#### Sincronización de Relojes Físicos Ejemplo de Gráficas de Sincronización

Sergio Rajsbaum Manuel Sugawara

Universidad Nacional Autónoma de México

abril del 2006

#### Sincronización de Relojes Físicos Sistema parcialmente síncrono

Un sistema se dice parcialmente síncrono si y sólo si

- Es un sistema de paso de mensajes con relojes en los procesadores
- Los procesadores tienen relojes acotados en su desvío
- Los mensajes estan acotados en su retardo

# Sincronización de Relojes Físicos Relojes acotados

El reloj de un procesador v se dice acotado en su desvío syss existen  $(\underline{\varrho}, \overline{\varrho})$  con  $\underline{\varrho} \le 1 \le \overline{\varrho}$  tal que si  $e^{T_0}$  y  $e^{T_1}$  son eventos consecutivos en v, para toda ejecución se cumple que:

$$\frac{T_1 - T_0}{\underline{\varrho}} \leq rt(e^{T_1}) - rt(e^{T_0}) \leq \frac{T_1 - T_0}{\overline{\varrho}}$$

#### Sincronización de Relojes Físicos Mensajes acotados

Los mensajes de un sistema se dicen acotados syss para todo mensaje m con e el evento de su envío y e' el evento de su recepción existen L(m) y H(m) con L(m) < H(m) tal que para toda ejecución se cumple que:

$$L(m) \leq rt(e') - rt(e) \leq H(m)$$

Dada una ejecución r y un real  $t \ge 0$  el punto de r hasta t es la restricción de la ejecución r hasta el tiempo real t y se denota por (r,t)

- Si cualquiera de
  - e y e' son eventos consecutivos en un mismo procesador y
  - e es el envío de un mensaje y e' es su recepción

decimos que e y e' son adyacentes

Dado un punto (r, t) la vista del punto es una gráfica dirigida V(r, t) = (V, E) tal que
 V = {e | e es un evento con rt(e) ≤ t} y (e, e') ∈ E syss e y e' son adyacentes

# Sincronización de Relojes Físicos Garantías de Sistema

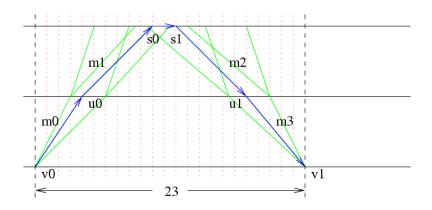
- Una garantía de sistema es una función  $B: \mathcal{E} \times \mathcal{E} \to \mathbb{R}$  tal que  $(e, e') \in \text{dom}(B)$  syss  $e \in \mathcal{E}$  son advacentes.
- Una ejecución r se dice consistente con B syss
   rt(e) − B(e, e') ≤ rt(e') para todo par de eventos e, e' adyacentes en r

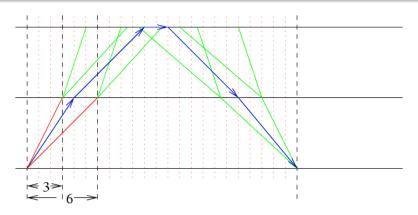
#### Una garantía de sistema se dice estándar syss:

- Si  $e=e^T$  y  $e'=e^{T'}$  son eventos consecutivos en un procesador con un  $(\underline{\varrho}, \overline{\varrho})$ -reloj entonces  $B(e,e')=-\left(\frac{T'-T}{\overline{\varrho}}\right)$  y  $B(e',e)=-\left(\frac{T'-T}{\varrho}\right)$
- ② Si e es el envío de un mensaje m y e' su recepción entonces B(e,e') = -L(m) y B(e',e) = H(m)

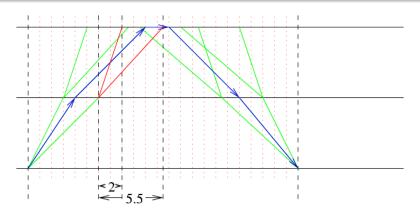
Gráfica de Sincronización

Dada una garantía de sistema B, un punto (r, t) y su vista V(r, t) = (V, E), su *gráfica de sincronización*  $\Gamma(r, t) = (V', E', w)$  es una gráfica con pesos tal que:


- V' = V
- $(e, e') \in E'$  syss  $(e, e') \in E$  o  $(e', e) \in E$
- w(e, e') = B(e, e')

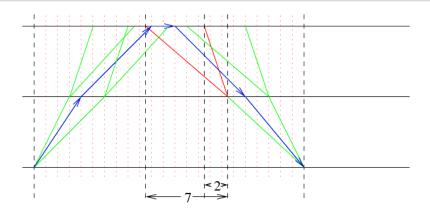

Gráfica de Sincronización

**Lema** Sea (r,t) un punto y  $\Gamma(r,t)$  su gráfica de sincronización. Para toda pareja de eventos e, e' si existe un camino dirigido de peso  $\alpha$  de e a e' se cumple que  $rt(e) - \alpha \le rt(e')$ 


Gráfica de Sincronización

**Lema** Sea (r,t) un punto y  $\Gamma(r,t)$  su gráfica de sincronización. La gráfica de sincronización no contiene ciclos de peso negativo

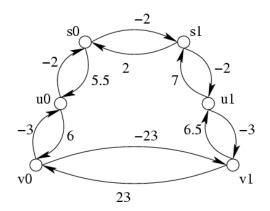


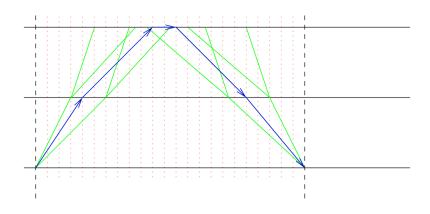



$$L(m0) = 3$$
 y  $H(m0) = 6$   
 $L(m1) = 2$  y  $H(m1) = 5,5$ 

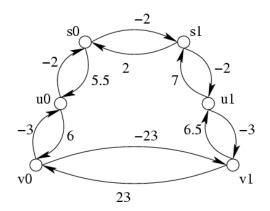


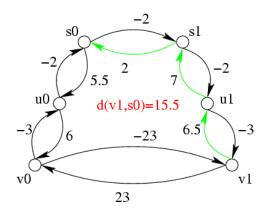
$$L(m0) = 3$$
 y  $H(m0) = 6$   
 $L(m1) = 2$  y  $H(m1) = 5,5$ 

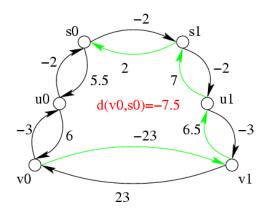

# Sincronización de Relojes Físicos Ejecución de Ejemplo

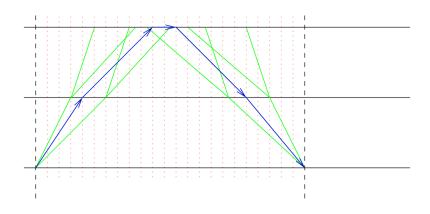


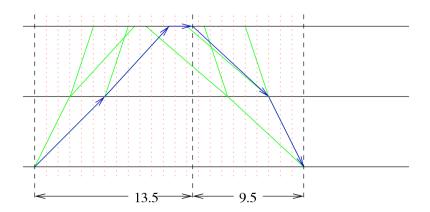

$$L(m2) = 2$$
 y  $H(m2) = 7$   
 $L(m3) = 3$  y  $H(m3) = 6,5$ 

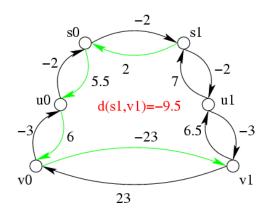




$$L(m2) = 2$$
 y  $H(m2) = 7$   
 $L(m3) = 3$  y  $H(m3) = 6,5$ 





# Sincronización de Relojes Físicos Ejecución de Ejemplo














# Sincronización de Relojes Físicos Ejecución de Ejemplo

-2s0s15.5 u0u1d(v1,s1)=13.56.5 -23v0v1

23



# Sincronización de Relojes Físicos Gráfica de Sincronización

**Teorema** Una ejecución r es consistente con una garantía de sistema B si y sólo si para todo  $t \in \mathbb{R}^+$  y para toda pareja de eventos e, e' en (r,t) se cumple que  $rt(e) - d_{\Gamma(r,t)}(e,e') \le rt(e')$ 

Gráfica de Sincronización

**Teorema** Sea r una ejecución consistente con una garantía de sistema  $B, t \in \mathbb{R}^+$  y e, e' dos eventos en el punto (r, t) con  $d_{\Gamma(r,t)}(e,e') = \alpha$  y  $d_{\Gamma(r,t)}(e',e) = \beta$ . Existen ejecuciones  $r_0, r_1$  consistentes con B y reales  $t_0, t_1 \in \mathbb{R}^+$  con  $e, e' \in (r_0, t_0)$  y  $e, e' \in (r_1, t_1)$  tal que

$$rt_{r_0}(\mathbf{e}) - \alpha = rt_{r_0}(\mathbf{e}')$$
  
 $rt_{r_1}(\mathbf{e}') - \beta = rt_{r_1}(\mathbf{e})$