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Abstract

Let S be a finite set of geometric objects partitioned into classes or colors. A
subset S′ ⊆ S is said to be balanced if S′ contains the same amount of elements
of S from each of the colors. We study several problems on partitioning 3-
colored sets of points and lines in the plane into two balanced subsets: (a) We
prove that for every 3-colored arrangement of lines there exists a segment that
intersects exactly one line of each color, and that when there are 2m lines of
each color, there is a segment intercepting m lines of each color. (b) Given n
red points, n blue points and n green points on any closed Jordan curve γ, we
show that for every integer k with 0 ≤ k ≤ n there is a pair of disjoint intervals
on γ whose union contains exactly k points of each color. (c) Given a set S of
n red points, n blue points and n green points in the integer lattice satisfying
certain constraints, there exist two rays with common apex, one vertical and one
horizontal, whose union splits the plane into two regions, each one containing a
balanced subset of S.

Keywords: colored point sets, bipartition, duality, ham-sandwich theorem

1. Introduction

Let S be a finite set of geometric objects distributed into classes or colors. A
subset S1 ⊆ S is said to be balanced if S1 contains the same amount of elements

IAn extended abstract of this paper appeared at the 29th European Workshop on Com-
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of S from each of the colors. Naturally, if S is balanced, its complement is also
balanced, hence we talk of a balanced bipartition of S.

When the point set S is in the plane, and the balanced partition is defined
by a geometric object ζ splitting the plane into two regions, we say that ζ is
balanced (and nontrivial if both regions contain points of S). A famous example
of such a partition is the discrete version of the ham-sandwich theorem: given a
set of 2n red points and 2m blue points in general position in the plane, there
always exists a line ` such that each halfplane bounded by ` contains exactly
n red points and m blue points. It is well known that this theorem can be
generalized to higher dimensions and can be formulated in terms of splitting
continuous measures.

There are also plenty of variations of the ham-sandwich theorem. For exam-
ple, it has been proved that given gn red points and gm blue points in the plane
in general position, there exists a subdivision of the plane into g disjoint convex
polygons, each of which contains n red points and m blue points [9]. Also, it
was shown in [5] (among other results) that for any two measures in the plane
there are 4 rays with common apex such that each of the sectors they define
contains 1

4 of both measures. For many more extensions and detailed results we
refer the interested reader to [1, 2], the survey [11] of Kaneko and Kano and to
the book [13] by Matoušek.

Notice that if we have a 3-colored set of points S in the plane, it is possible
that no line produces any non-trivial balanced partition of S. Consider for
example an equilateral triangle p1p2p3 and replace every vertex pi by a very
small disk Di (so that no line can intersect the three disks), and place n red
points, n green points, and n blue points, inside the disks D1, D2 and D3,
respectively. It is clear for this configuration that no line determines a halfplane
containing exactly k points of each color, for any value of k with 0 < k < n.

However, it is easy to show that for every 3-colored set of points S in the
plane there is a conic that simultaneously bisects the three colors: take the
plane to be z = 0 in R3, lift the points vertically to the unit paraboloid P , use
the 3-dimensional ham-sandwich theorem for splitting evenly the lifted point
set with a plane Π, and use the projection of P ∩ Π as halving conic in z = 0.
On the other hand, instead of changing the partitioning object, one may impose
some additional constraints on the point set. For example, Bereg and Kano have
recently proved that if all vertices of the convex hull of S have the same color,
then there exists a nontrivial balanced line [8]. This result was recently extended
to sets of points in a space of higher dimension by Akopyan and Karasev [3],
where the constraint imposed on the set was also generalized.

Our contribution. In this work we study several problems on balanced bipar-
titions of 3-colored sets of points and lines in the plane. In Section 2 we prove
that for every 3-colored arrangement of lines, possibly unbalanced, there always
exists a segment intersecting exactly one line of each color. If the number of lines
of each color is exactly 2n, we show that there is always a segment intersecting
exactly n lines of each color. The existence of balanced segments in 3-colored
line arrangements is equivalent, by duality, to the existence of balanced double
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wedges in 3-colored point sets.
In Section 3 we consider balanced partitions on closed Jordan curves. Given

n red points, n blue points and n green points on any closed Jordan curve γ, we
show that for every integer k with 0 ≤ k ≤ n there is a pair of disjoint intervals
on γ whose union contains exactly k points of each color.

In Section 4 we focus on point sets in the integer plane lattice Z2; for sim-
plicity, we will refer to Z2 as the lattice. We define an L-line with corner q as the
union of two different rays with common apex q, each of them being either ver-
tical or horizontal. This L-line partitions the plane into two regions (Figure 7).
If one of the rays is vertical and the other ray is horizontal, the regions are a
quadrant with origin at q and its complement. Note, however, that we allow an
L-line to consist of two horizontal or two vertical rays with opposite direction,
in which case the L-line is simply a horizontal or vertical line that splits the
plane into two halfplanes. An L-line segment can be analogously defined using
line segments instead of rays.

L-lines in the lattice play somehow a role comparable to the role of ordinary
lines in the real plane. An example of this is the result due to Uno et al. [17],
which extends the ham-sandwich theorem to the following scenario: Given n
red points and m blue points in general position in Z2, there always exists an
L-line that bisects both sets of points. This result was also generalized by Bereg
[7]; specifically he proved that for any integer k ≥ 2 and for any kn red points
and km blue points in general position in the plane, there exists a subdivision
of the plane into k regions using at most k horizontal segments and at most
k− 1 vertical segments such that every region contains n red points and m blue
points. Several results on sets of points in Z2, using L-lines or L-line segments
are described in [12].

A set S ⊂ R2 is said to be orthoconvex if the intersection of S with every
horizontal or vertical line is connected. The orthogonal convex hull of a set S is
the intersection of all connected orthogonally convex supersets of S.

Our main result in Section 4 is in correspondence with the result of Bereg
and Kano [8] mentioned above that if the convex hull of a 3-colored point set is
monochromatic, then it admits some balanced line. Specifically, we prove here
that given a set S ⊂ Z2 of n red points, n blue points and n green points in
general position (i.e., no two points are horizontally or vertically aligned), whose
orthogonal convex hull is monochromatic, then there is always an L-line that
separates a region of the plane containing exactly k red points, k blue points,
and k green points from S, for some integer k in the range 1 ≤ k ≤ n− 1.

We conclude in Section 5 with some open problems and final remarks.

2. 3-colored line arrangements

Let L = R ∪ G ∪ B be a set of lines in the plane, such that R,G and B
are pairwise disjoint. We refer to the elements of R, G, and B as red, green,
and blue, respectively. Let A(L) be the arrangement induced by the set L. We
assume that A(L) is simple, i.e., there are no parallel lines and no more than
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two lines intersect at one point. In Section 2.1 we first prove that there always
exists a face in A(L) that contains all three colors. We also extend this result
to higher dimensions. We say that a segment is balanced with respect to L if
it intersects the same number of red, green and blue lines of L. In Section 2.2
we prove that (i) there always exists a segment intersecting exactly one line of
each color; and (ii) if the size of each set R,G and B is 2n, there always exists
a balanced segment intersecting n lines of each color. As there are standard
duality transformations between points and lines in which segments correspond
to double wedges, the results in this section can be rephrased in terms of the
existence of balanced double wedges for 3-colored point sets.

2.1. Cells in colored arrangements

In this section we prove that there always exists a 3-colored face in A(L),
that is, a face that has at least one side of each color. In fact, we can show that
a d-dimensional arrangement of (d − 1)-dimensional hyperplanes, where each
hyperplane is colored by one of d + 1 colors (at least one of each color), must
contain a (d + 1)-colored cell. This result is tight with respect to the number
of colors. If we have only d colors, then every cell containing the intersection
point of d hyperplanes with different colors is d-colored. On the other hand, it
is not difficult to construct examples of arrangements of hyperplanes with d+ 2
colors where no (d+ 2)-colored cell exists.

r g

b

R

Figure 1: Construction of a line arrangement with no 4-colored cell.

An example in the plane is shown in Figure 1. Start with a triangle in which
each side has a different color (red, green, or blue), and extend the sides to the
colored lines r, g and b that support the sides (Figure 1, left). Then shield each
of these lines by two black parallel lines, one on each side (Figure 1, right).
Finally perturb the black lines in such a way that the arrangement becomes
simple, yet the intersection points between former parallel lines are very far
away. Now it is easy to see that no cell can contain all four colors. For example,
depending on the specific intersections of the black lines with g and b, the region
R may contain the colors green and blue, but cannot contain color red.

This example can be generalized to d-dimensional space. Start with a d-
simplex in which each of the d+1 hyperplanes supporting a facet has a different
color, c1, . . . , cd+1. Then shield each facet with two parallel hyperplanes having
color cd+2, one on each side, and perturb as above to obtain a simple arrange-
ment in which no cell is (d+ 2)-colored.
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Figure 2: (a) A (complete) face f and its dual f̂ (dashed). (b) Face f is split into f1 and f2.

(c) The dual f̂ is split into f̂1 and f̂2.

For intuition’s sake, before generalizing the result to higher dimensions, we
first prove the result for d = 2. Consider the 2-dimensional arrangement A(L)

as a graph. The dual of a face f of A(L) is a face f̂ that contains a vertex for

every bounding line of f , and contains an edge between two vertices of f̂ if and
only if the intersection of the corresponding lines is part of the boundary of f
(see Figure 2(a)).

Let C be a simple cycle of vertices where each vertex is colored either red,
green, or blue. Let nr(C), ng(C), and nb(C) be the number of red, green, and
blue vertices of C, respectively. We simply write nr, ng, and nb if C is clear
from the context. The type of an edge of C is the multiset of the colors of its
vertices. Let nrr, ngg, nbb, nrg, nrb, and ngb be the number of edges of the

corresponding type. Note that, if f is bounded, then f̂ is a simple cycle, where
each vertex is colored either red, green, or blue. We say a bounded face f is
complete if nrg ≡ nrb ≡ ngb ≡ 1 (mod 2) holds for f̂ .

Lemma 1. Consider a simple cycle in which each vertex is colored either red,
green, or blue. Then nrg ≡ nrb ≡ ngb (mod 2).

Proof: The result follows from double counting. We can obtain an expression
for (twice) the number of vertices of a certain color by summing up over all
edges that have vertices of that color. For instance, for nr we get the equation
2nr = 2nrr + nrg + nrb. This directly implies that nrg ≡ nrb (mod 2). By
repeating the same process for the other colors we obtain the claimed result.�

Theorem 1. Let L be a set of 3-colored lines in the plane inducing a simple
arrangement A(L), such that each color appears at least once. Then there exists
a complete face in A(L).

Proof: The result clearly holds if |R| = |G| = |B| = 1. For the general case,
we start with one line of each color, and then incrementally add the remaining
lines, maintaining a complete face f at all times. Without loss of generality,
assume that a red line ` is inserted into A(L). If ` does not cross f , we keep
f . Otherwise, f is split into two faces f1 and f2 (see Figure 2(b)). Similarly,

5



f̂ is split into f̂1 and f̂2 (with the addition of one red vertex, see Figure 2(c)).
Because ` is red, the number ngb of green-blue edges does not change, that is,

ngb(f̂) = ngb(f̂1) + ngb(f̂2). This implies that either ngb(f̂1) or ngb(f̂2) is odd.
By Lemma 1 it follows that either f1 or f2 is complete. �

We now extend the result to higher dimensions. For convenience we assume
that every hyperplane is colored with a “color” in [d] = {0, 1, . . . , d}. Consider
a triangulation T of the surface of the (d − 1)-dimensional sphere Sd−1, where
every vertex is colored with a color in [d]. Note that a triangulation of S1 is
exactly a simple cycle. As before, we define the type of a simplex (or face) of
T as the multiset S of the colors of its vertices. Furthermore, let nS be the
number of simplices (faces) with type S. We say a type S is good if S does not
contain duplicates and |S| = d. The following analogue of Lemma 1 is similar
to Sperner’s lemma [4].

Lemma 2. Consider a triangulation T of Sd−1, where each vertex is colored
with a color in [d]. Then either nS ≡ 0 (mod 2) for all good types S, or nS ≡ 1
(mod 2) for all good types S.

Proof: We again use double counting, following the ideas in the proof of
Lemma 1. Consider a subset S ⊂ [d] with |S| = d − 1 (thus S includes all
but two colors from [d]). Recall that good types consist of d different colors, so
there are exactly two good types S1 and S2 that contain S: one with each of
the two colors of [d] that are not already present in S.

Since every (d − 2)-dimensional face of T is present in exactly two (d − 1)-
dimensional simplices, we can obtain an expression for (twice) nS by summing
over all face types that contain S:

2nS = nS1 + nS2 + 2
∑
x∈S

nS]{x},

where the summation on the right is done over the types that contain S
but are not good (the symbol ] denotes the disjoint union, to allow duplicated
colors in the face type).

From the above equation we obtain that nS1 ≡ nS2 (mod 2). By repeating
this procedure for every set S, we obtain the claimed result. �

Consider a cell f of a d-dimensional arrangement of (d − 1)-dimensional

hyperplanes. The dual f̂ of f contains a vertex for every bounding hyperplane
of f , and contains a simplex on a set of vertices of f̂ if and only if the intersection
of the corresponding hyperplanes is part of the boundary of f . Note that, if
f is bounded, then f̂ is a triangulation of Sd−1. We say a bounded cell f is
complete if nS(f̂) ≡ 1 (mod 2) for all good types S. Note that a complete cell
is (d+ 1)-colored.

Theorem 2. Let L be a set of (d + 1)-colored hyperplanes in Rd inducing a
simple arrangement A(L), such that each color appears at least once. Then
there exists a complete face in A(L).
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Proof: The proof is analogous to the two-dimensional case: if there is exactly
one hyperplane of each color, then the arrangement has exactly one bounded
face f , which must be complete (this can be easily shown by induction on d). We
maintain a complete face f during successive insertions of hyperplanes. Assume
we add a hyperplane H with color x. If H does not cross f , we can simply
keep f . Otherwise, f is split into two faces f1 and f2, and f̂ is split into f̂1
and f̂2 (with the addition of one vertex of color x). Let S = [d]− {x}. Because
H has color x, the number of simplices with type S does not change, that is,
nS(f̂) = nS(f̂1) + nS(f̂2). This implies that either nS(f̂1) or nS(f̂2) is odd. By
Lemma 2 it follows that either f1 or f2 is complete. �

An immediate consequence of Theorem 2 is the following result:

Corollary 1. Let L be a (d + 1)-colored set of hyperplanes in Rd inducing a
simple arrangement A(L), such that each color appears at least once. Then
there exists a segment intersecting exactly one hyperplane of each color.

Proof: Consider a (d + 1)-colored cell. By Theorem 2 such a cell must exist
and it must also contain an intersection of d hyperplanes with different colors.
Now we can take the segment from this intersection to a face of the remaining
color (in the same cell). By perturbing and slightly extending this segment, we
obtain a segment properly intersecting exactly one hyperplane of each color. �

2.2. 3-colored point sets and balanced double wedges

We now return to the plane and consider 3-colored point sets. By using the
point-plane duality, Corollary 1 implies the following result.

Theorem 3. Let S be a 3-colored set of points in R2 in general position, such
that each color appears at least once. Then there exists a double wedge that
contains exactly one point of each color from S.

Proof: We apply the standard duality transformation between points and
non-vertical lines where a point p = (a, b) is mapped to a line p′ with equation
y = ax − b, and vice versa [10]. By Corollary 1, there exists a segment w
that intersects exactly one line of each color. By standard point-line duality
properties, the dual of w is a double wedge w′ that contains the dual points of
the intersected lines. �

Since the dual result extends to higher dimensions, so does the primal one.
The equivalent statement says that given a set of points colored with d+1 colors
in Rd, there exists a pencil (i.e., a collection of hyperplanes sharing an affine
subspace of dimension d− 2) containing exactly one point of each color.

Next we turn our attention to balanced 3-colored point sets, and prove a
ham-sandwich-like theorem for double wedges.
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Figure 3: σp: ordering of S based on the slopes of lines through p.

Theorem 4. Let S be a 3-colored balanced set of 6n points in R2 in general
position. Then there exists a double wedge that contains exactly n points of each
color from S.

Proof: We call a double wedge satisfying the theorem bisecting. Without loss
of generality we assume that the points of S have distinct x-coordinates and
distinct y-coordinates. For two distinct points a and b in the plane, let `(a, b)
denote the line passing through them. Consider the arrangement A of all the
lines passing through two points from S, i.e.

A = {`(pi, pj) | pi, pj ∈ S, i 6= j}.

Consider a vertical line ` that does not contain any point from S. We
continuously walk on ` from y = +∞ to y = −∞. For any point p ∈ ` we define
an ordering σp of S as follows: consider the lines `(p, q), q ∈ S and sort them
by (increasing values) of slope. Let (p1, . . . , p6n) be the obtained ordering (see
Figure 3).

By construction, any consecutive interval {pi, pi+1, . . . , pj} of an ordering of
p corresponds to a set of lines whose points can be covered by a double wedge
with apex at p (even if the indices are taken modulo 6n). Likewise, for any
p ∈ R2, any double wedge with apex at p will appear as an interval in the
ordering σp.

Given an ordering σp = (p1, . . . , p6n) of S, we construct a polygonal curve as
follows: for every k ∈ {1, 2, . . . , 6n} let bk and gk be the number of blue and green
points in the set S(p, k) = {pk, pk+1, . . . , pk+3n−1} of 3n points, respectively. We

8



Figure 4: The seven types of segments qk−1qk (including the segment of length 0 if pk−1 and
pk have the same color) depending on the color of pk−1 and pk.

define the corresponding lattice point qk := (bk − n, gk − n), and the polygonal
curve φ(σ) = (q1, . . . , q6n,−q1, . . . ,−q6n, q1).

Intuitively speaking, the point qk indicates how balanced the interval is that
starts with point pk and contains 3n points. By construction, if qk = (0, 0)
for some p ∈ ` and some k ≤ 6n, then the associated wedge is balanced (and
vice versa). In the following we show that this property must hold for some
k ∈ {1, . . . , 6n} and p ∈ R2. We observe several important properties of φ(σ):

1. Path φ(σ) is centrally symmetric (w.r.t. the origin). This follows from
the definition of φ.

2. Path φ(σ) is a closed curve. Moreover, the interior of any edge ei =
qiqi+1 of φ(σ) cannot contain the origin: consider the segment between
two consecutive vertices qk−1 and qk of φ. Observe that the double wedges
associated to qk−1 and qk share 3k − 1 points. Thus, the orientation and
length of the segment qk−1qk only depend on the color of the two points
that are not shared. In particular, there are only 7 types of such segments
in φ(σ), see Figure 4. Since these segments do not pass through grid
points, the origin cannot appear at the interior of a segment.

3. If the orderings of two points p and p′ are equal, then their paths φ(σp)
and φ(σp′) are equal. If the orderings σp and σp′ are not equal then either
(i) there is a line of A separating p and p′ or (ii) there is a point pi ∈ S
such that the vertical line passing through pi separates p and p′.
In our proof we will move p along a vertical line, so case (ii) will never
occur. Consider a continuous vertical movement of p, and consider the
two orderings π1 and π2 before and after a line of A is crossed. Observe
that the only difference between the two orderings is that two consecutive
points (say, pi and pi+1) of π1 are reversed in π2. Thus, the only difference
between the two associated φ curves will be in vertices whose associated
interval contains one of the two points (and not the other). Since these two
points are consecutive, this situation can only occur at vertices qi+1−3n
and qi+1 (recall that, for simplicity, indices are taken modulo 6n). Since
the predecessor and successor of these vertices are equal in both curves,
the difference between both curves will be two quadrilaterals (and two
more in the second half of the curve).
We claim that the interior of any such quadrilateral can never contain
the origin. Barring symmetries, there are two possible ways in which the
quadrilateral is formed, depending on the color of pi and pi+1 (see Figure
5). Regardless of the case, the interior of any such quadrilateral cannot
contain any lattice point, and in particular cannot contain the origin.
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Figure 5: The change of φ(σ) when pi and pi+1 are swapped. (a) pi is blue and pi+1 is green.
(b) pi is red and pi+1 is green.

4. Path φ(σ) has a vertex qi such that qi = (0, 0), or the curve φ(σ) has
nonzero winding with respect to the origin. Intuitively speaking, the wind-
ing number of a closed curve C with respect to a point measures the net
number of clockwise revolutions that a point traveling on C makes around
the given point (see a formal definition in [16]). By Properties 2 and 3,
the only way in which φ(σ) passes through the origin is through a vertex
qi. If this does not happen, then no point of the curve passes through
the origin. Recall that φ(σ) is a closed continuous curve that contains the
origin and is centrally symmetric around that point. In topological terms,
this is called an odd function. It is well known that these functions have
odd winding (see for example [6], Lemma 25). In particular, we conclude
that the winding of φ(σ) cannot be zero.

Thus, imagine a moving point p ∈ ` from y = +∞ to y = −∞: when p
is located sufficiently low along `, the y coordinates of the points of S can be
ignored, and the resulting order will give first the points to the left of ` (sorted
in decreasing value of the x coordinates) and then the points to the right of `
(also in decreasing value of the x coordinates). Similarly, the order we obtain
when p is sufficiently high will be the exact reverse (see Figure 6).

Now consider the translation of p from both extremes and the changes that
may happen to the ordering along the translation. By Property 2, the curve
φ(p) will change when we cross a line of A, but the differences between two
consecutive curves will be very small. In particular, the space between the two
curves cannot contain the origin. Consider now the instants of time in which
point p is at y = +∞ and y = −∞: if either curve contains the origin as
a vertex, we are done (since such vertex is associated to a balanced double
wedge). Otherwise, we observe that the orderings must be the reverse of each
other, which in particular implies that the associated curves describe exactly the
same path, but in reverse direction. By Property 4 both curves have nonzero
winding, which in particular it implies that they have opposite winding numbers
(i.e. their winding number gets multiplied by -1). Since the winding must change
sign, we conclude that at some point in the translation the curve φ(p) passed
through the origin (Otherwise, by Hopf’s degree Theorem [14] they would have
the same winding). By Properties 2 and 3 this can only happen at a vertex of
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pS

pN

Figure 6: When p is placed sufficiently low (or high), the sorting pσ gives the points ordered
according to their x coordinate. The orderings corresponding to points pN and pS are depicted
with an arrow. In particular, notice that the two orderings are reversed.

φ(p), implying the existence of a balanced double wedge. �

Using the point-line duality again, we obtain the equivalent result for bal-
anced sets of lines.

Corollary 2. Let L be a 3-colored balanced set of 6n lines in R2 inducing a
simple arrangement. Then, there always exists a segment intersecting exactly n
lines of each color.

3. Balanced partitions on closed Jordan curves

In this section we consider balanced 3-colored point sets on closed Jordan
curves. Our aim is to find a bipartition of the set that is balanced and that can
be realized by at most two disjoint intervals of the curve. To prove the claim
we use the following arithmetic lemma:

Lemma 3. For a fixed integer n ≥ 2, any integer k ∈ {1, 2, . . . , n} can be
obtained from n by applying functions f(x) = bx/2c and g(x) = n − x at most
2 log n+O(1) times.
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Proof: Consider a fixed value k ≤ n. In the following we show that k =
ht(ht−1(· · ·h1(n) · · · )) for some t ≤ 2 log n + O(1) where each hi is either f or
g.

For the purpose, we use the concept of starting points: we say that an integer
m is an i-starting point (with respect to k) if number k can be obtained from
m by applying functions from {f, g} at most i times. Note that any number is
always a 0-starting point with respect to itself, and our claim essentially says
that n is a (2 log n+O(1))-starting point with respect to any k ≤ n.

Instead of explicitly computing all i-starting points, we compute a consec-
utive interval Vi ⊆ {1, . . . , n} of starting points. For any i ≥ 0, let `i and ri
be the left and right endpoints of the interval Vi, respectively. This interval is
defined as follows: initially, we set V0 = {k}. For larger values of i, we use an
inductive definition: If ri < bn/2c we apply f as the first operation. That is,
any number that, after we apply f , falls within Vi should be in Vi+1. Observe
that this implies `i+1 = 2`i and ri+1 = 2ri + 1. If `i > bn/2c we apply g as
the first operation. In this case, we have `i+1 = n − ri and ri+1 = n − `i. By
construction, the fact that all elements of Vi are i-starting points implies that
elements of Vi+1 are (i+ 1)-starting points.

This sequence will finish at some index j such that `j < bn/2c < rj (that is,
bn/2c is a j-starting point). In particular, we have that n is a (j + 1)-starting
point since f(n) = bn/2c. Thus, to conclude the proof it remains to show that
j ≤ 2 log n+O(1). Each time we use operator f as the first operation, the length
of the interval is doubled. On the other hand, each time we use operator g, the
length of the interval does not change. Moreover, function g is never applied
twice in a row. Thus, after at most 2(dlog ne − 1) steps, the size of interval Vi
will be at least 2dlogne−1 ≥ dn/2e, and therefore must contain bn/2c. �

Now we can prove the main result of this section. As we explain below, it is
enough to prove the result for the case in which the Jordan curve γ is the unit
circle. Let S1 be the unit circle in R2. Let P be a 3-colored balanced set of 3n
points on S1, and let R, G, and B be the partition of P into the three color
classes.

Given a closed curve γ with an injective continuous map f : S1 → γ and
an integer c > 0, we say that a set Q ⊆ γ is a c-arc set if Q = f(QS) where
QS is the union of at most c closed arcs of S1. Intuitively speaking, if γ has no
crossings, c denotes the number of components of Q. However, c can be larger
than the number of components if γ has one or more crossings.

Theorem 5. Let γ be a closed Jordan curve in the plane, and let P be a 3-
colored balanced set of 3n points on γ. Then for every positive integer k ≤ n
there exists a 2-arc set Pk ⊆ γ containing exactly k points of each color.

Proof: Using f−1 we can map the points on γ to the unit circle, thus a solution
on S1 directly maps to a solution on γ. Hence, it suffices to prove the statement
for the case in which γ = S1.

Let I be the set of numbers k such that a subset Pk as in the theorem exists.
We prove that I = {1, . . . , n} using Lemma 3. To apply the lemma it suffices
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to show that I fulfills the following properties: (i) n ∈ I, (ii) If k ∈ I then
n− k ∈ I, and (iii) If k ∈ I then k/2 ∈ I. Once we show that these properties
hold, Lemma 3 implies that any integer k between 1 and 2n must be in I, hence
I = {1, . . . , n}.

Property (i) holds because the whole S1 can be taken as a 2-arc set, con-
taining n points of each color, thus n ∈ I.

Property (ii) follows from the fact that the complement of any 2-arc set
containing exactly k points of each color is a 2-arc set containing exactly n− k
points of each color. Thus if there is a 2-arc set guaranteeing that k ∈ I, its
complement guarantees that n− k ∈ I.

Proving Property (iii) requires a more elaborate argument. Let Ak be a
2-arc set containing exactly k points of each color (such a set must exist by
hypothesis, since k ∈ I). We assume S1 is parameterized as (cos(t), sin(t)), for
t ∈ [0, 2π). Without loss of generality, we assume that f(0) 6∈ Ak (if necessary
we can change the parametrization of S1 by moving the location of the point
corresponding to t = 0 to ensure this).

We lift all points of P to R3 using the moment curve, as explained next.
Abusing slightly the notation, we identify each point (cos(t), sin(t)), t ∈ [0, 2π)
on S1 with its corresponding parameter t. Then, for t ∈ S1 we define γ(t) =
{t, t2, t3}. Also, for any subset C of S1, we define γ(C) = {γ(p)|p ∈ C}. Recall
that we assumed that f(0) /∈ Ak, thus, γ(Ak) forms two disjoint arc-connected
intervals in γ(S1).

Next we apply the ham-sandwich theorem to the points in γ(Ak) (disregard-
ing other lifted points of P ): we obtain a plane H that cuts the three colored
classes in γ(Ak) in half. That is, if k is even, each one of the open halfspaces
defined by H contains exactly k/2 points of each color. If k is odd, then we
can force H to pass trough one point of each color and leave (k − 1)/2 points
in each open halfspace ([13], Cor. 3.1.3). We denote by H+ and H− the open
halfspaces above and below H, respectively. Note that each half space contains
exactly bk/2c points of each color class, as desired.

Let M1 = H+ ∩ γ(Ak) and M2 = H− ∩ γ(Ak). Note that both M1 and
M2 contain exactly bk/2c points of each color class, as desired. To finish the
proof it is enough to show that either γ−1(M1) or γ−1(M2) is a 2-arc set. Since
γ(Ak) has two connected components (and is lifted to the moment curve), we
conclude that any hyperplane (in particular H) can intersect γ(Ak) in at most
3 points. Thus, the total number of components of M1 ∪M2 is at most 5. This
is also true for the preimages γ−1(M1) ∪ γ−1(M2). Then, either γ−1(M1) or
γ−1(M2) must form a 2-arc set containing exactly bk/2c points of each color.
Thus, bk/2c ∈ I as desired. �

Our approach generalizes to c colors: if P contains n points of each color on
S1, then for each k ∈ {1, . . . , n} there exists a (c− 1)-arc set Pk ⊆ S1 such that
Pk contains exactly k points of each color. In our approach we lift the points
to R3 because we have three colors, but in the general case we would lift to Rc.
We also note that the bound on the number of intervals is tight. Consider a
set of points in S1 in which the points of the first c− 1 colors are contained in
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Figure 7: A balanced set of 18 points in the integer lattice with a nontrivial balanced L-line.

c − 1 disjoint arcs (one for each color), and each two neighboring disjoint arcs
are separated by n/(c− 1) points of the cth color. Then, if k < n/(c− 1), it is
easy to see that we need at least c− 1 arcs to get exactly k points of each color.

We note that there exist several results in the literature that are similar to
Theorem 5. For example, in [15] they show that given k probability measures
on S1, we can find a c-arc set whose measure is exactly 1/2 in the c measures.
The methods used to prove their result are topological, while our approach is
combinatorial. Our result can also be seen as a generalization of the well-known
necklace theorem for closed curves [13].

4. L-lines in the plane lattice

We now consider a balanced partition problem for 3-colored point sets in the
integer plane lattice Z2. For simplicity, we will refer to R2 and Z2 as the plane
and the lattice, respectively. Recall that a set of points in the plane is said to be
in general position if no three of them are collinear. When the points lie in the
lattice, the expression is used differently: we say instead that a set of points S
in the lattice is in general position when every vertical line and horizontal line
contains at most one point from S.

An L-line with corner q ∈ R2 is the union of two different rays with common
apex q, each of them being either vertical or horizontal. An L-line partitions the
plane into two regions (Figure 7 shows a balanced L-line with apex q). Since
we look for balanced L-lines, we will only consider L-lines that do not contain
any point of S. Note that an L-line can always be slightly translated so that its
apex is not in the lattice, thus its rays do not go through any lattice point.

L-lines in the lattice often play the role of regular lines in the Euclidean
plane. For example, the classic ham-sandwich theorem (in its discrete version)
bisects a 2-colored finite point set by a line in the plane. Uno et al. [17] proved
that, when points are located in the integer lattice, there exists a bisecting L-line
as well.

Recently, the following result has been proved for bisecting lines in the plane.
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Figure 8: A balanced set of 3-colored points in the plane lattice. Any L-line containing points
of all three colors will fully contain a color class, hence this problem instance does not admit
a nontrivial balanced L-line.

Theorem 6 (Bereg and Kano, [8]). Let S be a 3-colored balanced set of 3n
points in general position in the plane. If the convex hull of S is monochromatic,
then there exists a nontrivial balanced line.

As a means to further show the relationship between lines in the plane, and
L-lines in the lattice, the objective of this section is to extend Theorem 6 to the
lattice. Replacing the term line for L-line in the above result does not suffice
(see a counterexample in Figure 8). In addition we must also use the orthogonal
convex hull.

Theorem 7. Let S be a 3-colored balanced set of 3n points in general position
in the integer lattice. If the orthogonal convex hull of S is monochromatic, then
there exists a nontrivial balanced L-line.

Proof: Recall that a set S ⊂ R2 is said to be orthoconvex if the intersection
of S with every horizontal or vertical line is connected. The orthogonal convex
hull of a set S is the intersection of all connected orthogonally convex supersets
of S.

Without loss of generality, we assume that the points on the orthogonal
convex hull are red. We use a technique similar to that described in the proof
of Theorem 4; that is, we will create a sequence of orderings, and associate a
polygonal curve to each such ordering. As in the previous case, we show that
a curve can pass through the origin only at a vertex, which will correspond to
the desired balanced L-line. Finally, we find two orderings that are reversed,
which implies that some intermediate curve must pass through the origin. The
difficulty in the adaptation of the proof lies in the construction of the orderings.
This is, to the best of our knowledge, the first time that such an ordering is
created for the lattice.

Given a point p ∈ S we define the 0-ordering of p as follows. Consider
the points above p (including p) and sort them by decreasing y-coordinate, i.e.,
from top to bottom. Let (p1, . . . , pj) be the sorting obtained (notice that pj =
p). The remaining points (i.e., those strictly below p) are sorted by increasing
x-coordinate, i.e., from left to right. Let σp,0 denote the sorting obtained.
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Similarly, we define the π/2, π and 3π
2 -sided orderings σp,π2 , σp,π and σp, 3π2 ,

respectively. Each ordering can be obtained by computing σp,0 after having
rotated clockwise the point set S by π/2, π or 3π/2 radians, respectively. As
an example, Figure 9 shows σp, 3π2 . Let O = {σp,i | p ∈ S, i ∈ {0, π2 , π,

3π
2 }} be

the collection of all such orderings of S.

p

p1pj−1

pj+1

p3n

pj+2

p3n−1

Figure 9: The 3π
2

-ordering of S with respect to a given point p.

By construction, any prefix of an ordering of O corresponds to a set of points
that can be separated with an L-line. Likewise, any L-line will appear as prefix
of some sorting σ ∈ O (for example, one of the sortings associated with the apex
of the L-line).

Given a sorting σ = (p1, . . . , p3n) ∈ O, we associate it with a polygonal
curve in the lattice as follows: for every k ∈ {1, . . . , 3n− 1} let bk and gk be the
number of blue and green points in {p1 . . . , pk}, respectively. Further, define
the point qk := (3bk − k, 3gk − k). Based on these points we define a polygonal
curve φ(σ) = (q1, . . . , q3n−1,−q1, . . . ,−q3n−1). Similarly to the construction of
Theorem 4, the fact that qk = (0, 0) for some 1 ≤ k ≤ 3n − 1 is equivalent to
the fact that the corresponding L-line is balanced. Therefore the goal of the
proof is to show that there is always some ordering in O for which some k has
qk = (0, 0).

We observe several important properties of φ(σ):

1. φ(σ) is centrally symmetric (w.r.t. the origin). This follows from the
definition of φ.

2. The interior of any segment qiqi+1 of φ(σ) cannot contain the origin. The
segment connecting two consecutive vertices in φ(σ) only depends on the
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color of the added element. Thus, there are only 3 possible types of seg-
ments, see Figure 10. Since these segments do not pass through grid
points, the origin cannot appear at the interior of a segment.

3. For any σ ∈ O, we have q1 = (−1,−1), and q3n−1 = (1, 1). Notice that
q1 corresponds to an L-line having exactly one point on its upper/left
side, while q3n−1 corresponds to an L-line leaving exactly one point on its
lower/right side. In particular, these points must belong to the orthogonal
convex hull, and thus must be red. That is, φ(σ) is a continuous polygonal
curve that starts at (−1,−1), travels to (1, 1). The curve is symmetric and
returns to (−1,−1). Thus, as in the proof of Theorem 4 we conclude that
either φ(σ) passes through the origin or it has nonzero winding.

Figure 10: The three possible types of segments qk−1qk depending on the color of pk (solid
represents blue, dashed represents green and dotted dashed represents red).

Let σx = (x1, x2, . . . , x3n) be the points of S sorted from left to right (analo-
gously, σy = (y1, y2, . . . , y3n) for the points sorted from bottom to top). Observe
that σx = σx3n,π/2 and σy = σy3n,π and their reverses are σ−1x = σx1,

3π
2

and

σ−1y = σy1,0, respectively.
Analogous to the proof of Theorem 4, our aim is to transform φ(σy) to its

reverse ordering through a series of small transformations of polygonal curves
such that the winding number between the first and last curve is of different
sign. If we imagine the succession of curves as a continuous transformation, a
change in the sign of the winding number can only occur if at some point on
the transformation the origin is contained in some curve. We will argue below
that the only way in which the transformation passes through the origin is by
having it as a vertex of one of the intermediate curves, which immediately leads
to a balanced L-line.

Recall from Property 2 that the origin cannot be at the interior of an edge
of any intermediate curve. Thus, the only way the origin can be swept during
the transformation is (i) if it is a vertex of one of the curves, or (ii) if it is
contained in the space between two consecutive curves (“swept by the curves”).
In the remainder of the proof we show that the latter case cannot occur, that is,
the origin is never swept by the local changes between two consecutive curves.
This implies that the origin must be a vertex of some curve φ(σ) for some
intermediate ordering σ, in turn implying that the associated L-line would be
balanced.

The transformation we use is the following:
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φ(σy) = φ(σy3n,π)→ φ(σy3n−1,π)→ · · · → φ(σy1,π)→ φ(σ−1x )

= φ(σx1,
3π
2

)→ · · · → φ(σx3n,
3π
2

)→ φ(σy1,0) = φ(σ−1y )
(1)

First we give a geometric interpretation of this sequence. Imagine sweeping
the lattice with a horizontal line (from top to bottom). At any point of the
sweep, we sort the points below the line from bottom to top, and the remaining
points are sorted from right to left. By doing so, we would obtain the orderings
σy = σy3n,π, . . . , σy1,π, and (once we reach y = −∞) σ−1x (i.e., the reverse of
σx). Afterwards, we rotate the line clockwise by π/2 radians, keeping all points
of S to the right of the line, and sweep from left to right. During this second
sweep, we sort the points to the right of the line from right to left, and those
to the left from top to bottom. By doing this we would obtain the orderings
σ−1x = σx1,

3π
2
, . . . , σx3n,

3π
2

. Once all points have been swept, this process will
finish with the ordering σy1,0, which is the reverse of σy.

Thus, to complete the proof it remains to show that the difference between
any two consecutive orderings σ and σ′ in the above sequence cannot contain
the origin.

Observe that two consecutive orderings differ in at most the position of one
point (the one that has just been swept by the line). Thus, there exist two
indices s and t such that s < t and σ = (p1, . . . , ps, . . . , pt, . . . , p3n), and σ′ =
(p1, . . . , ps, pt, ps+1, . . . pt−1, pt+1, . . . , p3n) (that is, point pt moved immediately
after ps).

Abusing slightly the notation, we denote by (q1, . . . , q3n−1,−q1, . . . ,−q3n−1)
the vertices of φ(σ) (respectively, (q′1, . . . , q

′
3n−1,−q′1, . . . ,−q′3n−1) denotes the

vertices of φ(σ′)). Since only one point has changed its position in the ordering,
we can explicitly obtain the differences between the two orderings. Given an
index i ≤ 3n− 1, we define ci = (−1,−1) if pi is red, ci = (2,−1) if pi is blue,
or ci = (−1, 2) if pi is green. Then, we have the following relationship between
the vertices of φ(σ) and φ(σ′).

q′i =

{
qi if i ∈ {1, . . . , s} ∪ {t, . . . , 3n− 1}
qi−1 + ct if i ∈ {s+ 1, . . . , t− 1}

(2)

Observe that the ordering of the first s+ 1 points and the last t− 1 points is
equal in both permutations. In particular, the points q1 to qs and qt to q3n−1 do
not change between consecutive polygonal curves. For the intermediate indices,
the transformation only depends on the color of pt; it consists of a translation
by the vector ct.

We now show that the origin cannot be contained in the interior of the
quadrilateral Qi of vertices qi−1, qi, q′i, and q′i+1, for any i ∈ {s, . . . , t}. Consider
the case in which i ∈ {s + 2, . . . , t − 1} (that is, neither i − 1 nor i + 1 satisfy
the first line of Equation 2). Observe that the shape of the quadrilateral only
depends on the color of pi and pt. It is easy to see that when pi has the same

18



color as pt, Qi is degenerate and cannot contain the origin. Thus, there are
six possible color combinations for pi and pt that yield three non-degenerate
different quadrilaterals (see Figure 11).

qi−1

qi

q′i

q′i+1

q′i+1

qi

qi−1

q′i

qi

qi−1

q′i

q′i+1

Figure 11: Three options for quadrilateral Qi depending on the colors of pi and pt. From left
to right pi is green, blue, and red whereas pt is red, green, and blue, respectively. The case
in which pi and pt have reversed colors results in the same quadrilaterals. In all cases, the
points in the lattice that are included in the quadrilateral are marked with a cross, thus those
are the only possible locations for the origin to be contained in Qi.

Assume that for some index i we have that pt is red, pi is blue (as shown
in Figure 11, left) and that the quadrilateral Qi contains the origin. Note that
in this case, qi must be either (0, 1) or (0, 2). From the definition of the x-
coordinate of qi, we have 3bi − k = 0, and thus we conclude that k ≡ 0 mod 3.
Consider now the y-coordinate of qi; recall that this coordinate is equal to
3gi−k, which cannot be 1 or 2 whenever k ≡ 0 mod 3. The proof for the other
quadrilaterals is identical; in all cases, we show that either the x or y coordinate
of a vertex of Qi is zero must simultaneously satisfy: (i) it is congruent to zero
modulo 3, and (ii) it is either 1 or 2, resulting in a similar contradiction.

Thus, in order to complete the proof it remains to consider the cases in which
i = s + 1 or i = t − 1. In the former case we have qi−1 = q′i, and qi = q′i+1 in
the latter. Whichever the case, quadrilateral Qi collapses to a triangle, and we
have three non-trivial possible color combinations (see Figure 12). The same
methodology shows that none of them can sweep through the origin.

Figure 12: When i = s+1 or i = t−1 the corresponding quadrilateral Qi collapses to a triangle.
As in the previous case, this results in three different non-degenerate cases, depending on the
colors of pi and pt.

That is, we have transformed the curve from φ(σy3n,π) to its reverse φ(σy1,0)
in a way that the origin cannot be contained between two successive curves.
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However, since these curves have winding number of different sign, at some
point in our transformation one of the curves must have passed through the
origin. The previous arguments show that this cannot have happened at the
interior of an edge or at the interior of a quadrilateral between edges of two
consecutive curves. Thus it must have happened at a vertex of φ(σ), for some
σ ∈ O. In particular, the corresponding L-line must be balanced. �

5. Concluding remarks

In this paper we have studied several problems about balanced partitions of
3-colored sets of points and lines in the plane. As a final remark we observe that
our results on double wedges can be viewed as partial answers to the following
interesting open problem: Find all k such that, for any 3-colored balanced set of
3n points in general position in the plane, there exists a double wedge containing
exactly k points of each color. We have given here an affirmative answer for
k = 1, n/2 and n−1 (Theorems 3 and 4). Theorem 5 gives the affirmative answer
for all values of k under the constraint that points are in convex position.
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