a1 ⊗ . . . ⊗ aq) to the class of the Pfister
quadric form 〈〈a1, . . . , aq〉〉. This quadratic form is defined as follows: 〈〈a〉〉
is the form x2 − ay2, and 〈〈a1, . . . , aq〉〉 is the tensor product 〈〈a1〉〉 ⊗ . . .⊗
〈〈aq〉〉.



20 Marc Levine

The maps θn,F,1 are isomorphisms by construction (the Kummer se-
quence). Tate [47] considered the map

θn,F,2 : KM
2 (F )/n → H2

Gal(F, µ
⊗2
n ),

for F a number field, and showed that θn,F,2 is an isomorphism in this
case. Using this as an inductive starting point, Merkurjev and Suslin, in a
ground-breaking paper [28], used the K-theory of Severi-Brauer varieties
to extend Tate’s result to arbitrary fields (but still for q = 2).

In their paper on p-adic étale cohomology, Bloch and Kato defined an
analog of the Galois symbol for the mod pn Milnor K-groups in character-
istic p, and showed that this analog is an isomorphism. They conjectured
that θn,F,q is an isomorphism for all n,F, q, giving rise to the Bloch-Kato
conjecture, subsuming at least part of the Milnor conjecture.

There was little progress on the Bloch-Kato conjecture beyond the
Merkurjev-Suslin theorem for quite some time. However, it did slowly be-
come apparent that the Bloch-Kato conjecture was closely related to two
other conjectures: the Quillen-Lichtenbaum conjecture, and the Beilinson-
Lichtenbaum conjecture.

The Quillen-Lichtenbaum conjecture concerns the map from algebraic
K-theory to étale K-theory (with mod n coefficients)

τX,n,q : Kq(X; Z/n) → K ét
q (X; Z/n).

The conjecture asserts that the comparison map τ should be an isomor-
phism for q ≥ cdn,X − 1 and an injection for q = cdn,X − 2. Here cdn,X

is the étale cohomological dimension of the category of n-torsion sheaves
on X. Part of the problem in understanding this conjecture was that the
failure of τ to be an isomorphism in low degree made the usual topolog-
ical approaches difficult. The Beilinson-Lichtenbaum conjectures, in their
original form, tried to explain the low-degree problem with τ by positing
a theory of motivic cohomology that would have a much better relation
with étale cohomology, and whose relation with algebraic K-theory would
be given by a spectral sequence, akin to the classical Atiyah-Hirzebruch
spectral sequence relating singular cohomology and topological K-theory.

What in hindsight is quite remarkable, is that the present theory of
motivic cohomology completely fulfills the conjecture of Beilinson-Lichten-
baum (with one important missing ingredient having to do with another
conjecture that is still open, the Beilinson-Soulé conjecture); in any case,
all the parts of the Beilinson-Lichtenbaum conjecture that are important
for their application to the Quillen-Lichtenbaum conjecture are now known.
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So, let me rewrite history a bit and recount the facts that we now know
about motivic cohomology and algebraic K-theory, to get down to the main
fact one needs to settle the Quillen-Lichtenbaum conjecture.

First of all, there is a well-defined comparison map

αX,n,p,q : Hp(X,Z/n(q)) → Hp
ét(X,Z/n(q)ét).

Here X is some smooth variety and Hp(X,Z/n(q)) is motivic cohomology
with mod n coefficients, defined using Voevodsky’s category of motives
DM eff− (k). The group Hp

ét(X,Z/n(q)ét) is the étale cohomology of X with
coefficients the sheaf Z/n(q)ét := µ⊗q

n . The map αX,n,p,q can be viewed as
arising from a change of topologies construction, going from the Nisnevich
topology to the étale topology.

For X = SpecF , Hp
ét(F,Z/n(q)ét) = Hp

Gal(F, µ
⊗q
n ). Also, there is a

natural isomorphism

Hq(F,Z(q)) ∼= KM
q (F )

(due to Totaro [48] and Nesterenko-Suslin [37]), which leads to an isomor-
phism Hq(X,Z/n(q)) ∼= KM

q (F )/n. Via these isomorphisms, the change of
topology map αX,n,q,q turns out to be the Galois symbol θn,F,q.

Also, there is a spectral sequence, established in case X = SpecF
by Bloch and Lichtenbaum [6], and extended to arbitrary smooth X by
Friedlander-Suslin [11]

Ep,q
2 = Hp−q(X,Z(−q)) =⇒ K−p−q(X),

and a mod n version

Ep,q
2 = Hp−q(X,Z/n(−q)) =⇒ K−p−q(X; Z/n). (5.1.1)

A very similar looking spectral sequence, going from mod n étale cohomol-
ogy and converging to mod n étale K-theory, was constructed much earlier
by Dwyer-Friedlander [12] (there are some tricky convergence questions
involved in this latter sequence, but let’s ignore them).

All these properties were part of the original conjectures of Beilinson
and Lichtenbaum. The remaining parts of the conjecture, relevant for us,
were

(1) For p ≤ q, the comparison map αX,n,p,q : Hp(X,Z/n(q)) →
Hp

ét(X,Z/n(q)ét) is an isomorphism.
(2) If O is a the local ring of a smooth point on a variety of finite type

over k, we have Hq+1
ét (O,Z(q)ét) = 0.
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With regard to (2), we should note that it is rather easy to show that
the motivic cohomology Hq+1(O,Z(q)) vanishes. The complex Z(q)ét is
defined by taking the étale sheafification of the complex CSus∗ (Pq/Pq−1)
that computes motivic cohomology.

Also, for q = 1, the complex CSus∗ (P1/P0) is quasi-isomorphic to
Gm[−1], so the statement Hq+1

ét (O,Z(q)ét) = 0 is just Hilbert’s theorem
90 (extended from fields to smooth local rings). For q = 2, and O = F a
field, the vanishing of H3

ét(O,Z(2)ét) is related to a theorem of Merkurjev-
Suslin [28]: Suppose F contains the 
th roots of unity, 
 a prime. Let a be
a non-zero element of F , not an 
th power in F , let L = F (a1/�) and let σ
be a generator of Gal(L/F ) ∼= Z/
. Then the sequence

K2(L) 1−σ−−→ K2(L)
NmL/F−−−−−→ K2(F )

is exact. If we replace K2 with K1, and note thatK1(k) = k× for any field k,
the exactness is just the classical statement of Hilbert’s theorem 90, so this
result is called Hilbert’s theorem 90 for K2. In fact, this was the key result
used by Merkurjev and Suslin to show that θ : K2(F )/n → H2

Gal(F, µ
⊗2
n ) is

an isomorphism.
Using a comparison of the Atiyah-Hirzebruch type spectral sequence

(5.1.1) with its étale analog, it is not hard to show that the Beilinson-
Lichtenbaum conjecture implies the Quillen-Lichtenbaum conjecture; in
short, the fact that the comparison between motivic and étale cohomol-
ogy is an isomorphism only in degrees up to the weight, lead to the “error”
in the comparison between algebraic and étale K-theory in low degree.

Finally, we should note that the Beilinson-Lichtenbaum conjecture
part (1), for p = q and X = SpecF , is just the Bloch-Kato conjecture
for q. Thus, the Beilinson-Lichtenbaum conjecture implies the Bloch-Kato
conjecture as a special case.

In fact, the converse proved to be true as well: Suslin and Voevodsky
showed

Theorem 5.1.1 (Suslin-Voevodsky [46]). Let k be a field of characteristic
zero, m ≥ 1 an integer Suppose that the Bloch-Kato conjectures are true
for a fixed value of n, for all fields F finitely generated over k, and for all
q ≤ m. Then the Beilinson-Lichtenbaum conjecture (1) is true for n, for
all q ≤ m and for all X ∈ Sm/k.
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The characteristic zero hypothesis was removed by Geisser-Levine [13].
Thus, everything boils down to the Bloch-Kato conjecture (in fact, the ar-
guments for this also handle part (2) of the Beilinson-Lichtenbaum conjec-
tures, but we will ignore this point here).

Voevodsky announced a proof of the Milnor conjecture around 1996
(see [52] for the published version). The approach he used was in rough
outline the same as that used by Merkurjev and Suslin in their proof for q =
2: One understands the Galois symbol fairly well on symbols {a1, . . . , aq}.
To understand the Galois symbol on a general element, written as a sum of
symbols, one would like to make a special field extension that kills exactly
one symbol (and all its multiples) and then use induction on the number of
terms in the sum. In the case q = 2, Merkurjev and Suslin used the function
field of a Severi-Brauer variety for this purpose; in the case of arbitrary q,
but with n = 2, the hypersurfaces defined by the Pfister quadratic forms
play this role. Voevodsky [52] used results of M. Rost on K-cohomology of
Pfister quadrics, and combined this information with a degree- and weight-
shifting argument that relied on “motivic Steenrod operations”. This settled
the Milnor conjecture, and the Bloch-Kato conjecture for all q and n a power
of 2.

To handle the odd primes, Voevodsky and Rost needed first of all to
find a replacement for the Pfister quadrics. This turned out to be the norm
varieties. There are a number of additional complications that arise in the
case of p > 2 that I will not mention; shortly speaking, a more detailed
study of the motivic Steenrod operations, requiring an understanding of
the motivic homotopy properties of the symmetric powers of the sphere
S2d,d, was needed to generalize the argument from 2 to an odd prime. The
recent preprints of Voevodsky [49, 50], relying on work Rost [41] (see also
the write-up of Suslin-Joukhovitski [45]), plus a contribution of Weibel [59],
appear to have settled the full Bloch-Kato conjecture.

5.2. Stable homotopy groups of spheres and Witt groups

One of the most basic invariants of classical homotopy theory is the stable
homotopy groups of the spheres. In fact, the identity πs

0(S
0) = Z is closely

related to the existence of the degree map for a proper map of oriented
manifolds of the same dimension d: Given f : M → N , choose a regular
value y ∈ N , and let x1, . . . , xr be the points in f−1(y). Take a small ball
B around y so that f−1(B) = B1 � . . . � Br is a disjoint union of balls,
one for each xi. Using the orientations, we have homotopy equivalences
Bi/∂Bi

∼= Sd, B/∂B ∼= Sd; f induces maps fi : Bi/∂Bi → B/∂B, and thus
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elements di ∈ [Sd, Sd] → πs
0(S

0) = Z. The sum of the di is the degree of f ;
one shows that this is independent of the choice of y.

J. Lannes (see [34, 32]) noted that one could make a similar construc-
tion in algebraic geometry (at least for self-maps of P1): Let f : P1

k → P1
k

be a morphism, take a regular value y ∈ P1(k) and let x1, . . . , xr be
the points in f−1(y); we assume that y and all the xi are not ∞, and
let t be the standard coordinate on P1 \ {∞}. We have the derivatives
ui := df/dt|xi

∈ k(xi)×. Define the quadratic form on k(xi) (considered as
a k(y)-vector space) by

Qi(a, b) := Trk(xi)/k(y)(uiab).

The orthogonal direct sum of the Qi defines an element deg(f) in the
Grothendieck-Witt group GW (k) of quadratic forms over k = k(y). One
shows that deg(f) is independent of the choice of y, giving a map from the
self-maps of P1

k to GW (k). Note that a map P1
k → P1

k is a self-map of the
weighted sphere S2,1, hence gives rise to an element in the stable π0 of the
motivic sphere spectrum Sk, i.e., the T -spectrum

Sk := (S0
k,P

1
k,P

1
k ∧ P1

k, . . . , (P
1
k)

∧n, . . .).

In fact, Morel conjectured, and then proved

Theorem 5.2.1 (Morel [34]). Let k be a field of characteristic �= 2. Then
πs

0(Sk) ∼= GW (k), where πs
0(Sk) is the group of self-maps of Sk in the

motivic stable homotopy category SH(k).

I won’t say anything about the proof, but let me at least give the map
GW (k) → [Sk, Sk]. This is defined as follows: Let u ∈ k× be a non-zero
element of k. This gives us the self-map of P1

k, by sending (x0 : x1) to
(x0 : ux1). Taking the infinite T -suspension of this map gives the element
[u] ∈ HomSH(k)(Sk, Sk). Now, the quadratic forms 〈u〉 := ux2 generate
GW (k), with a well-known set of relations. Morel shows that these relations
are satisfied among the [u], giving the map GW (k) → π0(Sk).

The computation of the higher homotopy groups of the sphere spec-
trum appears to be completely open at present.

5.3. Algebraic cobordism

In [23], together with Morel, we have defined a geometric theory of algebraic
cobordism, X �→ Ω∗(X), which is supposed to describe the geometric part
of the bi-graded cohomology theory MGL∗,∗ represented by the motivic
Thom spectrum MGL in SH(k). By “geometric part”, I mean the subring
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⊕nMGL2n,n; the analogous part of motivic cohomology, ⊕nH
2n,n, is the

classical Chow ring ⊕nCHn.
Our definition of Ω∗ is motivated by Quillen’s work [39] on complex

cobordism. There is a geometric description of MUn(X), for X a C∞ man-
ifold, by generators and relations, the generators being proper, C-oriented
morphisms of manifolds f : Y → X, with n = dimX−dimY , and relations
that of cobordism: Given a proper C-oriented morphism F : W → X ×R1,
transverse to X ×{0, 1}, one identifies the fiber over 0, F0 : W0 → X, with
the fiber over 1, F1 : W1 → X.

The group Ω∗(X) has a very similar type of generator: f : Y → X,
with Y ∈ Sm/k, and f projective. The relations include a relation simi-
lar to that of complex cobordism, with A1 replacing R1, but these naive
cobordism relations are not sufficient. The original approach with Morel
required adding additional generators: (f : Y → X;L1, . . . , Lr), with the
Li line bundles on Y , and f as before. The Li should be considered as the
result of applying first Chern class operators to f : Y → X. We impose 3
relations:

1. A dimension axiom: (f : Y → X;L1, . . . , Lr) = 0 if r > dimk Y .
2. A Gysin relation: For i : D → X the inclusion of a smooth codimension

one subvariety, with associated line bundle L(D), we have

[idX : X → X;L(D)] = [i : D → X].

3. A formal group law: We extend coefficients to the coefficient ring L of
the universal formal group law, FL(u, v) ∈ L[[u, v]], and formally force
the 1st Chern class operator to satisfy the universal formal group law:

FL(c1(M), c1(N)) = c1(M ⊗N).

The naive cobordism relation is a special case of (2). We were able to prove
a number of nice properties for Ω∗. In particular, Ω∗ is the universal theory
satisfying our axioms of an oriented cohomology theory on Sm/k. As it
is easy to see that ⊕nMGL2n,n forms an oriented cohomology theory on
Sm/k, this gives us a canonical map

θX : Ω∗(X) → MGL2∗,∗(X).

Results of Hopkins-Morel show that θX is a surjection with torsion kernel,
and an isomorphism for X = Speck. In [21], we have built on the Hopkins-
Morel results to show that θX is an isomorphism for all smooth, quasi-
projective X, so Ω∗ does indeed capture the geometric part of MGL-theory.
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With Pandharipande [24], we have greatly simplified the presentation
of Ω∗. The new generators are the naive ones: f : Y → X. The relations are
an extension of the naive cobordism relation: the double point cobordism
relation. This means that we consider a projective map f : W → X × A1,
with W ∈ Sm/k, and require that f−1(1) is smooth, but that f−1(0) is
a union of two smooth components A,B, meeting transversely along their
intersection C. Under these conditions, we have the normal bundle NC/A

of C in A, giving us the P1-bundle P(f) := P(OC ⊕ NC/A) → C. The
double-point relation is

[f−1(1) → X] ∼ [A→ X] + [B → X] − [P(f) → X].

Our main result of [24] is that the free abelian group on the isomorphism
classes of maps f : Y → X, modulo the double-point cobordism relation,
gives a presentation of Ω∗(X).

As an application, we prove a conjecture stated in [25]: Let X be a
smooth projective threefold over C. In case X is a Calabi-Yau threefold,
one considers the Hilbert scheme of 0-dimensional closed subschemes of
X of degree n, Hilb(X,n). Using methods of deformation theory, one con-
structs a virtual fundamental class [Hilb(X,n)]vir ∈ CH0(Hilb(X,n)); since
Hilb(X,n) is projective, this class has a degree. Form the generating func-
tion

Z(X, t) := 1 +
∑

n≥1

deg[Hilb(X,n)]vir · tn.

The methods of [26] extend the definition of Z(X, t) to a general smooth
projective threefold X, by a different method.

One has the purely combinatorial generating function, the MacMahon
function

M(t) :=
∏

n≥1

(1 − tn)−n.

This function counts the number of three-dimensional partitions of size n.
In [24], we prove

Theorem 5.3.1. Let X be a smooth projective threefold. Then

Z(X, t) = M(t)deg c3(TX⊗KX).

Here TX is the tangent bundle of X, and KX is the canonical line
bundle. Our proof goes as follows. It is shown in [25, 26] that Z(X, t) re-
spects the double-point cobordism relation: Given a double-point cobordism
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W → X × A1, let Y = f−1(1), A ∪B = f−1(0). Then

Z(Y, t) =
Z(A, t) · Z(B, t)

Z(P(f), t)
.

Thus, sending X to Z(X, t) ∈ (1 + tZ[[t]])× descends to a group homomor-
phism

Z : Ω−3(C) → (1 + tZ[[t]])×.
Similarly, sending X to deg c3(TX ⊗ KX) descends to a homomorphism
Ω−3(C) → Z, so X �→M(t)deg c3(TX⊗KX) defines a homomorphism

M? : Ω−3(C) → (1 + tZ[[t]])×.

But we know that the canonical map Ω∗(C) → MU2∗(pt) = L∗ is an
isomorphism (by one of the main results of [23]), and from topology, we
know that L−3 ⊗ Q is the Q-vector space generated by [P3], [P2 × P1] and
[P1 × P1 × P1]. Furthermore, the identity Z(X, t) = M(t)deg c3(TX⊗KX) has
been verified in [25] for toric varieties, so the two homomorphisms Z and
M? agree on a Q-basis, and hence are identical.

We hope that this new presentation of Ω∗ can be extended to give a
reasonably understandable presentation of all of MGL∗,∗.

5.4. The motivic Postnikov tower

For a spectrum E, we have the n− 1-connected covers

pn : E〈n〉 → E,

characterized by the fact that pn is an isomorphism on homotopy groups
πs

m for m ≥ n, and that πs
mE〈n〉 = 0 for m < n. By fitting the n − 1-

connected covers E〈n〉 → E of a spectrum E together, one builds the
classical Postnikov tower in the stable homotopy category SH

. . .→ E〈n + 1〉 → E〈n〉 → . . .→ E.

The nth layer in this tower (i.e., the homotopy cofiber of E〈n+1〉 → E〈n〉)
is just the shifted Eilenberg-MacLane spectrum ΣnEM(πs

nE). Thus, the
Postnikov tower shows how to break apart E into the elementary pieces
ΣnEM(πs

nE).
One can give a more categorical description of the Postnikov tower,

by consider the full subcategories ΣnSHeff of SH consisting of the n − 1-
connected spectra. The inclusion in : ΣnSHeff → SH has a right adjoint
rn : SH → ΣnSHeff , and

E〈n〉 = inrnE,

with map E〈n〉 → E given by the co-unit of the adjunction.
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Noting this, Voevodsky defined a motivic Postnikov tower in SH(k),
by replacing SHeff with the localizing subcategory SHeff(k) of SH(k) gener-
ated by the T -suspension spectra of smooth k-schemes, and letting
Σn

TSHeff(k) similarly be the localizing subcategory of SH(k) generated
by the nth T -suspension of objects in SHeff(k). Just as in the classi-
cal case, the inclusion in : Σn

TSHeff(k) → SH(k) admits a right adjoint
rn : SH(k) → Σn

TSHeff(k), giving the truncation functor

fn : SH(k) → SH(k),

fn := inrn. Setting E〈n〉 := fnE for E ∈ SH(k), we have the motivic
Postnikov tower of E :

. . .→ E〈n+ 1〉 → E〈n〉 → . . .→ E .
What about the layers

snE := cofib[E〈n+ 1〉 → E〈n〉]?
Results of Voevodsky [51], Röndigs-Østvær [40] and Pelaez-Menaldo [38]
imply that snE ∼= Σn

TEM(πµ
nE), for a well-defined motive πµ

nE , the nth
homotopy motive of E . Thus, the abelian group πs

nE ∈ D(Ab) gets replaced
with the motive πµ

nE ∈ DM(k).
In fact, just as an abelian group is a special object in the derived

category D(Ab), the homotopy motive πµ
nE is a special type of motive,

a birational motive. These motives, studied by Huber, Kahn and Sujatha
[15, 19] are the motives M characterized by the property that the restriction
map

HomDM(k)(M(X),M [n]) → HomDM(k)(M(U),M [n])

is an isomorphism for all open dense immersions U → X in Sm/k, and for
all n. Thus, the birational motives are in some sense locally constant in the
Zariski topology. The most evident example of such is the constant sheaf
with transfers Z, but there are many other more exotic examples.

If we evaluate the motivic Postnikov tower (or rather, its associated
tower of 0-spectra) on some X ∈ Sm/k, we get the tower of spectra

. . .→ E〈n+ 1〉0(X) → E〈n〉0(X) → . . .→ E0(X).

with layers the complexes πµ
n(X)(n)[2n](X). The resulting spectral se-

quence is the motivic Atiyah-Hirzebruch spectral sequence

Ep,q
2 := Hp−q(X,πµ

−q(n− q)) =⇒ Ep+q,n(X).
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Perhaps the first T -spectrum for which the homotopy motives was cal-
culated was the T -spectrum K representing algebraic K-theory. The com-
putation (see e.g. [22]) gives

πµ
nK = Z

for all n. The Atiyah-Hirzebruch spectral sequence (with n = 0) is

Ep,q
2 := Hp−q(X,Z(−q)) =⇒ Kp+q,0(X) = K−p−q(X).

This is exactly the spectral sequence of Friedlander-Suslin [11] (generalizing
the Bloch-Lichtenbaum spectral sequence [6] for X = SpecF ).

Together with B. Kahn [18], we have examined the layers and spectral
sequence for the K-theory of a central simple algebra A over K, as well as
for the motive of the Severi-Brauer variety X = SB(A) associated to A.
We compute the homotopy motives for KA as

πµ
n(KA) = ZA

where ZA ⊂ Z is the subsheaf with value on a field F the ideal in Z

generated by the index of A⊗k F . Recall that, for a central simple algebra
A over k, A ∼= Mn(D) for some uniquely determined division algebra D
over k, and the index eA is determined by the identity e2A = dimk D.

We also compute the homotopy motives for the motive of X = SB(A),
in case A has prime degree 
 over k, getting the sheaves ZA⊗i , i = 0, . . . , 
−1.
Using this information, we show

Theorem 5.4.1 (Kahn-Levine [18, Theorem 6.2.2]). Let A be a central sim-
ple algebra of square-free index over a field k. Then the reduced norm map

K2(A) → K2(k)

is injective.

5.5. Perspectives for the future

Recent work of J. Ayoub [5] has put the theory of the motivic stable ho-
motopy category on a very good functorial footing. The motivic stable
homotopy category of Morel-Voevodsky is actually defined over a gen-
eral base-scheme S, giving a functor from schemes (quasi-projective over a
fixed base B) to triangulated categories. Ayoub has shown how the functor
S �→ SH(S) fulfills Grothendieck’s yoga of six operations, as re-formulated
by Voevodsky in his notion of cross functors. In a nutshell, this means that,
in addition to the pull-back functor

f∗ : SH(S) → SH(T )



30 Marc Levine

for each morphism of schemes f : T → S, one has push-forward functors
f∗ : SH(T ) → SH(S), as well as the functors “with compact support”

f! : SH(T ) → SH(S); f ! : SH(S) → SH(T ),

and also internal Hom and tensor product operations, all satisfying the
compatibilities that are known for, e.g., the derived category of sheaves
on a topological space. A parallel theory is still in the works for motives;
work of Cisinski-Déglise [7] goes a long way toward verifying the necessary
properties in this setting.

One motivation for pursuing this line is the hope that degeneration
techniques could help in showing that geometric motives are all “finite di-
mensional” in the sense of Kimura [20] and O’Sullivan (see [4]). This prop-
erty has remarkable consequences, implying for example Bloch’s conjecture
on the finite dimensionality of 0-cycles for surfaces with pg = 0, and much
more.

5.6. The motivic fundamental group

In fact, there are several different theories of the motivic fundamental group.
One theory is based on the category of mixed Tate motives. The triangu-
lated category of mixed Tate motives is the full subcategory DMT(k) of
DM eff− (k)Q generated by the Tate objects Q(n). Assuming the Beilinson-
Soulé vanishing conjectures for k (for instance, if k is a number field),
DMT(k) contains an abelian category, MT(k), generated by the Q(n) and
all extensions. MT(k) (when it exists) is in fact a Q-Tannakian category,
hence is equivalent to the category of representations of its Tannaka group
Gal(MT(k)).

For X = P1
k \ S, S a set of k-points of P1

k, Deligne and Goncharov [8]
have defined a group-scheme object, πDG

1 (X,x), over MT(k), the motivic
fundamental group. Here the base-point x is either a k-point of X or a so-
called “tangential base-point”. The group-scheme πDG

1 (X,x) over MT(k)
gives rise to a group-scheme over Q upon applying the Betti realization of
MT(k); what one gets is the Malčev completion of the topological funda-
mental group π1(X(C), x). This gives a motivic version of the category of
uni-potent local systems on X. It is at present not clear how to extend this
to a larger class of local systems, although work of Katzarkov-Panteev-Toen
[17] suggests an approach to a motivic fundamental group that reflects all
local systems on X(C).

In a rather different direction, Morel [31] has considered the homotopy
groups of spaces over k. These are actually Nisnevich sheaves of groups on



Motivic Homotopy Theory 31

Sm/k. For example, for a space X, one has the sheaf πA1

0 (X), this being
the sheaf associated to the presheaf

U �→ HomH(k)(U,X).

If X is itself in Sm/k, we have the evident map HomSm/k(U,X) →
πA1

0 (X)(U), so a k-point of X gives a global section of πA1

0 (X). It does not
seem to be known if X(k) → Γ(πA1

0 (X)) is always surjective.
If X is smooth and projective, and k is algebraically closed, then one

has πA1

0 (X)(k) = {∗} if X is rationally connected, i.e., if each two points
of X are connected by a chain of rational curves on X. The converse is
apparently not known.

Morel [31] has made computations of the πA1

1 for some varieties. He
notes that a Gm-bundle E → X has the unique homotopy lifting property
of a covering space, hence contributes to πA1

1 (X). In particular, no smooth
projective variety X ⊂ PN has a trivial πA1

1 , since the Gm-bundle associated
to OX(1) gives a Gm-quotient of πA1

1 . Morel [31] shows that πA1

1 (Pn) = Gm

for n ≥ 2, but that the surjection πA1

1 (P1) → Gm has a non-trivial kernel,
given by the Milnor-Witt sheaf KMW

2 .
Thus, we have a sharp contrast with the picture given by the topology

of varieties over C. It would be interesting to find a condition on say smooth
projective hypersurfaces that implies the “triviality” of πA1

1 , or more gen-
erally, to find a replacement for Morse theory and the classical Lefschetz
theorems on hyperplane sections.
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