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Abstract1

Let S = R ∪ B be a point set in the plane in general position such2

that each of its elements is colored either red or blue, where R and B3

denote the points colored red and the points colored blue, respectively. A4

quadrilateral with vertices in S is called a 4-hole if its interior is empty of5

elements of S. We say that a 4-hole of S is balanced if it has 2 red and6

2 blue points of S as vertices. In this paper, we prove that if R and B7

contain n points each then S has at least n2−4n
12

balanced 4-holes, and this8

bound is tight up to a constant factor. Since there are two-colored point9

sets with no balanced convex 4-holes, we further provide a characterization10

of the two-colored point sets having this type of 4-holes.11
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1 Introduction12

Let S be a set of points in the plane in general position. A hole of S is a simple13

polygon Q with vertices in S and with no element of S in its interior. If Q has14

k vertices, it is called a k-hole of P . Note that we allow for a k-hole to be non-15

convex. We will refer to a hole that is not necessarily convex as general hole,16

and to a hole that is convex as simply convex hole. The study of convex k-holes17

in point sets has been an active area of research since Erdős and Szekeres [5, 6]18

asked about the existence of k points in convex position in planar point sets. It19

is known that any point set with at least ten points contains convex 5-holes [9].20

Horton [10] proved that for k ≥ 7 there are point sets containing no convex k-21

holes. The question of the existence of convex 6-holes remained open for many22

years, but recently Nicolás [14] proved that any point set with sufficiently many23

points contains a convex 6-hole. A second proof of this result was subsequently24

given by Gerken [8].25

Recently, the study of general holes of colored point sets has been started [1, 2].26

Let S = R ∪ B be a finite set of points in general position in the plane. The27

elements of R and B will be called, respectively, the red and blue elements of28

S, and S will be called a bicolored point set. A 4-hole of S is balanced if it has29

two blue and two red vertices.30

In this paper, we address the following question: Is it true that any bicolored31

point set with at least two red and two blue points always has a balanced 4-hole?32

We answer this question in the positive by showing that any bicolored point set33

S = R ∪ B with |R| = |B| ≥ 2 always has a quadratic number of balanced34

4-holes. We further characterize bicolored point sets that have balanced convex35

4-holes.36

The study of convex k-holes in colored point sets was introduced by Devillers37

et al. [4]. They obtained a bichromatic point sets with 18 points that contains38

no convex monochromatic 4-hole. Huemer and Seara [11] obtained a bichro-39

matic point set with 36 points containing no monochromatic 4-holes. Later,40

Koshelev [12] obtained another such point set with 46 elements. Devillers et41

al. [4] also proved that every 2-colored Horton set with at least 64 elements con-42

tains an empty monochromatic convex 4-hole. In the same paper the following43

conjecture is posed: Every sufficiently large bichromatic point set contains a44

monochromatic convex 4-hole. This conjecture remains open, and on the other45

hand Aichholzer et al [2] have proved that any bicolored point set always has46

a monochromatic general 4-hole. Recently, a result well related with balanced47

4-holes was proved by Aichholzer et al [3]: Every two-colored linearly-separable48

point set S = R ∪B with |R| = |B| = n contains at least 1
15n

2 − θ(n) balanced49

general 6-holes. In a forthcoming paper, the same authors proved the lower50

bound 1
45n

2− θ(n) on such holes in the case where R and B are not necessarily51

linearly-separable. One can note that a balanced 6-hole with vertices V (even if52

R and B are linearly separable) does not always imply a balanced 4-hole with53

vertices V ′ ⊂ V (see, e.g., Figure 1).54
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Figure 1: A balanced 6-hole such that no quadruple of its points defines a balanced
4-hole. In the whole paper, red points are represented as solid dots and blue points as
tiny circles.

Our results: For balanced general 4-holes, that is, balanced 4-holes not nec-55

essarily convex, we first show that every bicolored point set S = R ∪ B with56

|R|, |B| ≥ 2 has at least one balanced 4-hole. We then prove that if |R| = |B| = n57

then S has at least n2−4n
12 balanced 4-holes (Theorem 1 of Section 2), and show58

that this bound is tight up to a constant factor. This lower bound is improved59

to 2n2+3n−8
12 in the case where R and B are linearly separable (Theorem 5 of60

Section 2.1). On the other hand, for balanced convex 4-holes, we provide a61

characterization of the bicolored point sets S = R ∪B having at least one such62

hole (Theorem 10 of Section 3.1, and Theorem 13 of Section 3.2). Finally, in63

Section 4, we discuss extensions of our results such as generalizing the above64

lower bounds for point sets in which |R| 6= |B|, proving the existence of convex65

4-holes either balanced or monochromatic, deciding the existence of balanced66

convex 4-holes, and others.67

General definitions: Given any two points x, y of the plane, we denote by xy68

the straight segment connecting x and y, by `(x, y) the line passing through x69

and y, and by x → y the ray that emanates from x and contains y. For every70

three points x, y, z of the plane, we denote by ∆xyz the open triangle with71

vertex set {x, y, z}. Given X ⊆ S, let CH(X) denote the convex hull of X.72

Given three non-collinear points a, b, and c, we denote by W(a, b, c) the open73

convex region bounded by the rays a → b and a → c. Given a set X ⊂ S, let74

f(a, b, c,X) denote a point x ∈ (X ∩∆abc) ∪ {c} minimizing the area of ∆abx75

over all points of (X ∩∆abc) ∪ {c}.76

2 Lower bounds for general balanced 4-holes77

It is not hard to see that if |R|, |B| ≥ 2, then S contains a balanced 4-hole.78

To prove this, observe that for every set H of four points there always exists a79

simple polygon whose vertices are the elements of H. Let S′ be a subset of S80

containing exactly two red points and two blue points, such that the area of the81

convex hull of S′ is minimum. Clearly, any simple polygon whose vertex set is82

S′ contains no element of S in its interior, and thus it is a balanced 4-hole of S.83

On the other hand, if S has exactly two points of one color and many points84
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of the other color, then S might contain only a constant number of balanced 4-85

holes. For example, the reader may verify that the point set of Figure 2 contains86

exactly five balanced 4-holes.87

Figure 2: A point set with exactly five balanced 4-holes, obtained by choosing the
two red points and any pair of blue points connected by a continuous segment.

In the case where |R| = |B| = n, S has (at least) a linear number of balanced88

4-holes. Indeed, by applying the ham-sandwich theorem recursively, we can89

partition S into a linear number of constant size disjoint subsets whose convex90

hulls are pairwise disjoint, and each of them contains at least two red points91

and two blue points, and has thus a 4-hole.92

In this section we prove the following stronger result:93

Theorem 1. Let S = R ∪ B be a set of 2n points in general position in the94

plane such that |R| = |B| = n. Then S has at least n2−4n
12 balanced 4-holes.95

We consider some definitions and preliminary results to prove Theorem 1. In96

the rest of this section we will assume that |R| = |B| = n.97

Given two points p, q ∈ S with different colors, let T (p, q) be the set of the at98

most four points obtained by taking the first point found in each of the next99

four rotations: the rotation of p→ q around p clockwise; the rotation of p→ q100

around p counter-clockwise; the rotation of q → p around q clockwise; and the101

rotation of q → p around q counter-clockwise.102

We classify (or color) the edge pq with one of the following four colors: green,103

black, red, and blue. We color pq green if it is an edge, or a diagonal, of some104

balanced 4-hole. If pq is an edge of the convex hull of S and is not green, then105

pq is colored black. If pq is neither green nor black, then all the points in T (p, q)106

must have the same color and there are elements of T (p, q) to each side of `(p, q).107

We then color pq with the color of the points in T (p, q).108
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Figure 3: The edge colors: (a) The polygon with vertex set {p, q, r, t} is a balanced
4-hole, then the edges pq, pr, y rt are colored green. (b) Since the edge pq is a convex
hull edge and there is no balanced 4-hole with edge pq, then pq is colored black. (c)
Since pq is neither red nor black, and the elements of T (p, q) are red, pq is colored red.

Lemma 2. The number of red edges and the number of blue edges are each at109

most nbn−13 c.110

Proof. Let r ∈ R be any red point. Sort the elements B radially around r in111

counter-clockwise order, and label them b0, b1, . . . , bn−1 in this order. Subindices112

are taken modulo n.113

Suppose that the edge rbi is red, 0 ≤ i < n, and the angle needed to rotate the114

ray r → bi counter-clockwise around r in order to reach r → bi+1 is less than π.115

If ∆rbibi+1 does not contain elements of R, then there must exist a red point z116

inW(rbibi+1)\∆rbibi+1. Then, the quadrilateral with vertex set {r, bi, z′, bi+1}117

is a balanced 4-hole, where z′ := f(bi, bi+1, z, R), which contradicts that rbi is118

red (see Figure 4a). Hence, ∆rbibi+1 must contain red points. In fact, ∆rbibi+1119

contains at least three red points in order to avoid that r, bi, and bi+1, joint120

with some red point in ∆rbibi+1, form a balanced 4-hole with edge rbi (see121

Figure 4b and Figure 4c). These observations imply that the number of red122

edges among rb0, rb1, . . . , rbn−1 (i.e. the number of red edges incident to r) is123

at most bn−13 c. Summing over all the red points, the total number of red edges124

is at most nbn−13 c.125

Analogously, the total number of blue edges is also at most nbn−13 c.126

Lemma 3. The number of green edges is at least n2−4n
3 .127

Proof. There are n2 bichromatic edges in total. By Lemma 2, at most nbn−13 c
of them are red and at most nbn−13 c are blue. Further observe that at most 2n
edges are black. Then the number of green edges is at least:

n2 − 2n

⌊
n− 1

3

⌋
− 2n ≥ n2 − 4n

3
.

128
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Figure 4: (a) If W(rbibi+1) contains red points and ∆rbibi+1 does not, then there is
a balanced 4-hole with edge rbi. (b) If the edge rbi is red then the triangle ∆rbibi+1

must contain at least three red points in order to block balanced 4-holes with vertices
r, bi, bi+1, and some red point of ∆rbibi+1, having rbi as edge. (c) If ∆rbibi+1 contains
exactly one or two red points then there is a balanced 4-hole with edge rbi.

Observe now that any balanced 4-hole defines at most four green edges as polyg-129

onal edges or diagonals. Thus, by Lemma 3, the number of balanced general130

4-holes is at least 1
4

(
n2−4n

3

)
= n2−4n

12 , and Theorem 1 thus follows.131

2.1 The separable case132

We now improve our bounds of the previous section for the case where R and133

B are linearly separable. Suppose without loss of generality that there is a134

horizontal line ` such that the elements in R are above `, and those in B are135

below `. Further assume that no two elements in S = R ∪ B have the same136

y-coordinate.137

Lemma 4. If R and B are linearly separable then both the number of red edges138

and the number of blue edges are each at most n2−3n+2
6 .139

Proof. Label the red points r0, r1, . . . , rn−1 in the ascending order of the y-
coordinates. Let ri be any red point, 0 ≤ i < n. Sort the blue points radially
around ri in counter-clockwise order and label them b0, b1, . . . , bn−1 in this order.
Similarly as in the proof of Lemma 2, if ribj is red, 0 ≤ j < n, then among
r0, ri, . . . , ri−1 the triangle ∆ribjbj−1 contains at least three elements if j > 0,
and the triangle ∆ribjbj+1 contains at least three elements if j < n − 1. Then
the number of red edges incident to ri is at most b i3c, and over all the red points,
the number of red edges is at most

n−1∑
i=0

⌊
i

3

⌋
If n− 1 = 3k, for some integer k, then:

n−1∑
i=0

⌊
i

3

⌋
= 3 (0 + 1 + . . .+ (k − 1)) + k =

n2 − 3n+ 2

6
.
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If n− 1 = 3k + 1, then:

n−1∑
i=0

⌊
i

3

⌋
= 3 (0 + 1 + . . .+ (k − 1)) + 2k =

n2 − 3n+ 2

6
.

Finally, if n− 1 = 3k + 2, then:

n−1∑
i=0

⌊
i

3

⌋
= 3 (0 + 1 + . . .+ k) =

n2 − 3n

6
.

Therefore, we have that the number of red edges is at most n2−3n+2
6 . Analo-140

gously, there are at most n2−3n+2
6 blue edges in total.141

Theorem 5. If R and B are linearly separable then the number of balanced142

4-holes is at least 2n2+3n−8
12 .143

Proof. Since R and B are linear separable, the number of black edges is at most144

2. Using Lemma 4, we can ensure that the number of green edges is at least145

n2 − 2

(
n2 − 3n+ 2

6

)
− 2 =

2n2 + 3n− 8

3
.

Then the number of balanced 4-holes is at least 2n2+3n−8
12 = 2n2+3n−8

12 .146

We observe that our lower bounds are asymptotically tight for point sets S =147

R ∪ B with |R| = |B| = n. For example, if R and B are far enough from each148

other (i.e. any line passing through two points of R does not intersect CH(B),149

and vice versa), R is a concave chain, and B a convex chain (see Figure 5), then150

the number of balanced 4-holes is precisely (n−1)×(n−1); each of them convex151

and formed by two consecutive red points and two consecutive blue points. This152

point set R ∪B (without the colors) was called the double chain [7].153

Figure 5: An example of 2n points having exactly (n− 1)2 balanced 4-holes.
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3 Balanced convex 4-holes154

In this section we characterize bicolored point sets S = R ∪ B that contain155

balanced convex 4-holes. To start with, we point out that in general S = R∪B156

does not have balanced convex 4-holes. The point sets shown in Figure 6 does157

not necessarily have balanced convex 4-holes. Observe that the number of blue158

points in the interior of the convex hull of the blue points in Figure 6a and159

Figure 6b can be arbitrarily large. A more general example with eight points, 4160

red and 4 blue linearly separable, is shown in Figure 6d, which can be generalized161

to point sets with 2n points, n ≥ 2, n red and n blue.162

(a) (b)

(c) (d)

Figure 6: Some point sets with no balanced convex 4-holes.

Let p, q ∈ S be two points of the same color. If p and q are red, pq will be called163

a red-red edge. Otherwise, if p and q are blue, we call it a blue-blue edge.164

3.1 R and B are not linearly separable165

We proceed now to characterize bicolored point sets S = R ∪ B, not linearly166

separable, which contain balanced convex 4-holes. We assume |R|, |B| ≥ 2.167

Lemma 6. If S contains a red-red edge and a blue-blue edge that intersect each168

other, then S contains a balanced convex 4-hole.169

Proof. Choose a red-red edge ab and a blue-blue edge cd such that ab ∩ cd 6= ∅170

and the convex quadrilateral Q with vertex set {a, b, c, d} is of minimum area171
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among all possible convex quadrilaterals having a red-red diagonal and a blue-172

blue diagonal. Observe that Q is balanced and assume that Q is not a 4-hole.173

Then Q contains a point of S in its interior. Suppose w.l.o.g. that there is a red174

point e in the interior of Q. Then we have that ea intersects cd, or eb intersects175

cd. Suppose w.l.o.g. the former case. Hence, {a, e, c, d} is the vertex set of a176

balanced convex quadrilateral with a red-red diagonal and a blue-blue diagonal177

with area smaller than that of Q, a contradiction.178

Lemma 7. If the boundaries of CH(R) and CH(B) intersect each other, then179

S contains a balanced convex 4-hole.180

Proof. Observe that there exist a red-red edge and a blue-blue edge that inter-181

sect each other. Therefore, the result follows from Lemma 6.182

Lemma 8. Let S = R∪B be a bichromatic point set such that R and B are not183

linearly separable, CH(B) ⊂ CH(R), |R| = 3, and |B| ≥ 2. Then S contains184

a balanced convex 4-hole if and only if there is a blue-blue edge uv of CH(B)185

such that one of the open half-planes bounded by `(u, v) contains exactly 2 red186

points and no blue point.187

Proof. Let a, b, c denote the three elements of R. Suppose that there exists188

an edge uv of CH(B) such that a and b belong to one of the two open half-189

planes bounded by `(u, v) and that the elements of S \ {a, b, u, v} belong to the190

other open half-plane (see Figure 7a). Then the quadrilateral with vertex set191

{a, b, u, v} is a balanced convex 4-hole.192

Suppose now that S has a balanced convex 4-hole. Assume w.l.o.g. that this193

4-hole has vertex set {a, b, u, v}, where u→ v intersects bc, and v → u intersects194

ac (see Figure 7a). Let p and q denote the points ac∩ (v → u) and bc∩ (u→ v),195

respectively. If ∆aup ∪∆bvq does not contain blue points, then uv is the edge196

that we are looking for. Otherwise, let blue points u′ and v′ be defined as197

follows (see Figure 7b and Figure 7c): If ∆aup contains blue points then u′ :=198

f(a, u, p,B), otherwise u′ := u. Similarly, if ∆bvq contains blue points then199

v′ := f(b, v, q, B), otherwise v′ := v. Observe that the quadrilateral with vertex200

set {a, b, u′, v′} is a balanced convex 4-hole. Then, repeat the same arguments201

for u being u′ and v being v′. Since at least one of the former points u and v is202

never considered again, and also that B is finite, after a finite number of such203

steps ∆aup ∪∆bvq will not contain blue points, and we are done.204

Lemma 9. Let S = R ∪ B be a bicolored point set such that R and B are not205

linearly separable, CH(B) ⊂ CH(R), |R| ≥ 4, and |B| ≥ 2. Then S has a206

balanced convex 4-hole.207

Proof. Let T be a triangulation of R. If there are two blue points that belong208

to different triangles of T , then there exist a red-red edge and a blue-blue edge209

intersecting each other, and the result thus follows from Lemma 6. Suppose210

then that B is completely contained in a single triangle t of T , with vertices211

a, b, c ∈ R in counter-clockwise order.212
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Figure 7: Proof of Lemma 8.

If |B| = 2, there exists and edge of T which is not intersected by the line through213

the two blue points. Then the two red points of that edge, joint with the two214

blue points, form a balanced convex 4-hole (Lemma 8).215

Suppose then that |B| ≥ 3, thus CH(B) has at least three vertices. Since216

|R| ≥ 4 there exists a triangle t′ of T sharing an edge with t. Assume w.l.o.g.217

that such an edge is ab, and denote by d the other vertex of t′. Further assume218

w.l.o.g. that `(a, b) is horizontal, and d is below `(a, b).219

Let u := f(a, b, c, B). Observe that u is a vertex of CH(B). Let v ∈ B denote220

the vertex succeeding u in CH(B) in the counter-clockwise order, and w ∈ B221

denote the vertex succeeding u in CH(B) in the clockwise order. Both v and222

w are not below the horizontal line through u by the definition of u. If either223

`(u,w) or `(u, v) does not intersect ab, then there is a balanced convex 4-hole224

by Lemma 8. Suppose then that both `(u,w) and `(u, v) intersect ab. Refer to225

Figure 8.226

We consider the following four cases according to the possible locations of point227

d, by assuming w.l.o.g. that point d is to the left of `(u,w). The other symmetric228
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Figure 8: Proof of Lemma 9.

cases arise when d is to the right of `(u, v).229

Case 1: d ∈ W(w, a, u) (see Figure 8a). The quadrilateral with vertex set230

{a, d, u, w} is a balanced convex 4-hole.231

Case 2: d ∈ W(u, a, w) (see Figure 8b). The quadrilateral with vertex set232

{d′, a, u, w} is a balanced convex 4-hole, where d′ = f(w, a, d,R).233

Case 3: d /∈ W(w, a, u) ∪W(u, a, w) and `(a, d) ∩ uv = ∅ (see Figure 8c). The234

quadrilateral with vertex set {a, d, u, v′} is a balanced convex 4-hole, where235

v′ = f(a, u, v,B).236

Case 4: d /∈ W(w, a, u) ∪W(u, a, w) and `(a, d) ∩ uv 6= ∅ (see Figure 8d). The237

quadrilateral with vertex set {d′, a, v′, w} is a balanced convex 4-hole, where238

d′ = f(a,w, d,R) and v′ = f(a,w, v,B).239

Since any location of d is covered by one of the above cases (or by one of their240

symmetric ones), there exists a balanced convex 4-hole. The result follows.241

By combining Lemma 7, Lemma 8, and Lemma 9, we obtain the following result242

that completely characterizes the non-linearly separable bichromatic point sets243
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that have a balanced convex 4-hole.244

Theorem 10. Let S = R∪B be a bichromatic point set such that R and B are245

not linearly separable. Then S has a balanced 4-hole if and only if one of the246

following conditions holds:247

1. CH(B) ⊂ CH(R), |R| = 3, |B| ≥ 2, and there is a blue-blue edge uv of248

CH(B) such that one of the open half-planes bounded by `(u, v) contains249

exactly 2 red points and no blue point.250

2. CH(R) ⊂ CH(B), |B| = 3, |R| ≥ 2, and there is a red-red edge uv of251

CH(R) such that one of the open half-planes bounded by `(u, v) contains252

exactly 2 blue points and no red point.253

3. CH(B) ⊂ CH(R), |R| ≥ 4, |B| ≥ 2,254

4. CH(R) ⊂ CH(B), |B| ≥ 4, |R| ≥ 2,255

5. The boundaries of CH(B) and CH(R) intersect each other.256

3.2 R and B are linearly separable257

In the rest of this section, we will assume that R and B are linearly separable.258

At first glance, one might be tempted to think that if the cardinalities of R259

and B are large enough, then S always contains balanced convex 4-holes. This260

certainly happens in the point set of Figure 5, in which R and B are far enough261

from each other. There are, however, examples of linearly separable bicolored262

point sets with an arbitrarily large number of points that do not contain any263

balanced convex 4-hole. For instance, the point set shown in Figure 6d has no264

balanced convex 4-hole. Observe in this example that if we choose a red-red265

edge and a blue-blue edge, the convex hull of their vertices is either a triangle266

or a convex quadrilateral that contains at least one other point in its interior.267

Given an edge e of CH(R) and an edge e′ of CH(B), we say that e and e′ see268

each other if the union of the sets of their vertices defines a balanced convex269

4-hole whose interior intersects with neither CH(R) nor CH(B). We assume270

that there exists a non-horizontal line ` such that the elements of R are located271

to the left of ` and the elements of B are located to the right.272

Definition 11. Let S = R ∪ B be a bicolored point set such that R and B are273

linearly separable. Conditions C1 and C2 are defined as follows:274

C1. There exist an edge e of CH(R) and an edge e′ of CH(B) such that e and275

e′ see each other.276

C2. There exists an edge uv of CH(R) and points b, z ∈ B such that z ∈ ∆uvb,277

R ∩∆uvb = ∅, and R ∩W(b, u, v) 6= ∅; or this statement holds if we swap278

R and B.279
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Lemma 12. Let S = R ∪ B be a bicolored point set such that R and B are280

linearly separable. If there exist a point r ∈ R, a point b ∈ B, an edge e of281

CH(R), and an edge e′ of CH(B), such that the interiors of e and e′ intersect282

with the interior of rb, then C1 or C2 holds.283

Proof. Let u and v be the endpoints of e and w and z the endpoints of e′.284

Assume w.l.o.g. that `(r, b) is horizontal, u and w are above `(r, b), and then285

v and z are below `(r, b). If e and e′ see each other (see Figure 9a), then C1286

holds. Otherwise, assume w.l.o.g. that z is contained in ∆uvw (see Figure 9b).287

We have z ∈ ∆uvb because z lies between the intersections of `(w, z) with rb288

and uv, which both are in the closure of ∆uvb. This implies that R∩∆uvb = ∅289

and r ∈ W(b, u, v). Then C2 is satisfied.

r b

u

v

w

z

(a)

r b

u

v

w

z

(b)

Figure 9: Proof of Lemma 12.

290

Theorem 13. A bichromatic point set S = R ∪ B, such that R and B are291

linearly separable, has a balanced convex 4-hole if and only if C1 or C2 holds.292

Proof. If condition C1 holds then S has trivially a balanced convex 4-hole. Then293

suppose that condition C2 holds. Let z′ := f(u, v, b, B) and observe that z′ 6= b294

since z ∈ ∆uvb. Let r be any red point in R ∩ W(b, u, v) (see Figure 10a).295

Observe that we have either r ∈ W(b, u, z′) or r ∈ W(b, z′, v). Assume w.l.o.g.296

the former case. Then the quadrilateral with vertex set {r′, z′, b′, u} is a balanced297

convex 4-hole, where r′ := f(u, z′, r, R) and b′ := f(u, z′, b, B).298

Suppose now that S has a balanced convex 4-hole with vertices u, v, z, w in299

counter-clockwise order, where u, v ∈ R and w, z ∈ B. Let e and e′ be the300

edges of CH(R) and CH(B), respectively, that intersect with both uw and vz301

(note that e and e′ might share vertices with uv and wz, respectively). If we302

have that e = uv and e′ = wz then e and e′ see each other, and thus C1 holds.303

Otherwise, if e 6= uv and e′ 6= wz then the interiors of e and e′ intersect the304

interior of the same edge among uw, uz, vw, and vz. Then, by Lemma 12,305

we have that C1 or C2 holds. Otherwise, there are two cases to consider: (1)306

e 6= uv and e′ = wz; and (2) e = uv and e′ 6= wz. Consider case (1), case (2) is307

analogous. Let e := u′v′. If e and e′ see each other, then C1 holds. Otherwise308

(up to symmetry), w belongs to ∆u′v′z (see Figure 10b). Since R∩∆u′v′z = ∅309

and u ∈ W(z, u′, v′), we have that C2 is satisfied.310
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Figure 10: Proof of Theorem 13.

4 Discussion311

A better counting of black edges: In the proof of our lower bounds, we312

considered the edges colored black, as those being edges of the convex hull of313

S = R ∪ B (|R| = |B| = n) that connect a red point with a blue point and are314

neither an edge nor a diagonal of any balanced 4-hole. Specifically, in the proof315

of Lemma 3, we gave the simple upper bound 2n for the number of black edges,316

but one can note that this bound can be improved. Nevertheless, any upper317

bound must be at least n/2 since the following bicolored point set has precisely318

n/2 black edges.319

Let n = 4k and consider a regular 2k-gon Q. Put a colored point at each vertex320

of Q such that the colors of its vertices alternate along its boundary. Orient321

the edges of Q counter-clockwise. Then for each edge e of Q put in the interior322

of Q three points of the color of the origin vertex of e such that they are close323

enough to e and ensure that there is no balanced 4-hole with e as edge. In total324

we have 8k points, consisting of 4k red points (i.e. k red points in vertices of325

Q and 3k red points in the interior of Q) and 4k blue points. See for example326

Figure 11, in which k = 2. Then, all the 2k = n/2 edges of Q are black.327

Generalization of the lower bound for non-balanced point sets: Let
S = R ∪ B be a red-blue colored point set such that |R| 6= |B|. Let r := |R|
and b := |B|. Using arguments similar to the ones used in Section 2, it can be
proved that S has at least

r · b− r ·min

{⌊
r− 1

3

⌋
,b

}
− b ·min

{⌊
b− 1

3

⌋
, r

}
− (r + b)

balanced 4-holes. Observe that this bound is positive if and only if b r−13 c < b328

and bb−13 c < r (roughly r ≤ 3b and b ≤ 3r). Therefore, we leave as an open329

problem to obtain a lower bound for the cases in which the number of points of330

one color exceeds three times the number of points of the other color.331
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Figure 11: A point set with many black edges.

Existence of convex 4-holes, either balanced or monochromatic: Com-332

bining the characterization given by Theorem 10 joint with Theorem 13, we333

obtain the following result:334

Proposition 14. Let S = R∪B a bicolored point set in the plane. If |R|, |B| ≥ 4335

then S always has a convex 4-hole either balanced or monochromatic.336

Proof. If R and B are not linearly separable, then S has a balanced convex 4-337

hole by Theorem 10. Otherwise, consider that R and B are linearly separable.338

If the convex hull of R contains a red point and the convex hull of B contains a339

blue point in their interiors, then S has a balanced convex 4-hole by Lemma 12.340

Otherwise, at least one between R and B is in convex position and then S has341

a monochromatic convex 4-hole.342

Deciding the existence of balanced convex 4-holes: Using the character-343

ization Theorems 10 and 13, arguments similar to those given in Sections 3.1344

and 3.2, and well-known algorithmic results of computational geometry, we can345

decide in O(n log n) time if a given bicolored point set S = R∪B (|R|, |B| ≥ 2)346

of total n points has a balanced convex 4-hole.347

We first compute the convex hulls CH(R) and CH(B) of R and B, respectively.348

After that, we decide if R and B are linearly separable. If they are not, we can349

decide in O(n log n) time whether one of the conditions (1-5) of Theorem 10350

holds. Otherwise, if R and B are linearly separable, we proceed with the fol-351

lowing steps, each of them in O(n log n) time. If the decision performed in any352

of these steps has a positive answer, then a balanced convex 4-hole exists:353

1. Decide whether the next two conditions hold: (1) CH(R) contains red354

points in the interior or CH(S) has at least three red vertices; and (2)355

CH(B) contains blue points in the interior or CH(S) has at least three356

blue vertices. If the answer is positive then the conditions of Lemma 12357

are met and there thus exists a balanced convex 4-hole in S. Otherwise,358

if the answer is negative, assume w.l.o.g. that B is in convex position.359
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2. Decide whether the conditions of Lemma 12 hold for at least one red point360

r. Fixing a red point r, those conditions can be verified in O(log n) time361

as follows: Let b0, b1, . . . , bm−1 be all the blue points labelled clockwise362

along the boundary of CH(B) (subindices are taken modulo m). Let bi363

and bj be the two blue points such that r → bi and r → bj are tangent364

to CH(B), and let bi+1, bi+2, . . . , bj−1 the points between bi and bj . If365

r is a vertex of CH(R), then it suffices to verify the existence of a blue366

point b among bi+1, bi+2, . . . , bj−1 such that: (1) the boundary of CH(B)367

intersects the interior of rb, and (2) b belongs to the wedge W(r, r′, r′′),368

where r′ and r′′ are the vertices preceding and succeeding r, respectively,369

in the boundary of CH(R). Otherwise, if r belongs to the interior of370

CH(R), then it suffices to verify the existence of a blue point b satisfying371

only condition (1). Both bi and bj can be found in O(log n) time, as well372

the existence of such a point b can be decided in O(logm) = O(log n) time373

by applying binary search over the points bi+1, bi+2, . . . , bj−1.374

3. Decide whether Condition C1 holds. This can be done in O(n) time by375

simultaneously traversing the boundaries of CH(R) and CH(B).376

4. Decide whether Condition C2 holds. Using the fact that neither condition377

C1 nor the conditions of Lemma 12 hold, we claim that condition C2378

can be decided by assuming that segment bz is an edge of CH(B) and379

that point z is the only blue point in the triangle ∆uvb (the condition C2380

with R and B swapped is similar to decide). Namely, let uv be an edge381

of CH(R) and b, z ∈ B be points such that z ∈ ∆uvb, R ∩ ∆uvb = ∅,382

and R ∩ W(b, u, v) 6= ∅. Let z′ := f(u, v, b, B) 6= b, and observe that383

at least one neighbor of z′ in the boundary of CH(B), say b′, satisfies384

b′ ∈ ∆uvb ∪ {b} and z′ is the only one blue point in ∆uvb′. The fact385

R ∩ W(b, u, v) ⊆ R ∩ W(b′, u, v) implies that we can verify condition C2386

with b′ being b and z′ being z, where b′z′ is an edge of CH(B) (see387

Figure 12a). The claim thus follows. Therefore, there is a linear-size set388

W of wedges of the form W(b, u, v) to consider, and we need to check if389

there is an incidence between any red point and an element of W . Note390

that the elements of W can be divided into two groups, such that in391

each group the intersections of the wedges with the interior of CH(R) are392

pairwise disjoint (see Figure 12b). The wedge W(b, u, v) goes to the first393

group when z is the clockwise neighbor of b in the boundary of CH(B),394

and to the other group otherwise. Then, for each red point r, one can395

decide in O(log n) time such an incidence.396

Counting balanced 4-holes: Adapting the algorithm of Mitchell et al. [13]397

for counting convex polygons in planar point sets, we can count the balanced398

4-holes of a bicolored point set S of n points in O(τ(n)) time, where τ(n) is the399

number of empty triangles of S.400

Existence of balanced 2k-holes in balanced point sets: The arguments401

used to prove the existence of at least one balanced 4-hole in any point set402
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Figure 12: Deciding the existence of a balanced convex 4-hole.

S = R ∪ B with |R|, |B| ≥ 2 (at the beginning of Section 2) do not directly403

apply to prove the existence of balanced 2k-holes in point sets S = R ∪B with404

|R|, |B| ≥ k. However, we can prove the following:405

Proposition 15. For all n ≥ 1 and k ∈ [1..n], every point set S = R ∪B with406

|R| = |B| = n contains a balanced 2k-hole.407

Proof. If S is in convex position then the result follows. Then, suppose that S is408

not in convex position. For every point p ∈ R let w(p) := 1, and for every p ∈ B409

let w(p) := −1. W.l.o.g. let u ∈ B be a point in the interior of CH(S), and410

p0, p1, . . . , p2n−2 denote the elements of S\{u} sorted radially in clockwise order411

around u. For i = 0, 1, . . . , 2n− 2, let si := w(pi) +w(pi+1) + . . .+w(pi+2k−2),412

where subindices are taken modulo 2n − 1. Notice that all si’s are odd, and413

si = 1 implies that the points u, pi, pi+1, . . . , pi+2k−2 form a balanced 2k-hole.414

We have that
∑2n−2

i=0 si = (2k − 1)
∑2n−2

i=0 w(pi) = 2k − 1, which implies (given415

that k ∈ [1..n]) that not all si’s can be greater than 1 and that not all si’s can416

be smaller than 1. Suppose for the sake of contradiction that none of the si’s is417

equal to 1. Then, there exist an sj < 1 and an st > 1. Since we further have418

that si − si+1 ∈ {−2, 0, 2} for all i ∈ [0..2n − 2], there must exist an element419

among sj+1, sj+2, . . . , st−1 which is equal to 1, and the result thus follows.420

Open problems: As mentioned above, we leave as open the problem of obtain-421

ing a lower bound for the number of balanced 4-holes in point sets S = R∪B in422

which either |R| > 3|B| or |B| > 3|R|. Another open problem is to study lower423

bounds on the number of balanced k-holes, for even k ≥ 6.424
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[5] P. Erdős. Some more problems on elementary geometry. Austral. Math. Soc.442

Gaz., 5:52–54, 1978.443
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