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1. Defining Moments — notes by MK

In the book [84] entitled “Be Brilliant as Long as You Live”, the late Hiroko Oka, an
authority on child psychology and mentor of Empress Michiko when she was a student at
Seishin Women’s University, talks about Jin Akiyama. “I have known Mr. Akiyama since
he was five years old. At that time, his mother was worried about his behavior; he did not
do as he was told, he did what he wanted instead. He was very different from his older
brothers. She brought him to me for an IQ test. He had a charming face, with fair skin
and rosy cheeks. He was a very cute boy. He surprised me because he took off his shoes,
socks and shirt as soon as he entered my office.4 During the IQ test, he paid no attention
to what he wasn’t interested in, but his eyes sparkled when I asked questions about things
that interested him. I concluded that there was no problem with his intellect. I advised
his mother to send him to a private elementary school, which values students’ individual
personalities, rather than the usual public school, which values rules.”

His mother, following Oka’s advice, gave him the opportunity of spending his childhood
absorbing what he was interested in. He enjoyed observing bagworms and collecting the
colorful threads they weave to knit into pencil caps. He made miniature boats and devised
a rubber band mechanism to make them move. He explored the small hill behind his school
to look for shards of ancient earthenware. He cared for the family’s goat, which he often
brought to school.

∗ Supported by CONACYT of Mexico, Proyecto SEP-2004-Co1-45876, and PAPIIT (UNAM), Proyecto
IN110802.

4 Jin hated tight clothes which confined him and he always walked around barefoot.
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Fig. 1. Jin barefoot

Oka’s assessment was very accurate. She saw into the nature of Jin Akiyama. When
he encounters something that really fascinates him, he will give it his full concentration
and engage it with his creative energy. Taking off his shirt and shoes was symptomatic of
his intolerance for restrictions. This would cause many ups and downs in his later life.

Mathematics was an early fascination, as was art. He studied functional analysis un-
der the guidance of Mitio Nagumo in graduate school at Sophia University. He wrote
his first paper entitled “S-Wellposedness of Partial Differential Equations with Constant
Coefficients” using Fourier transforms. His result was overtaken, however, by a stronger
theorem proved using a new method from distribution theory, and ended up as a mere
corollary. He realized that he would have to learn distribution theory, in addition to many
other prerequisites, so he would not get to the important research problems in analysis
for a very long time.

He was disappointed because he wanted to produce new mathematics as soon as pos-
sible. Then he chanced upon Oystein Ore’s “The Four-Color Problem” in the library and
found that the attractive results there did not require much ground work like classical
mathematics. What they required was institution and ingenuity. He concentrated on read-
ing Ore’s book, then moved on to ‘Graph Theory” by Frank Harary. He got hooked on
graph theory. He studied it mostly by himself, but he received a lot of encouragement
from Takashi Hamada, his undergraduate mentor at Tokyo University of Science.

After graduation from Sophia, Jin considered doing mathematics in a different country.
He found the Japanese research structure too feudal – the student’s career options were
largely dependent on his professor’s recommendation.

He applied to a UNESCO program which sent scientists to developing countries. UN-
ESCO contracted to send him to the Kumasi Institute of Technology in Ghana. The
contract was cancelled, however, due to a political upheaval at his destination.

For a couple of years, Jin continued to study graph theory while teaching mathematics
and computer science courses at Nippon Ika University. Then he made the bold move of
writing directly to Frank Harary, expressing his desire to study graph theory and asking
to be accepted as Harary’s student. A recommendation letter from the Singaporean graph
theorist, Hoon Heng Teh clinched Harary’s consent.

The Michigan years were intense. It was a time when Jin lived and breathed mathe-
matics. The body of work in graph theory, that he produced during those years and after,
are discussed in the second section of this paper, together with his contribution to the
growth of graph theory in Japan.
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By the 1990’s, Jin became interested in discrete geometry. In 1997, he began a confer-
ence series, the Japan Conference on Discrete and Computational Geometry (JCDCG),
which continues to this day and which has gained the recognition and support of re-
searchers in that area. Jorge discusses the topics Jin has chosen for his own discrete
geometry research in the third section of this paper. Suffice it to say that they are impor-
tant, graphic and beautiful. He has very good intuition about problems and often gives
simple, elegant proofs. I am reminded of a quotation from Felix Klein, “Thus, in a sense,
mathematics has been most advanced by those who distinguished themselves by intuition
rather than by rigorous proofs.”

There is also Jin’s important work of popularizing mathematics. The reality in Japan
is that there is a decreasing number of high school students who want to study science
and engineering in college. Some measures have been introduced to reverse this trend, but
with limited success. Jin entered the picture by introducing mathematics to elementary,
junior and senior high school students and even to their parents and the general public as
something to be experienced with enjoyment and wonder. Mari-Jo has more to say about
this in the fourth section of this paper. He introduced manipulative mathematical models
in his TV shows, his traveling exhibit, Mathematical Art, and his permanent exhibit
Mathematics Wonderland. The catch phrase is “Let’s touch mathematics” and he has
created mathematical models they can touch—slides in cycloid and circular arc shapes so
that they can experience which slide will bring a ball down faster, a cradle pinball device
that shows them how the normal distribution takes shape, and functional vehicles with
non-circular wheels of constant width, among many others.

Jin has written many math books for various levels from elementary to advanced. His
books entice the readers to the topic, appeal to their curiosity, and foster discovery and
analytical thought. The advanced level books are in graph theory, combinatorics, and
discrete geometry. A number of them have been translated to Korean and Mandarin.

As if the preceding were not enough for one lifetime, Jin is a regular columnist in several
magazines and newspapers, as well as a TV commentator. Some columns are devoted to
mathematics, others to education, art, literature, cinema, music, and some others to life.
He has won awards for his writing. An essay he wrote in 1993, based on a collection of
humorous answers submitted by students, was chosen as one of the best essays of the
year by the Japan Association of Novelists. Another essay on the history of his hairstyle,
written in 1995, was among that year’s best essays selection of the Japan Essayist Club.

I have known Jin for almost 60 % of his life. I am thankful for the good fortune of
having met him and the privilege of becoming his trusted friend. On his sixtieth year, I
wish him continuing success.1

2. Engaging Graph Theory — notes by MK

When Jin first presented a graph theory paper on the cycle multiplicities for certain
graphs at a convention of the Japan Mathematics Society in 1974, there were fewer than
ten people in the audience. He looked unconventional for a Japanese mathematician at
that time – long hair like a hippie and a beard like Ho Chi Minh’s. He was warm and
friendly and mingled with ease.

1 The author wishes to thank Reggie and Akiko Marcelo, Haruhide Matsuda for their assistance in the
preparation of Section 1.
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He had worked for almost two years, 1977–1979, at the University of Michigan under
the guidance of Frank Harary and obtained substantial results. During those two years, he
did nothing but graph theory; Harary’s motto was “Another day, another paper.” What
Jin accomplished was more like “Another month, another paper.” Harary arranged for
him to visit universities throughout the United States and encouraged him to participate
in conferences all over the world to present his research results.

Fig. 2. Jin in Michigan Fig. 3. Jin and Frank
Fig. 4. Jin and Claude in Paris
taken by Vašek

Jin says he never worked so hard on mathematics as he did when he was in Michigan.
To save time, he would cook enough curry rice for a week and save it in the freezer –
this was the only thing he knew how to cook. One of his friends complained that he was
beginning to smell like curry and joked that his complexion was turning yellowish.

Jin took advantage of a conference on circuits and systems held in Tokyo in 1979 to
hold a one-week graph theory seminar in Nikko. He invited Vašek Chvátal, David Avis,
C. L. Liu, András Recski and other participants of the Tokyo conference. Incidentally,
this was the first graph theory seminar I ever attended. Jin introduced me to Vašek and
I had the temerity to ask him “Do you have some results in graph theory?” This is still
an embarrassing memory.

After this seminar, Jin organized many research meetings for young people who were
interested in graph theory. In addition to these meetings, he also organized regular semi-
nars held on Saturdays so that anyone in the vicinity of Tokyo could attend. The number
of participants in the first year was about ten but it grew to more than twenty in the
following year. There were many foreign researchers who lectured at these seminars, in-
cluding some important names in graph theory like Chvátal, Avis, Harary, Claude Berge,
László Lovász, Béla Bollobás, Peter Frankl, Michel Deza, Adrian Bondy, Robin Wilson,
Zoltán Füredi, Guan Mei-Gu and Koh Khee-Meng. Most of these foreign graph theorists
came to Japan at Jin’s invitation. The talks on the most recent developments in graph
theory and discussions with the speakers stimulated many young researchers to a degree
they had never experienced before in Japan. The drinking sessions after the seminars,
which sometimes lasted longer than the seminars, were great for bonding.

2.1. Graph Theory Conferences

Two international graph theory conferences at Hakone contributed greatly to improving
the quality of graph theory in Japan and to expanding the range of research areas. This
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is how the first one came about: In 1983, an international graph theory conference was
held in Singapore. It was one of the few conferences which merited the participation of
both Frank Harary and Claude Berge. Our Singaporean hosts were very careful to honor
both equally.

The only participants from Japan were Jin and I. During this conference, it was sug-
gested that a similar conference be held a few years later in Asia. Other Asian countries
had serious financial problems, so “rich” Japan was expected to host it. However, graph
theorists in Japan were mostly young people who had no experience running an interna-
tional conference, much less raising the money for it. After the discussion, Jin said “We
will do our best.” Clearly this was an activity he was interested in. He would devote his
energy to it. Upon our return to Japan, he asked for support from the participants at the
regular graph theory seminar. He was firmly determined to hold the conference and the
young researchers responded positively to his call.

Jin solved the biggest problems of hosting the conference – getting the fractious group
of graph theorists to work together, and finding the venue and the funds. At the time, he
was a very popular and influential lecturer at Sundai, a network of schools that prepare
students for the college entrance examinations. He was able to secure Sundai’s seminar
house for free and to get other special arrangements like free telephone calls and volunteers
from Sundai’s staff. The place was ideal for a week-long conference, as it had facilities
for accommodations and meetings. It was harder to get the Organizing Committee to
gel. There were strong personalities and personal differences among the members. Many
meetings involving rounds of consensus building were held before agreement could be
reached on the details of running the conference. Meetings were also held with Hakone
authorities on the participation of the community; so the people of Hakone, although they
had nothing to do with mathematics, also helped, as did many students from different
universities around Tokyo, who were Jin’s “fans.” Thus, with many of the conference
problems solved and the cooperation of the Japanese graph theorists, the First Japan
Conference on Graph Theory was held in June 1986 in Hakone. It was his charisma at
work. He can inspire people to do great things.

Fig. 5. Paul dishing out open problems at the First Hakone Conference 1986

Around a hundred foreign researchers attended the conference. This was a record num-
ber of foreign participants in a mathematics-related conference in Japan. In acknowledge-
ment of the generosity of the Hakone community, Ron Graham gave lectures to junior
high school students in Hakone. Paul Erdős also gave lectures to the students in Sundai.
The conference proceedings were published in Discrete Mathematics, Vol. 72, 1988.



6 M. Kano et al.

Four years later, in 1990, the Second Japan Conference on Graph Theory was held,
also at the seminar house in Hakone. Since this was the same year and about the same
time as ICM in Kyoto, many foreign researchers participated. With the experience of the
first conference behind us, we were more confident and more relaxed about organizing
and running this conference.

The two international conferences in Hakone, aside from expanding the research areas
of the graph theory group in Japan, also gained them collaborators worldwide.

2.2. The Journal Graphs and Combinatorics

Let us return to the 1983 Singapore conference. In addition to the discussion on the suc-
ceeding conference, there was also a discussion about publishing an international journal
on graph theory from Asia. It had been a long-standing dream of Hoon Heng Teh of the
National University of Singapore, who was president of the Southeast Asian Mathematics
Society at the time. Those present at the meeting agreed that the number of journals
devoted to graph theory were not sufficient for the increasing number of graph theory
papers being produced. They all strongly felt the need for a new journal. Several prob-
lems surfaced: who would the editor be, where would the editorial office be located and
who would look for and negotiate with publishing firms. Jin accepted the challenge and
responded, “I will do it.” He had the confidence to accept the responsibility because by
this time he already had several years experience as member of the editorial board of the
Journal of Graph Theory.

After returning to Japan, Jin approached several publishing companies. He did not get
a favorable response from most of them. Fortunately, after lengthy negotiations, Springer-
Verlag expressed interest. Perhaps it was because they did not have a journal in this area
and they were anticipating the research results that were to come from an emerging Asia
and in particular, a modernizing China. Jin’s Chinese connections were Wang Yuan and
Wang Jian Fang of Academia Sinica in Beijing. They agreed to serve on the Editorial
Board of the new journal and introduced Jin to the leading Chinese graph theorists and
combinatorists. The new Tokyo office of Springer-Verlag pushed for the project and so the
journal, Graphs and Combinatorics, came to be in 1985, one year earlier than originally
planned. Hoon Heng Teh was the editor-in-chief and Jin the managing editor. The editorial
office of the journal was in Tokyo.

Fig. 6. Launching of Graphs and Combinatorics
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A few lines from one of messages that appeared in the first issue of the journal are the
following:

The commitment of Springer-Verlag to publish the journal has turned a dream into
reality. We sincerely look to our friends all over the world to give us their support
and we will try our very best to make this journal worthy of its existence. -H.H.
Teh

Twenty years have passed since the first issue, and the journal is now recognized as an
ISI publication.

2.3. Selected Results from Jin’s Papers

Jin’s research in graph theory covers many areas. We single out three which he concen-
trated on: factors and factorization, path invariants, a graph and its complements with
common properties.

Factors and Factorizations

A spanning subgraph possessing some given property is called a factor. There are two
kinds of factors, degree factors and component factors. Some examples are the following.
Let a, b, k be integers such that 0 ≤ a ≤ b and 1 ≤ k. Then a spanning subgraph F
of a graph G is called an [a, b]-factor if a ≤ degF (x) ≤ b for all vertices x of G, where
degF (x) denotes the degree of x in F , and a [k, k]-factor is usually called a k-regular
factor. An [a, b]-graph and a k-regular graph are defined similarly. More generally, for a
set I of integers, a spanning subgraph H of G is called an I-factor if degH(x) ∈ I for all
x ∈ V (G).

If the edge set E(G) of a graph G is decomposed into disjoint I-factors E(G) =
F1 ∪ F2 ∪ · · · ∪ Fr, then we say G is I-factorable and this decomposition is called a
I-factorization of G.

Let S be a set of graphs. Then a spanning subgraph F of a graph is called an S-factor
if each component of F is in S. A {Pn | n ≥ 2}-factor is called a path-factor. The number
of isolated vertices of a graph G is denoted by iso(G).

It is known that a graph G has a {K2, Cn | n ≥ 3}-factor if and only if iso(G−S) ≤ |S|
for all S ⊂ V (G) ([90],[91]). Jin, Avis and Era [16] proved that a graph G has a path-factor
if and only if iso(G− S) ≤ 2|S| for all S ⊂ V (G).

Later, the result was generalized as follows: Let n ≥ 2 be an integer. Then a graph G
has a {K1,1, K1,2, . . . , K1,n}-factor if and only if iso(G−S) ≤ n|S| for all S ⊂ V (G) [65].
The same proof technique as in [16] was used.

It is obvious that a path-factor is a special [1, 2]-factor. The authors considered a
{1, 2}-factorization and mentioned that every regular graph can be decomposed into [1, 2]-
factors. From this result, Jin conjectured that for every integer k ≥ 1, there exists an
integer Φ(k) such that for any integer r ≥ Φ(k), every r-regular graph is {k, k + 1}-
factorable. This conjecture was proved by Era [74] in 1985 and a sharp bound for Φ(k)
was obtained by Egawa [72] in the following year.

It is possible that not only regular graphs but also some almost regular graphs are
{k, k + 1}-factorable. In fact, in 1985, Jin and I [34] proved that for an even integer
k ≥ 2, and s ≥ 0 and t ≥ 1 integers, every [(6k + 2)t + ks, (6k + 4)t + ks]-graph is
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{k, k + 1}-factorable. In particular, every [6k + 2, 6k + 4]-graph can be decomposed into
six [k, k + 1]-factors.

It is very difficult to characterize graphs having P3-factors because the question of
determining whether a given graph has a P3-factor is an NP-complete problem. Jin and
I [32] conjectured that every 3-connected cubic graph of order 3n has a P3-factor. Note
that there exist 2-connected cubic graphs of order 3n that have no P3-factor (Figure 7).

Fig. 7. A 2-connected cubic graph of order 54 having no P3-factor.

On the other hand, Jin and I proved [32] that every 3-connected cubic graph of order
4n has a P4-factor containing any two given edges.

If a graph G has no R-factor for some given graph R, it is natural to ask how many
R’s can be packed into G, that is, find the largest number of vertex-disjoint subgraphs
H1, H2, . . . , Hk of G such that every Hi is isomorphic to R. This problem is called the
R-packing problem. The graph Int(R; G) is defined as follows: Each vertex of Int(R; G)
represents the set of vertices of a subgraph of G that is isomorphic to R, and two ver-
tices of Int(R; G) are adjacent if they represent vertex sets that intersect. If a maximum
independent set of Int(R; G) can be found in polynomial time, then the above problem
is solved. If Int(R; G) is a perfect graph, i.e., the chromatic number of each induced sub-
graph F is equal to the order of largest clique of F , then its maximum independent set
can be obtained in polynomial time ([78], [93]), and so can the solution of the problem.
Let H1 and H2 be vertex-disjoint graphs and for each i = 1, 2, let Ci be a clique in Hi.
Assume that |C1| = |C2| and let f : V (C1) → V (C2) be a bijection. A graph can be
obtained from the union of H1 and H2 by identifying each v ∈ V (C1) with f(v) ∈ V (C2).
This operation is called clique identification. Jin and Vašek [18] considered the P3-packing
problem, and proved that for every graph G, the following three conditions are equivalent.
(i) Int(P3; G) is perfect. (ii) G contains none of the six graphs in the Figure 8 as an
induced subgraph, and no cycle of order at least seven. (iii) Int(P3; G) can be obtained
from complements of bipartite graphs by repeated clique identifications.

The spring edition of the Journal of Graph Theory (1985) is a special volume on graph
factorization. It starts with a survey of graph factorization by Jin and myself [33]. We
also wrote a book entitled “Factors and Factorizations of Graphs” [36].

In the 1980’s, Jin gave lectures at a number of universities in China at the invitation
of Wang Jian Fang of Academia Sinica and Guan Meigu of Shandong Normal University,
thus making factors and factorizations of graphs a very popular topic among Chinese
graph theorists.

Jin especially remembers his first visit to Chufu, the birthplace of Confucius. At the
train station, he was looking for the person who was supposed to pick him up. He was
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Fig. 8. The six forbidden graphs.

expecting someone with a car. He couldn’t find any car but there was a person who was
eyeing him. He carefully approached the person. The only way they could communicate
was in written kanji. Finally, Jin understood that his mode of transportation would be a
horse-drawn carriage. He enjoyed the feeling that he slipped into the Confucius era.

Path Invariants

The arboricity arb(G) of a graph G is the minimum number k for which E(G) can be
decomposed into k edge disjoint forests. A linear forest is a forest each of whose compo-
nents is a path, and a star forest is a forest each of whose components is a star, where
path and star must be of order at least two. The linear arboricity of a graph G, which
was introduced by Jin, Exoo and Harary [23], is the minimum number k for which E(G)
can be decomposed into k edge disjoint linear forests. What motivated Jin to study linear
arboricity are its applications, which include techniques for search and retrieval in elec-
tronic databases. The star arboricity of a graph, introduced by Jin and myself [32], can
be defined analogously.

The arboricity of G can be calculated by using the formula for arboricity obtained by
Nash-Williams [83]. For example, we can show that the arboricity of an r-regular graph
is d(r + 1)/2e. On the other hand, there are no formulas for linear arboricity and star
arboricity.

It is easy to show that every cubic graph can be decomposed into two [1, 2]-factors.
However, in this decomposition, some components of a [1, 2]-factor might be a cycle.
Actually, this can be avoided. Jin, Exoo and Harary proved that the linear arboricity of
every cubic graph is two [22] and also that the linear arboricity of every 4-regular graph
is three [23].

A short and elegant proof of this theorem was later obtained by Jin and Vašek [17]
while drinking at Rekan, a very small pub in Kabukicho. The whiskey bottle with their
names on it is still there more than twenty-five years after.
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Fig. 9. Whiskey bottle in Rekan

Since the linear arboricity of a graph is at least its arboricity, the linear arboricity of an
r-regular graph is at least d(r + 1)/2e. From this observation, Jin proposed an interesting
conjecture: The linear arboricity of every r-regular graph is d(r + 1)/2e [20,22].

The above conjecture was very attractive for many graph theorists. Tomasta [88] proved
that the linear arboricity of a 6-regular graph is four. Then Enomoto and Péroche [73]
proved that the linear arboricity of every 5-regular graph is three.

In the same paper, the authors showed that the linear arboricity of every 6-regular
graph and 10-regular graph are four and six, respectively. Since the conjecture was pro-
posed, more than 30 papers on linear arboricity have been published. By using Lovász’s
local lemma, Alon [64] proved that for any real number ε > 0, the linear arboricity of every
graph with sufficiently large maximum degree ∆ = ∆(ε) is at most (1

2
+ ε)∆. Moreover,

the linear arboricity conjecture is true for every graph G with an even [odd] maximum
degree ∆ and with girth at least 50∆ [100∆]. Jian-Liang Wu [94] determined that the
linear arboricity of a planar graph with maximum degree ∆ is at most d(∆ + 1)/2e.

The following explains the difficulty of the Linear Arboricity Conjecture. Suppose that
a (2s+1)-regular graph G, which is an odd regular graph, has linear arboricity d(2s+1+
1)/2e = s+1. Then E(G) can be decomposed into s+1 linear forests F1∪F2∪· · ·∪Fs+1.
Then for every vertex v of G,

2s + 1 = degG(v) = degF1
(v) + degF2

(v) + · · ·+ degFs+1
(v),

which implies that there exists an integer k such that degFi
(v) = 2 for all i ∈ {1, 2, . . . , s+

1}−{k} and degFk
(v) = 1. That is, every Fi must be a path-factor of G and v an endvertex

of exactly one of path-factors, say Fk. Therefore, if the conjecture is true for an odd regular
graph G, then G has a path-factorization with the property that for every vertex v, v is
an endvertex of exactly one path-factor.

For a vertex subset X of a graph G, the subgraph of G induced by X is denoted by
〈X〉G. The path chromatic number χ(P∞; G) of a graph G, sometimes called the vertex
linear arboricity, is the minimum number m such that V (G) can be partitioned into m
disjoint subsets X1 ∪ X2 ∪ · · · ∪ Xm, where every 〈Xi〉G is a linear forest. The k-path
chromatic number χ(Pk; G) is defined to be the minimum number m for which V (G) can
be partitioned into m disjoint subsets X1 ∪ X2 ∪ · · · ∪ Xm such that any component of
every 〈Xi〉G is a path of order at most k. The path chromatic number and the k-path
chromatic number were introduced in the paper [19] by Jin, Era, Gervacio and Watanabe.
They proved (i)The 2-path chromatic number of an r-regular graph is at most b(r+1)/2c.
(ii) The path chromatic number of every outerplanar graph G is at most 2. In particular,
every outerplanar graph has a vertex subset of dn/2e vertices that induces a linear forest.
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(iii) For every integer k ≥ 2, there exists a planar graph G with χ(Pk; G) = 4. Matsumoto
[82] proved a related result: The path chromatic number of a graph with maximum degree
∆ is at most b1 + ∆/2c.

The following conjecture was first posed by M.O. Albertson and D. Berman [60] (1979):
Every planar graph of order n ≥ 4 has a set of dn/2e vertices that induces a forest. It
is true for outerplanar graphs by the previously mentioned theorem of Jin et al. Later it
was independently conjectured by Jin and Watanabe [59] (1987). It is shown in [59] that
there exist planar graphs of order n in which a maximal induced forest has order dn/2e,
and thus the above conjecture is sharp, if it is true (Figure 11(a)).

One of the models in Jin’s Mathematical Art exhibit invites the public to verify this
conjecture by a circle avoidance game played on an electrical network.

Fig. 10. Circle avoidance game

The following conjecture was first made by Jin and Watanabe [59](1987): Every bipar-
tite planar graph of order n ≥ 4 has an induced forest of order at least d(5n)/8e. They
gave a series of graphs showing the sharpness of the bound if the conjecture is true (Fig-
ure 11(b)). The same conjecture was later made independently by Albertson and Haas
[61](1998).

(a) (b)

Fig. 11. The graphs which show the sharpness of the conjectures

For a triangle-free planar graph, Salavatipour [87] recently obtained a lower bound for
the size of induced forests: Every triangle-free planar graph on n vertices has an induced
forest of size at least (17n + 24)/32.

A Graph and its Complement with Common Properties

Ramsey theory discusses graphs in which either the graph itself, G, or its complement,
G, has a specified property. As a variation on this idea, Jin considered graphs, G, and
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their complements, G, and obtained criteria under which both G and G have a common
specified property. Some of these results follow. Jin and Harary [27] proved that a graph
G of order n satisfies the condition κ(G) = κ(G) = 1 if and only if G is a graph with
either (i) κ(G) = 1 and ∆(G) = n − 2 or (ii) κ(G) = 1, ∆(G) ≤ n − 3 and G has a
cut-vertex v with endline e and endvertex u such that G−u contains a spanning complete
bipartite subgraph.

The girth of a graph is the length of a shortest cycle in it. It is not difficult to see that
if both G and G have girth at least four, then G = G = C5. From this, Jin and Harary
[28] proved that both a graph G and its complement G have girth three if and only if G
contains one of seven graph of order 5 in Figure 12 as an induced subgraph.

 

Fig. 12. The seven induced subgraphs.

Jin, Ando, and Harary [15] characterized the graphs G for which G and its complement
G are interval graphs:

Both G and G are interval graphs if and only if G contains none of the seven graphs
in Figure 13 as an induced subgraph.

 

Fig. 13. The seven forbidden subgraphs.

Jin, Exoo and Harary [21] proved that (i) If G has two endvertices, then G has at
most two endvertices. (ii) A graph G of order p ≥ 4 and G have two endvertices if
and only if G is of the form F + K2 ◦ K1, where F is a graph of order p − 4. (iii) No
self-complementary graph has exactly one endvertex. (iv) If G is a self-complementary
graph with no endvertices, then G is a block. Using this result, Jin and Harary [29] also
determine the number of self-complementary blocks: For any positive integer p ≥ 5, the
number of self-complementary blocks of order p is sp − sp−4, where sp is the number of
all self-complementary graphs of order p. Harary referred to this theorem as “the oyster
theorem” because it was proved while he and Jin were attending an AMS meeting in
Biloxi, Mississippi, where they feasted on a lot of oysters.

A graph G is called contraction critically k-connected if it is k-connected but none of
the graphs obtained by contracting one of its edges is k-connected. Jin, Ando and Egawa
[14] proved that for k ≥ 4, if both G and G are contraction critically k-connected, then
their order is less than k5/3 + 4k3/2. In addition, they show that the exponent 5/3 in the
above theorem is sharp for k ≥ 2× 106.

The distance between two vertices x and y of a graph is denoted by d(x, y). The
eccentricity ecc(v) of a vertex v is defined to be maxx∈V (G) d(v, x). For a graph G, Gecc is
the graph with vertex set V (G) such that two vertices x and y are adjacent if d(x, y) =
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ecc(x) = ecc(y) in G. Jin, Ando and Avis [13] proved that Gecc = G if and only if
2 ≤ eccG(x) ≤ 3 for all vertices x ∈ V (G) and no two vertices x and y with eccG(x) =
eccG(y) = 3 have a common neighbour.

Jin’s first graph theory paper was published in 1974. At that time he was working in
isolation, since graph theory, as an area of mathematical research, had not yet established
a foothold in Japan. His return to Japan from Michigan marked the growth of graph the-
ory in Japan, so that today, graph theory is taught in every major Japanese university.
The Hakone conferences and the journal Graphs and Combinatorics established the pres-
ence of Japanese graph theorists in the consciousness of the international graph theory
community.1

3. An Original Slant on Discrete Geometry — notes by JU

Jin Akiyama is 60! This gives us a wonderful excuse to celebrate and reflect on the life
and times of one of our most cherished and admirable colleagues.

I met Jin in 1986 during the First Japan Conference on Graph Theory (FJCGT) held in
Hakone. At that time Jin was mainly interested in graph theory, but was beginning to work
on problems of a more geometric nature (incidentally, it was through Vašek Chvátal that I
met him.) My talk at FJCGT was on a result on points and circles I had recently obtained
with Victor Neumann-Lara. Since Jin was the main organizer, throughout the conference
he was very busy and was not able to attend my presentation. During a conversation
Vašek had with Jin, he told Jin about my talk, and afterwards in a very polite way, Jin
talked to me and apologized for not attending my lecture. It was then that he asked me
to work on the following problem, which as far as I know was one of the first problems
on geometric graphs on bicolored point sets:

Let P2n be the set of 2n vertices of a convex polygon such that n of them are colored red
and n are colored blue. An alternating path P of P2n is a simple polygonal path whose
vertices are the elements of P2n such that every second element of P is blue and the
remaining points are red. It is not hard to see that such a path does not always exist. His
question was: Given a bicolored point set P2n, determine if it has an alternating path.

Before the conference was over we were able to obtain an O(n2) time algorithm to
solve this problem. This gave rise to our first joint paper [58] and was the beginning of
a long and fruitful collaboration that has resulted in many papers in discrete geometry
and combinatorics, and more important to me, a long and enduring friendship. During
numerous visits to Japan and Tokai University, I have had the privilege of working with
Jin and many of his collaborators and students, including Kiyoshi Hosono, Mikio Kano,
Chie Nara, Gisaku Nakamura, Mari-Jo Ruiz, Toshinori Sakai, Masatsugu Urabe, among
others.

Jin first became interested in combinatorial geometry around 1985. His initial results
in the area were presented in two papers written with M. Kano and M-J. Ruiz. In the
first, they treat the construction of graphs formed from squares and regular hexagons,
while in the second they show that any induced subgraph of the regular triangular mesh
on the plane, whose every vertex belongs to a triangular face, contains a perfect matching.

1 The author wishes to thank Haruhide Matsuda for checking and compiling all the references of Section
2.
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This was followed by a paper with N. Alon in which they generalized a well-known result
that any set of 2n points, n are colored red and n are colored blue, in general position
on the plane contains a plane perfect matching. This was followed by a series of papers
that studied a variety of problems in discrete and computational geometry, such as two
papers published with the present author; the first on balanced colorings of lattice points
and the second the result mentioned above on alternating paths on bicolored point sets.

In 1993 Jin wrote the book (in Japanese) Introduction to Discrete Mathematics, co-
authored with Ronald Graham. In this book, he covers among others, the following topics
which are fundamental to discrete and computational geometry: convex hulls, alternating
paths, balanced colorings of point sets, separability of convex sets, art gallery problems,
Euclidean Steiner minimal trees and packing problems of geometric objects.

We believe that one of the reasons why Jin embraced discrete and computational
geometry so wholeheartedly was that many problems in this area are not difficult to
explain, and their solutions, while not easy to discover, are often very elegant and relatively
easy to explain to the non-initiated in mathematics. This makes these problems ideally
suited for use in one of important aspects of Jin’s work, his Mathematical Art, and in
radio and television programs.

Jin encouraged some of us to work on problems such as dissections of geometric figures;
that is, given a geometric figure (e.g. a rectangle or a box), how can we cut it and
reassemble the pieces to form a second geometric object? Others include origami-type
problems on folding paper, problems such as how to cut a cake so that each child at a
birthday party gets the same amount of both cake and icing, and how to wrap a box
using a rectangular sheet of paper with the smallest area possible. At the time of this
writing, two papers are scheduled to appear in the American Mathematical Monthly which
are typical of Jin’s creativity: universal measuring boxes with triangular bases, and tile-
makers and semi tile-makers. The first of these two papers arises from a very practical and
important problem in Japan: how to design a measuring box without graduations that is
capable of measuring a variety of integer volumes of sake. The second paper, “Tile-Makers
and Semi-Tile-Makers,” introduces an ingenious way to generate tilings of the plane using
the surface of a tetrahedron with four congruent triangular faces.

In 1997, Jin organized the first discrete and computational geometry conference in
Japan. It was followed in December of the following year by an international conference,
the Japan Conference on Discrete and Computational Geometry (JCDCG). Since then
JCDCG has been held annually, mostly in Tokyo, at the Yoyogi campus of Tokai Univer-
sity. By popular request from Asian colleagues, movable variants of this conference series
have complemented the stationary model; the Philippines–Japan International Conference
on Graph Theory and Discrete Geometry held in Manila in 2001, the Indonesia–Japan
International Conference on Discrete Geometry and Combinatorics held in Bandung in
2003, and the China–Japan International Conference on Discrete Geometry, Combina-
torics and Graph Theory held in Tianjin/Xian in 2005. JCDCG has become one of the
most prominent Asian conference in its field. Regular participants in JCDCG include,
among others, Kiyoshi Ando, Takao Asano, Tetsuo Asano, David Avis, Imre Bárány,
Sergey Bereg, Vašek Chvátal, Erik Demaine, Greg Frederickson, Naoki Katoh, Ferran
Hurtado, John Iacono, Hiroshi Imai, Hiro Ito, Haruhide Matsuda, Mikio Kano, Stefan
Langerman, Guizhen Liu, Alberto Márquez, Zhiming Ma, Jǐŕı Matoušek, Hiroshi Mae-
hara, David Rappaport, Joseph O’Rourke, János Pach, Narong Punnim, Kokichi Sugihara,
Endre Szemerédi, William Steiger, Xuehou Tan, Takeshi Tokuyama, Godfried Toussaint,



Jin Akiyama 15

Fuji Zhang and Chuanming Zong. Other Japanese researchers working in discrete geom-
etry include Hiroshi Fukuda, Koichi Hirata, Kiyoshi Hosono, Hiro Ito, Atsushi Kaneko,
Midori Kobayashi, Takako Kodate, Yoichi Maeda, Nobuaki Mutoh, Gisaku Nakamura,
Chie Nara, Toshinori Sakai, Masatsugu Urabe and Mamoru Watanabe.

Fig. 14. Participants at JCDCG ’98

Discrete and computational geometry has become a popular research area in Japan.
Since this conference is held mostly at the Yoyogi campus of Tokai University located in
Shibuya-ku, Tokyo, the names Shibuya and Shibuya Tobu Hotel have become familiar to
discrete and computational geometers around the world.

This year’s Computational Geometry and Graph Theory conference, KyotoCGGT
2007, is special, for we are celebrating the 60th birthdays of both Jin Akiyama and Vašek
Chvátal. We wish them both abundant good health and a happy and productive time in
the years to come. Thanks to both of them for the mathematics, kindness and friendship
they have shared with us; our lives have been greatly enriched by them.

In the remainder of this section, we review some of the results which Jin established
himself or in collaboration with other researchers.

3.1. Point Sets

(a) Tilings and graphs

Jin published his first paper in discrete geometry [37] with M. Kano and M-J. Ruiz. They
gave sufficient conditions and one necessary condition for a finite plane figure consisting
of squares and hexagons to be tiled with tiles of specific shapes.

(a) (d)(c)

(b) 

Fig. 15. (a) Tough defective chessboard. (b) Domino. (c) Triominoes. (d) Graph associated
with the defective chessboard shown in (a) and its P3-factor.
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A figure obtained from an m × n chessboard by removing a certain number of unit
squares is called a defective chessboard (Figure 15(a)). The order of a defective chessboard
is the number of unit squares in it. A defective chessboard B is said to be tough if every
domino (Figure 15(b)) in B is contained in a 2× 2 square of B. They associated defective
chessboards with a graph (Figure 15(d)). A tough chessboard is associated with a graph
in which every edge is contained in some C4. A triomino is the union of three unit squares
as shown in Figures 15(c). In [37] they proved the following result: Every connected tough
defective chessboard of order 3p (resp. even order) can be covered with p triominoes (resp.
dominoes). They also discussed similar problems for finite plane figures consisting of
regular hexagons [37,35].

(b) Disjoint heterochromatic simplices

A well known result which first appeared as a question in the 1979 Putnam Exam [81]
was that of proving the following: Let A be a set of 2n points in general position in IR2

such that n of the points are colored red and n are colored blue. Then there are n pairwise
disjoint straight line segments matching the red points to the blue points.

Jin and N. Alon [12] generalized this result to higher dimensions, proving the following
result by using the Ham Sandwich theorem (see Figure 16):

Theorem 1. Let A be a set of d · n points in general position in IRd, and let A = A1 ∪
A2 ∪ · · · ∪Ad be a partition of A into d pairwise disjoint sets, each consisting of n points.
Then there are n pairwise disjoint (d−1)-dimensional simplices, each containing precisely
one vertex from each Ai, 1 ≤ i ≤ d.

So, if we regard each Ai as the set of points with color i, then this theorem guarantees
the existence of n pairwise disjoint (d− 1)-dimensional heterochromatic simplices, where
a heterochromatic simplex is a simplex all of whose vertices have different colors.

Fig. 16. Five pairwise disjoint heterochromatic simplices in IR3.

They also obtained the following result on geometric d-hypergraphs (ordered pairs (V, E)
of vertices and edges whose vertices are sets of points in general position in IRd and whose
edges are closed (d− 1)-dimensional simplices):

Theorem 2. Every geometric d-hypergraph with n vertices and at least nd−(1/ld−1) edges
contains l pairwise nonintersecting edges.

They conjecture that for every integer l, d ≥ 2, there exists a constant c = c(l, d) such that
every geometric d-hypergraph with n vertices and at least c·nd−1 edges contains l pairwise
nonintersecting edges (see also [69]). It has been shown by J. Pach and J. Törőcsik [85]
that this is true for d = 2. The best lower bound known to date was obtained by G.
Tóth [89]. He proved that any geometric graph with n vertices and more than 29(l− 1)2n
edges contains l pairwise nonintersecting edges.
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(c) Balanced colorings for lattice points

Let Pn be a subset of n elements of the lattice points L of IR2. For every i ∈ IN , let the
row Ri be the set {(x, y) ∈ Pn : y = i} and the column Ci be {(x, y) ∈ Pn : x = i}. An
m-coloring of Pn is a partitioning of Pn into m subsets S1, . . . , Sm called the chromatic
classes of the coloring. An m-coloring of Pn is called almost balanced if for every row and
every column the number of points colored i differs from the number of points colored j
by at most one, i 6= j. In Figure 17 we show an almost balanced 3-coloring of a point set
Pn. The case m = 2 was also a problem posed in the 27th International Mathematical
Olympiad (1986), which motivated the study of this result, proved by Jin and myself in
[57]:

Theorem 3. Let Pn ⊂ L. Then Pn can always be m-colored with an almost balanced
m-coloring, 2 ≤ m ≤ n.

Fig. 17. Almost balanced 3-coloring.

Answering a conjecture posed in [57], Biedl et al. [67] proved in 2002 that if Pn is
a subset of the set of lattice points in IRd, then Pn can always be m-colored in such a
way that on any line parallel to either of the coordinate axes, the difference between the
number of points of any two colours is at most 4d − 3 (this is also a generalization of a
similar result by Beck and Fiala [66]).

3.2. Dissections and Related Topics

Most of Jin’s papers on polygons and polyhedra result from joint work with his colleague
Gisaku Nakamura. At age 79, Nakamura remains very active in research. Jin considers
himself fortunate to have this partnership with Nakamura. Incidentally, twenty-five years
ago, Jin introduced Nakamura to Vašek and the introduction led to a collaboration be-
tween Nakamura and certain Canadian graph theorists.

(a) Dudeney dissections of polygons and polyhedra

A geometric dissection cuts a geometric figure into a finite number of pieces which can be
rearranged to form another figure. Many beautiful and important results on dissections
have been discovered in the last two millennia [75,76,80]. Among many results on planar
dissection, the following result obtained independently by Wallace [92], Bolyai [68] and
Gerwien [77] is important: An arbitrary polygon can be transformed to any other polygon
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of the same area by partitioning it into a finite number of pieces and reassembling the
pieces in some suitable way, without turning the pieces over.

Henry E. Dudeney [71] introduced a partition of an equilateral triangle α into parts that
can be reassembled, without turning the pieces over, to form a square β of the same area,
moreover the perimeter of the square we obtain comes from the cuts performed along
segments in the interior of the triangle (see Figure 18). An examination of Dudeney’s
method motivated Jin and Nakamura to introduce the notion of Dudeney dissection of a
polygon, which they then extended to Dudeney dissections of polyhedra, see [40–43,45,
31]. In Jin’s Dudeney dissections, polygons are converted either into congruent polygons
but turned inside out, which he calls chameleons, or into other polygons, turned inside
out, which he calls octopuses. Figure 18 is an example of an octopus, while Figure 19 is
an example of a chameleon. In fact, he and Nakamura determined all convex chameleons
and octopuses, under the condition that all hinge points are interior to the sides of the
polygons. In particular, every triangle or quadrilateral is a chameleon.

α: β:

Fig. 18. Dudeney’s puzzle. Fig. 19. Chameleon.

Fig. 20. P2-tiling by hexagons.

A polygon is called a P2-tiler if its congruent copies and its 180◦ rotations tile the
plane by parallel transformation (see Figure 20). The main theorem used to determine all
convex polygons which have Dudeney dissections is the following:

Theorem 4. Every polygon that has a Dudeney dissection is a P2-tiler.

According to results from tiling theory [70,79], the only convex polygons that tile the
plane are triangles, quadrilaterals, special kinds of pentagons and three different types of
hexagons. Thus, in order to determine all polygons which have Dudeney dissections, it is
sufficient to consider only four cases: triangles, quadrilaterals, pentagons and hexagons.

To actually find a Dudeney dissection of α to β, Theorem 4 suggests that a plane
P2-tiling using α be appropriately superimposed on a P2-tiling of β (see Figure 21).



Jin Akiyama 19

α β

Fig. 21. Dudeney transform of α to β obtained by superimposition of P2-tilings by α and β.

(b) Sequentially n-divisible dissections of polygons

In [38,48,49], a different problem on dissections was studied. For a given integer n ≥ 2,
dissect a square into a finite number of polygons in such a way that for every k, 2 ≤ k ≤ n,
the polygons can be reassembled to form k squares of different sizes. Such a dissection is
called a sequentially n-divisible dissection of a square.

Fig. 22. Sequentially 13-divisible dissection of a square consisting of 33 pieces.

Jin and Nakamura [38] found a sequentially n-divisible dissection of a square with

f(n) pieces such that f(n)
n
→ 2 as n → ∞. Their dissection is shown in Figure 22. It is

shown in [48,49] that the Akiyama-Nakamura dissection is asymptotically optimal when
restricted to dissections called purely recursive dissections.

Jin et al. [55] also considered sequentially n-divisible dissections of other polygons and
related problems. For example, it is shown in [55] that a convex k-gon P , k ≤ 5, can be
dissected into k(n − 1) + 1 pieces in such a way that the pieces can be reassembled to
form m different sized polygons similar to P , m = 2, 3, . . . , n (Figure 23).

P:

Fig. 23. Sequentially 3-divisible dissection of a pentagon consisting of 11 pieces.



20 M. Kano et al.

3.3. Foldings of a Regular n-Gon to Convex Polyhedra

A development of a convex polyhedron is a plane figure obtained by cutting its surface.
Cuts are not necessarily confined to the edges of the polyhedron; they are allowed to pass
through its faces. A folding of a regular n-gon into a convex polyhedron is accomplished by
gluing portions of the perimeter of the n-gon together to form the polyhedron. The regular
n-gon can be regarded as a development of the polyhedron (Figure 24). Pioneering work
by Alexandrov [62] and some very nice results by Alexander, Dyson and O’Rourke [63] (in
which they determined all possible foldings of a square to convex polyhedra) motivated
Jin to enter this area of research.

A

B

C

D

E

F

G

A
C

F

G

D = E

(a) (b)

Fig. 24. Folding of a regular hexagon into a
tetrahedron.

ADO octahedron

Fig. 25. ADO octahedron folded from a
square.

Jin and Nakamura extend the results in [63] by determining all possible convex poly-
hedra foldable from regular n-gons, n = 3 [47], n = 5 [44], n ≥ 6 [46]. Furthermore, they
conjecture that the maximum volume convex polyhedron obtained by folding a regular
polygon of a unit area is the octahedron shown in Figure 25.

This is the same octahedron having the maximum volume among all convex polyhe-
dra foldable from a square with unit area, which was found by Alexander, Dyson and
O’Rourke. This octahedron is called “ADO octahedron” after the authors (Figure 25).

3.4. Universal Measuring Boxes

A measuring cup usually has gradations marked on its sides. A traditional Japanese device
used to measure sake from 1 to 6 liters is a lidless rectangular box without gradations with
a capacity of 6 liters. By tilting the box to align the surface of the liquid with its edges
and vertices, 1, 3, and 6 liters can be measured as shown in Figure 26. If a shop clerk
needs to give a customer 4 liters of liquid, he would first fill the box by immersing it in the
large shop container just once. He would then pour 3 liters into the customer’s container.
Next he would pour liquid back into the shop container until 1 liter was left. This he
would then pour into the customer’s container. It is easy to see that a similar procedure
could be carried out to obtain any k-liter amount, where k is an integer, 1 ≤ k ≤ 6.

Motivated by this, Jin et al. [25,24,26] proceeded to study the problem of finding boxes
whose vertices can be used as markers in a process similar to that described above (with
the 6-liter box) to measure from 1 to k liters, where k is an integer determined by the
dimensions of the box. Such a box is called a universal measuring box, referred to simply
as UMB.
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Fig. 26. 6 liters, 3 liters and 1 liter.

They mainly studied three types of UMB’s: those with triangular or rectangular bases
and plane trapezoidal sides orthogonal to their bases, and those with triangular bases
and plane quadrilateral sides not necessarily orthogonal to their bases (see Figures 27, 28,
and 29 respectively).

b

c
a

Fig. 27. UMB with triangu-
lar base.

b

a

c

d

Fig. 28. UMB with rectan-
gular base.

O

AC

B A'

B'

C'

Fig. 29. UMB with trian-
gular base and sides not or-
thogonal to the base.

The results obtained were surprising. For measuring boxes with a triangular base of
area 3, with sides orthogonal to the base, if {a, b, c} = {12, 13, 16} or {a, b, c} = {4, 18, 19},
the capacity of the box is 41, the boxes are universal, and 41 is the maximum volume
possible for such boxes. For boxes with triangular bases non-orthogonal to the sides,
a measuring box ABC-C ′A′B′ (Figure 29) such that the triangular cone OABC has
volume 1 and such that OA′/OA = 2, OB′/OB = 4 and OC ′/OC = 16 has capacity 127,
and is also a universal measuring box. The solution is also optimal.

For boxes with a rectangular base of area 6 and sides orthogonal to the base, they
showed that the box with (a, b, c, d) = (130, 132, 156, 169) has capacity 858 and is uni-
versal. It is not known whether this solution is optimal. It would also be interesting to
investigate measuring boxes whose bases are various convex polygons.

3.5. Developments of Polyhedra

To conclude, we present two particularly nice results on developments of polyhedra.

(a) Tile-makers and semi-tile-makers

A plane figure f is said to tile the plane if the plane can be covered with copies of f with
disjoint interiors. A convex polyhedron is a tile-maker if every development of it tiles the
plane (see Figure 30). In [11] Jin determines all convex polyhedra that are tile-makers.
He includes several dihedral polyhedra (polyhedra with volume 0 in which the bottom
and top surfaces are considered as distinct from one another. For example, think of a
rectangular piece of paper folded in half; this generates a flat rectangle with two different
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faces). The dihedral polyhedra in Jin’s result are polyhedra whose faces are equilateral
triangles, isosceles right triangles, half equilateral triangles or rectangles (Figure 31), and
tetrahedral polyhedra with four congruent triangular faces.

(a) (b)

Fig. 30. (a) Development of a regular tetrahedron. (b) Tiling of the plane using copies of the
development in (a).

30°

Fig. 31. All convex dihedra which are tile-makers1

A development of a polyhedron is called an edge-development if the cuts on the surface
of the polyhedron are restricted to be only along its edges. A convex polyhedron such that
all its edge-developments tile the plane is called a semi-tile maker. In [11] Jin conjectures
that the set of all semi-tile-maker polyhedra consists of all polyhedra that are tile-makers
plus cubes and regular octahedral polyhedra.

(b) Double packable solids

Of all Jin’s work, one of my favorite subjects is that of double packable solids. This topic
has real-world applications in the design of shipping and packing boxes. The “double”
part of the term refers to the fact that these boxes fulfill two important properties; the
box must tile the space, and there must exist a development of the box that tiles the
plane.

The advantages of such a box are evident; the plane tiling property minimizes waste of
the sheets of material used to make the boxes, while the space tiling property minimizes
wasted space once the assembled boxes are filled with product and stacked for shipping. In
a memorable invited lecture at the 1997 Canadian Conference on Computational Geom-
etry, Jin introduced the concept of double packable solids, proving that the cube and the
tetrahedron shown in Figure 32 are double packable. In a paper with Nakamura [39], it is
proved that there are an infinite number of double packable solids with 4, 5, 6, 7, 8 faces,
one with 9 faces, and one with 12 faces. It is not known whether any double packable
solid with 10, 11 and 13 or more faces exists. 1

1 The faces of these figures are shown slightly apart in the diagram to indicate that the figures are
dihedral, but in reality they consist of two congruent layers glued along each of the edges.

1 The author would like to thank Toshinori Sakai for his invaluable help during the writing of this
manuscript.
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Fig. 32. (a) Tetrahedron T which fills the space. (b) Development of T which tiles the plane.

4. Eye Witness Report: Jin Akiyama in Action — notes by MJR

Wherever Jin Akiyama travels in Japan, he has fans who give him the TV star treatment
– they ask for his autograph, they pose with him for photographs, they signal his presence
to their companions by a look or a whisper. I have observed these scenes many times.
I have also witnessed Jin’s ascendance to celebrity status, since I met him at the 1983
Singapore conference, long before he became famous.

From a few guest spots in popular TV shows, he captivated the audiences with his
charisma and some surprising down-to-earth mathematics. It did not take long for NHK,
Japan’s largest TV network, to note his drawing power and offer him a regular TV series
on mathematics. This was in 1991 – the series continues to this day [1,9,10]. Videos
of these programs, also produced by NHK, are top sellers. Radio programs followed in
1994. Audiences follow the mathematics taught in these programs through accompanying
workbooks which are sold to the public.

Fig. 33. Broadcasting Radio DJ Math program Fig. 34. At the Math Samurai TV program

It takes a special talent to hold on audience in a medium that can be turned off at will,
especially if what one offers is mathematics. What factors contribute to Jin’s success?
The charisma is palpable. He is witty – he makes the audience laugh. He has a good grasp
of audience psychology – he knows how to make an impact. And most important – his
choice of mathematics topics is inspired.

The sources of his materials are varied: his own published results, published journal
articles of other authors, mathematics and history of mathematics textbooks, popular
mathematics and popular science books. His originality is seen in the way the materials
are presented and in the models that are conceived [53,56,54,5].

In one of our conversations, he explains his mission: “There are some rare flowers
that are hidden deep in the jungle, only a few have a chance to find them and only
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those few will get to appreciate their beauty; but, many common flowers are beautiful
as well, and they are within everyone’s reach, so many are touched by their beauty.
The mathematics I choose to do can be compared to the common flowers – it is within
everyone’s reach. I want to bring the power and beauty of mathematics to many people.”
In keeping with this mission, the mathematics he presents to the public is within their
day-to-day experience, they can see its applications in their lives, it is reachable – not the
kind that only mathematicians can understand and appreciate [52,51]. Indeed, this is the
mathematics one will find in his books, will see and hear in his lectures and TV programs,
and will experience in his traveling exhibit, Mathematical Art, and his permanent exhibit,
Mathematics Wonderland.

Mathematical Art/Mathematics Wonderland

Just as people cannot appreciate a symphony by reading the score, or a feast by reading
the recipes, people cannot appreciate mathematics by reading theorems and memoriz-
ing formulas. The symphony must be heard, the feast must be savored. Jin holds that,
similarly, mathematics must engage the senses and be experienced. This is the guiding
principle of Mathematical Art [2–5,86].

Mathematical Art evolved from the models created for the TV programs. To suit the
medium, these are colorful manipulative models that illustrate mathematical principles. A
lot of imagination and creative energy went into their conceptualization and production.

Since this exhibit was first launched in Asahikawa in 1998, it has traveled to many cities
in Japan under the sponsorship of the National Museum of Science and to neighboring
cities in the Asia-Pacific region: Manila and Seoul. It was shown at Makuhari in conjunc-
tion with ICME 9 in 2000. Models from Mathematical Art form part of the UNESCO
traveling exhibit Experience Mathematics first shown in Stockholm, then in Copenhagen
during ICME 10 in 2004 and subsequently in Paris, Beijing, Athens, Madrid and sev-
eral cities in Africa [6]. Models from Mathematical Art are on permanent exhibit at the
Shizuoka Science Museum, while the entire collection of models (more than three hundred)
is permanently housed in Mathematics Wonderland, in Hokkaido, Northern Japan.

Curves of Constant Width

Among the earliest models developed for Jin’s programs are those based on curves of
constant width. They provide good examples of his kind of mathematics. The initial
inspiration was an article entitled “Why are Manhole Covers Round?” (in Japanese)
by his colleague Gisaku Nakamura. To introduce the topic Jin usually asks whether the
audience has observed the shape of manhole covers. He then brings out models of manholes
and covers of various shapes – round, square, triangular, trapezoidal and one in a strange
shape which turns out to be a reuleaux triangle (Figure 35).

He moves the covers around and demonstrates that the square, the triangular and the
trapezoidal ones could fall into their associated manholes, whereas the round one and
the reuleaux triangle cannot fall in. At this point, Jin urges the audience to think of the
reason why this happens and elicits their comments. Audience participation is a strong
element of his lectures.

He points out that a circle and a reuleaux triangle have a common property that
the other shapes do not possess – they are curves of constant width. Once the audience
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Fig. 35. Manhole covers of various shapes

understands the concept, he follows up with other practical uses of curves of constant
width using specially crafted manipulative models. One of these is a drill that makes
square holes. It is a modified version of a 200-Kg. Industrial drill invented in the U.S.A.
by the Hyatt Co. in 1921. This model is battery operated. The blade of the drill is a
reuleaux triangle. It’s movement is confined to a space bounded by a square (Figure 36).
The audience is invited to operate the drill and to create a square hole on a slab of stiff
foam. If you have not seen this before, you will surely be fascinated. The audience usually
breaks out in an enthusiastic applause.

 

Fig. 36. Square drill

 

Fig. 37. Hexagonal drill

He shows that the idea can be extended by bringing out another drill which makes
hexagonal holes. The blade of this drill is a reuleaux pentagon.

There is more. He shows a model of a rotary engine. The movement of a rotor of
constant width regulates the process of compression and decompression which creates the
power that causes a vehicle to move.

There are rollers (his own invention) whose wheels have a cross – section of constant
width. Jin demonstrates how smoothly this can move along a flat surface, just like vehicles
with round wheels.

When these particular models are on exhibit, they are easily among the crowd’s fa-
vorites and are often photographed.

Mathematics and Music

Sometimes Jin will begin a program by playing his accordion (Figure 38). Since this is
totally unexpected in a mathematics lecture, and since Jin is a talented musician, the
audience is delighted and applauds.

This is an introduction to a talk on the relationship between mathematics and music.
After the short musical performance, he will play some chords and ask the audience to
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Fig. 38. Jin playing the accordion Fig. 39. Spiral xylophone

indicate which chords are discordant and which are harmonious. The audience identifies
three harmonious chords. Jin illustrates the notes of the scale on a circular device and
shows that the distances between the notes in a harmonious chord form some permutation
of the Pythagorean triple 3 – 4 – 5 [8]! The audience is awed.

Sometimes he brings a rather large spiral xylophone (Figure 39) along which balls roll
down to produce music. He uses this to explain the role of proportion in harmony.

He might also play a music CD then damage it with a cutter and play it again to show
that the music has not been distorted. Again, this is a surprising demonstration. He uses
this as an illustration of error-correcting codes.

Since the theory of error-correcting codes may be somewhat daunting for the audience
he simply draws an analogy. He invites a participant from the audience to choose an animal
from among twelve (Chinese zodiac symbols) on a slide. The participant is instructed to
inform the audience of his choice but to keep it from Jin. He then asks the participant to
indicate whether the chosen animal is in each of seven successive slides that he will show.
He also tells the participant that he can lie at most once as he answers. At the end of
the question and answer sequence, he identifies the chosen animal; and, if the participant
lied, he also identifies the slide being shown when the participant lied. The astonished
audience applauds. He explains that this is the way error-correcting codes work, a small
distortion in the information can be identified and corrected.

Upon seeing this demonstration, a graduate student, whose research area is quantum
codes, remarked “I’ve never seen it done this way before – a simple demonstration that
gets to the gist of the matter.”

Mathematics and Art

Always on the lookout for new and intriguing mathematics, Jin’s own research results
in discrete geometry have become a major part of his programs and his models. The
mathematics is deep and significant but he has found ways of presenting it to the audience
in non-intimidating terms. It is always the beauty of mathematics that is emphasized.
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Among his most recent results is the theorem that states: Every development of a reg-
ular tetrahedron tiles the plane. The theorem was described by an American Mathematics
Monthly referee as “a gem.” He will demonstrate this theorem.

He begins by explaining the concept of development and he has an amusing way of
doing it. He has several congruent paper tetrahedra whose surfaces are painted to resemble
gindara (codfish) (Figure 40). He asks the audience to pretend that he is a sushi chef – an
expert at cutting fish. Participants from the audience can choose to have their fish served
in the shape of various polygons – triangle, quadrilateral, pentagon, hexagon. After each
choice, he will cut the surface of one of the tetrahedra to come up with the requested
figure. He explains that each figure is a development of the original tetrahedron and that
infinitely many developments are possible [50,30].

 

Fig. 40. Gindara and its developments

He is ready to demonstrate the theorem. He takes a regular tetrahedron made of
colored paper (actually several layers of paper of various colors). He cuts the surface in
random fashion but in such a way that the surface can be lain flat on a plane. To do
this, he explains that the cut must pass through each vertex of the tetrahedron. When
the cutting is done, he has several congruent pieces of colored paper which he can lay on
a flat surface in interlocking fashion so that the pieces begin to cover the surface without
gaps or overlaps. He has created a tiling of the plane!

This particular lecture is entitled “You Can Be an Artist Like Escher.” [7]. Each mem-
ber of the audience is provided with a tetrahedron and scissors and invited to create
Escher-like patterns that tile the plane. The audience plunges into this activity much like
kindergarten students in an art class.

Jin himself has created some beautiful collages from these developments and has shown
them in his exhibitions (Figure 41).

Reversible Solids

My own personal favorites from among Jin’s models come from research results he ob-
tained with Gisaku Nakamura in a series of published papers on Dudeney dissections of
polyhedra. In these papers, they identified many convex polyhedra that can be dissected,
hinged and turned inside out to obtain other convex polyhedra [40,41]. In some cases, the
resulting polyhedron is congruent to the original [42,43,45].

A lecture on this topic commences with Jin showing two truncated octahedra and a
rectangular plastic box. He says his problem is to pack the octahedra in the box (Figure
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Fig. 41. Collage from several copies of a development of a regular tetrahedron

42(a)). When you see the octahedra and the box, this seems to be an impossible task;
but the audience is in for a surprise. He reverses the octahedra into two rectangular solids
that fit perfectly in the box (Figure 42(b)). He gives a short spiel on creative problem
solving. He says that to solve a problem it is important to ask the right questions and
he quotes Georg Cantor: “The art of asking the right questions in mathematics is more
important than the art of solving them.”

 

(a) (b)
Fig. 42. Rectangular solids in the rectangular box

He then shows a rhombic dodecahedron painted to look like a fox. With one pull of
a string, the dodecahedron reverses into a rectangular solid painted to look like a snake
(Figure 43). The snake swallowed the fox! The audience loves this.

 

Fig. 43. The snake swallows the fox

A similar demonstration starts with a truncated octahedron painted to look like a pig
which with one twist of a rod reverses into a rectangular solid looking like a slab of ham
(Figure 44). This makes the audience laugh.

These whimsical models are actually quite sophisticated. They are the work of Yasuyuki
Yamaguchi, an industrial designer, and Minoru Kanzaki, a sculptor, colleagues of Jin from
the Tokai University, School of Art and Design in Hokkaido.
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Fig. 44. From pig to ham

Endnote

The public’s response to Jin is overwhelming. More than 49,000 viewers flocked to the
three-week Mathematical Art exhibit at the National Science Museum in Ueno, more
than 66,000 came to the month-long exhibit in Hiroshima, approximately 17,000 visited
the two-day ICME exhibit in Makuhari. His TV programs are highly rated. He receives
hundreds of fan mail. His exhibits are discussed enthusiastically in Japanese websites.

Jin is not one who rests on his laurels. He is at work twelve to fourteen hours a day
including Sundays. Only a few can keep up with his pace. Every week he crisscrosses
Japan giving lectures. Magazine and TV interviewers are always knocking at his door.
Although he may be tired in private, once the lecture or the taping begins, his energy
level rises several notches and never flags. He is a seasoned professional, a real trouper.

At the opening party of Mathematical Art in Asahikawa, I was asked to give some
remarks as one of the invited guests from abroad. I remember challenging Jin to keep
surprising us with his inventiveness, and he has not disappointed since.
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