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Abstract

Let  A  be a set of  2n  points in general position on a plane, and suppose  n
of the points are coloured red while the remaining are coloured blue.  An
alternating path  P  of  A  is a sequence p1, p2,..., p2n  of points of  A  such
that  p2i  is blue and  p2i+1  is red.  P  is simple if it does not intersect itself.
We determine the condition under which there exists a simple alternating path
P  of  A  for the case when the  2n  points are the vertices of a convex
polygon.  As a consequence an O(n2) algorithm to find such an alternating
path (if it exists) is obtained.
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1. Introduction
Let  A  be a set of  2n  points in general position in the Euclidian plane R2, and

suppose  n  of the points are coloured red while the remaining are coloured blue.  A
celebrated Putnam problem posed in 1979 asserts that there are  n  pairwise disjoint
straight line segments matching the red points with the blue points.  An extension to
higher dimensional cases is discussed in [1].

An alternating path  P  of  A  is a sequence  p1, p2,...,p2n of points of  A  such that  p2i-

1  is blue and  p2i  is red, i=0,...n.  P  is simple if it does not intersect itself.
As a natural extension of the matching assertion, we can ask the following question:
Given an arbitrary collection A of points, does there always exist a simple alternating

path  P  of  A?
The configuration of 16 points on a circle shown in Figure 1 shows that the answer to

this question is negative.

Figure 1

 In this paper we will consider collections of points A which form the vertices of a
convex polygon. We characterize collections of such points for which a simple
alternating path P exists. As a consequence, an O(n2) algorithm to find such a path, if it
exists, is obtained. The general case when the elements of A are arbitrarily placed on the
plane remains open.

1.1 Terminology and Definitions

Before giving a condition under which such an alternating path exists, let us give a



few definitions.
A word  S={S0, S1,....,S2n-1}   is a sequence of 2n elements such that  n  of them are

a's  and  n  are  b's.
A circular word  W={S0, S1,....,S2n-1}   is a word in which  S2n-1  is followed by

S0,..., etc.
A subword  W(i,k)  of a circular word  W  is the subsequence  {Si, Si+1,....,Si+2k-1}

of  W  with  2k  elements starting at element Si, addition taken mod 2n.
A valid word  W  is a word that can be constructed using the following rules:

a) ∅  is a valid word
b) If  W  is a valid word, then  baW,  aWb,  bWa  and  Wab  are valid words.

Informally speaking, a word is constructed by alternately adding an  a  and then a  b
to the empty word at either end of it.

For example the valid words with two letters are  ab  and  ba;  with four letters we
have  aabb, bbaa, abab, baba, and baab.  However   abba  is not a valid word.

A circular word is a valid circular word if there is an  i  such that  Si, Si+1,....,Si+2n-1  is
a valid word.

Not all circular words are valid circular words.  The reader may check easily that
W={aaaabbaaaabbbbbbbb}  is not a valid circular word.

2.  Main Result

Let  A={P0, P1,....,P2n-1}   be the vertices of a convex polygon such that half of them
are coloured  a  and half are coloured  b.  Let W={S0, S1,....,S2n-1}   be the circular word
obtained from  P2n  as follows:

Si=a if Pi is coloured  a,  otherwise  Si=b.

Theorem 1: A simple alternating path exists for  A  if and only if  W  is a valid
circular word.

Before proving Theorem 1 we need the following lemmas:

Lemma 1:  Let  p={Ps(0),....,Ps(2n-1)}   for  A.  Then the vertices covered by any
initial subpath {Ps(0),....,Ps(k)}   of  p  cover a subset of vertices of  A  of the form {Pi,
Pi+1,....,Pi+k-1} .

The proof follows immediately from the definition. (See Figure 2b).



Lemma 2: The subword W(2k) induced in  W  by the initial segment Ps(0),
Ps(1),....,Ps(2k) of  p  is a valid word.

Proof: It follows from Lemma 1 and the observation that each time two elements are
added to any initial subpath of  p,  the first one is an  a  and the second one is a  b, thus
extending a valid subword of  W  according to rules (a) and (b).

Theorem 1 now follows immediately
[]

3. The Algorithm

We now present an O(n2) algorithm to determine if a circular word W={S0, S1,....,S2n-

1}   is a valid circular word.
We will transform the problem of deciding if a circular word  W  is a valid word into

a path problem in a directed graph.  The method used will allow us not only to determine
if a word is valid or not, but will also tell us all different ways in which a word  W  can
be constructed.  This, in turn, will tell us how many alternating paths, if any, exist for  A.

Method:
Given W, construct a digraph  D(W)  with vertices the subwords  W(i,k)  of  W  plus

the empty word and the total word  W  as source and sink.
An edge  W(i,k)-W(j,k+1)  is present in  D(W)  if  W(i,k) can be extended to

W(j,k+1)  according to rules  (a), (b).  (See Figure 2a.)

Observations:
The outdegree of the vertices of  D(W)  (except possibly ∅) and  W  is at most 4.
Thus  |E(D(W))|  is O(n2).
A word is valid if there is a path from  ∅  to  W  in D(W).  This can be accomplished

in  O(n2).

Example:
W= a a b b a b
S0 S1 S2 S3 S4 S5



W(0,1)=aa           W(1,1)=ab          W(2,1)=bb         W(3,1)=ba          W(4,1)=ab          W(5,1)= ba 

W(0,2)=aabb       W(1,2)=abba       W(2,2)=bbab       W(3,2)=baba      W(4,2)=abaa        W(5,2)=baab   

∅

W=aabbab

Figure 2a: 5 ways of playing W
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Figure 2b:
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