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Abstract. Let P be a k colored point set in general position, k ≥ 2. A family of quadrilaterals
with disjoint interiors Q1, . . . ,Qm is called a quadrangulation of P if V (Q1)∪ . . .∪V (Qm) = P ,
the edges of all Qi join points with different colors, and Q1 ∪ . . .∪Qm = Conv(P ). In general it
is easy to see that not all k-colored point sets admit a quadrangulation; when they do, we call
them quadrangulatable. For a point set to be quadrangulatable it must satisfy that its convex
hull Conv(P ) has an even number of points and that consecutive vertices of Conv (P ) receive
different colors. This will be assumed from now on.

In this paper we study the following type of questions: Let P be a k-colored point set.
How many Steiner points in the interior of Conv(P ) do we need to add to P to make it
quadrangulatable? When k = 2, we usually call P a bichromatic point set, and its color classes
are usually denoted by R and B, i.e. the red and blue elements of P .

In this paper we prove that any bichromatic point set P = R∪B where |R| = |B| = n can be

made quadrangulatable by adding at most
⌊

n−1

3

⌋

+
⌊

n
2

⌋

+ 1 Steiner points and that m
3

Steiner

points are occasionally necessary. To prove the latter, we also show that the convex hull of any
monochromatic point set P of n elements can be always partitioned into a set S = {S1, . . . ,St}

of star-shaped polygons with disjoint interiors, where V (S1)∪· · ·∪V (St) = P , and t ≤
⌊

n−1

3

⌋

+1.

For n = 3k this bound is tight. Finally we prove that there are 3-colored point sets that cannot
be completed to 3-quadrangulatable point sets.
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1. Introduction

Let P = {p1, . . . , pn} be a monochromatic point set in general position on the plane. A
quadrangulation of P is a set Q = {Q1, . . . ,Qm} of quadrilaterals (not necessarily convex)
with disjoint interiors such that:

– V (Q1) ∪ . . . ∪ V (Qm) = P , where V (Q) denotes the set of vertices of a polygon Q;
– Q1 ∪ . . .∪Qm = Conv(P ) where Conv(P ) denotes the convex hull of P (see Figure 1).

The problem of finding quadrangulations of point sets has been studied for some time
in the literature. It has been shown that quadrangulations are in some circumstances

∗ Supported by CONACYT of Mexico, Proyecto SEP-2004-Co1-45876, and PAPIIT (UNAM), Proyecto
IN110802.
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Fig. 1. A quadrangulation of a point set. In this and all figures in this paper, red points are
represented by small solid circles, and blue points by small open circles.

more desirable objects than triangulations, for example in the study of finite element
methods and scattered data interpolation [7]. It is easy to see that not all point sets
admit quadrangulations. It is known that a necessary and sufficient condition for a point
set to admit a quadrangulation is that its convex hull has an even number of vertices [8,
2]. If we add the condition that all elements of {Q1, . . . ,Qm} are convex, the problems
becomes more interesting. Such quadrangulations are called convex quadrangulations. It
is easy to see that not all point sets (even with an even number of vertices in their convex
hull) admit a convex quadrangulation. In [3] the problem of finding the minimum number
of Steiner points needed to be added to a point set (located in the interior of Conv(P ))
so that the resulting collection admits a convex quadrangulation is studied. They proved
that for some families of point sets

⌈

n−3

2

⌉

− 1 Steiner points are necessary and 3
⌊

n
2

⌋

are

always sufficient. The upper bound was recently improved to 4
⌈

n
5

⌉

+ 2 Steiner points

in [6]. For a more complete treatment of quadrangulations we recommend Toussaint’s
survey [10].

In this paper we study quadrangulations of colored point sets, that is point sets for
which the elements of P are partitioned into at least two non-empty disjoint subsets called
the chromatic classes of P . More precisely, a set of quadrilaterals Q = {Q1, . . . ,Qm}
with disjoint interiors is called a quadrangulation of P if V (Q1) ∪ . . . ∪ V (Qm) = P ,
Q1 ∪ . . .∪Qm = Conv(P ) and the edges of all Qi join elements of P with different colors.
It is clear that for a colored point set to be quadrangulatable, its convex hull must have
an even number of vertices and consecutive vertices on the boundary of Conv(P ) must
receive different colors.

When the elements of P are colored with two colors, it is customary to call the colors
red and blue, and to call P a bichromatic point set. The set of blue points of P will
be denoted by B = {b1, . . . , bs}, and the set of red points by R = {r1, . . . , rt}. We will
assume that P = R ∪ B is in general position. It follows than that if P is a bichromatic,
quadrangulatable point set, its convex hull must have an even number of points such that
their colors alternate between blue and red. It is also easy to see that the above condition
is not sufficient [4]. In this paper we study the following question: How many Steiner
points need to be added to any bichromatic point set such that the resulting point set is
quadrangulatable?

In what follows we will assume that the convex hull of all bichromatic point sets
P = R∪B considered here has an even number of points, and that their colors alternate
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between red and blue. We will also assume that all Steiner points to be added are invariably
placed in the interior of Conv(P ). Our main objective is to prove:

Theorem 1. Let P = R ∪ B be a bichromatic point set on the plane in general position
such that |R| = |B| = n > 0. Then we can always obtain a quadrangulatable bichro-

matic point set by adding most
⌊

r
2

⌋

+ 1 +
⌊

s−1

3

⌋

Steiner points to P . Moreover there are
configurations for which n

3
Steiner points are always necessary.

To achieve the bounds in Theorem 1, some tight results on star-shaped partitionings
of point sets were obtained that are interesting in their own right. A polygon Q is called
star-shaped if there is a point p ∈ Q such that for any other point q ∈ Q the line
segment connecting p to q is contained in Q. A star-shaped partitioning of a point set
P is a set of star-shaped polygons S = {S1, . . . ,St} with disjoint interiors such that
V (S1) ∪ . . . ∪ V (St) = P , and S1 ∪ . . . ∪ Sk = Conv(P ). We prove that any point set

P always has a star-shaped partitioning with at most
⌊

n−1

3

⌋

+ 1 elements. This bound is
tight for n = 3k.

To conclude this paper, a rather surprising result regarding quadrangulations of 3-
colored point sets will be proved. We show that there is a 3-colored point set P with 6
elements on its convex hull with consecutive elements of P on the boundary of Conv(P )
having different colors such that P is not quadrangulatable, nor is it possible to add to P
any set S of colored Steiner points points in the interior of Conv(P ) such that P ∪ S is
quadrangulatable (regarding the number, position and colors of the elements of S). Our
result has a very similar flavor to Sperner’s Lemma [1,9].

2. Lower bound

In this section our objective is to prove the following result:

Lemma 1. There are bichromatic point sets with 6k elements such that 2k Steiner points
must be added to them to make them quadrangulatable, k ≥ 2.

Let us consider a convex polygon C with 2k vertices labelled v0, . . . , v2k−1 in the clock-
wise direction. For each i, draw a line segment ℓi that intersects the edges vi − vi+1 and
vi+1 − vi+2, addition taken mod 2k, in such a way that:

– ℓi intersects edge vi − vi+1 at a point close enough to vi,
– ℓi intersects edge vi+1 − vi+2 at a point close enough to vi+1, and
– ℓi and ℓi+1 intersect outside of C.

For i even (resp. i odd), place two red points (resp. two blue points) on ℓi labelled v′
i

and v′′
i close to each other, and close to the center of the segment vi − vi+1, i + 1 mod 2k.

For i even (resp. odd) color v′
i and v′′

i red (resp. blue); see Figure 2(a). Let P be the set
of 6k points consisting of the vertices of C together with the blue and red points on the
lines ℓi, i = 0, . . . , 2k − 1.

Finally for i = 0, . . . , 2k− 1, let Pi be the polygons bounded by the edge vi − vi+1 and
sectors of the edges vi−1 − vi, vi+1 − vi+2, a sector of the line segments joining vi+1 to v′

i,
and another sector of the line passing through v′

i and v′′
i as shown in Figure 2(b).

We now proceed to prove the lower bound of Theorem 1.
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Fig. 2.

Proof. Let us note that in any quadrangulation Q of P , each edge vi − vi+1 of C is an
edge of exactly one quadrilateral Qi ∈ Q. It is easy to see that at least one vertex of each
Qi is a Steiner point that belongs to the interior of Pi (see Figure 3). We now show that
for each Qi we can find a Steiner point pi ∈ Pi such that for i 6= j, we have that pi 6= pj .

S t e i n e r p o i n t s
v iv i + 1 v ' 'i v 'iv iv i + 1 v ' 'i v 'i

Fig. 3.

Observe first that for i 6= j ± 1, Pi ∩ Pj = ∅, therefore any Steiner point pi we may
choose for Qi is different from any Steiner point pj chosen for Qj . Therefore we focus only
on Steiner points in polygons Qi and Qi+1.

Consider two consecutive edges vi − vi+1 and vi+1 − vi+2 of C, and assume that we are
forced to choose pi = pi+1 = p. Observe that p ∈ Pi ∩ Pi+1, and thus it is close to vi+1.
Assume w.l.o.g. that vi is red and therefore vi+1 is blue. Two cases arise:

1. The color of pi is blue; see Figure 4(a).
In this case, it must happen that pi − vi and pi − vi+2 are edges of Qi and Qi+1. If
the quadrilateral X with vertices {vi, vi+1, vi+2, pi} does not contain any element of the
set of {v′

i, v
′′
i , v

′
i+1, v

′′
i+1}, we obtain a configuration similar to the original one, and we

are introducing redundant Steiner points; see Figure 4. Therefore it must happen that
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Fig. 4.

at least one of {v′
i, v

′′
i , v

′
i+1, v

′′
i+1} belongs to the interior of X , and we need to have a

second Steiner point q in the interior of X . It is easy to see that pi and q cannot be
associated to any other Qj , j 6= i, i+1. Change pi to q, let pi+1 be pi, and we are done.

2. The color of pi is red; see Figure 4(b).
This is a harder case to solve. Observe first that pi is necessarily adjacent to vi+1.
Moreover the fourth vertex of Qi must be a blue Steiner point b contained in Pi+1. If
b /∈ Pi+1 ∩ Pi+2 then we can let pi+1 = b and we are done.
If p ∈ Qi+1 ∩ Qi+2, then we can apply the same argument as before, but to vi+1 and
r = pi+1 instead of vi and pi (i.e. the fourth vertex of Qi+2 is a Steiner point on the
interior of Pi+1 etc.) Repeat this until an index j is reached such that pj /∈ Pj ∩Pj+1 or
we get back to Qi. In the first case, we can conclude in a similar way to when j = i+1,
we can choose pi, . . . , pj such that they are all different, and that for k /∈ {i, . . . , j}
pk 6= pℓ, ℓ ∈ {i, . . . , j}. In the second case, we obtain a different pi for each i.

Therefore we have shown that a different Steiner point can be assigned to each Qi, and
thus the number of Steiner points need to be added to P is at least 2k.

3. Upper bound

Before we can proceed with the proof for the upper bound of Theorem 1, we need the
following result, which is interesting in its own right:

Theorem 2. Let P be a point set in general position on the plane, where |P | = n. Then

P has a star-shaped partitioning S = {S1, . . . ,St} with at most t ≤
⌊

n−1

3

⌋

+ 1 elements.
For n = 3k, this bound is tight.

Proof. Let q0 be the leftmost vertex of Conv(P ) and let x, y be the counterclockwise and
clockwise neighbors of q0 in Conv(P ) respectively.

Let us relabel the points in the interior of Conv(P ) together with x, y by q1 =
x, q2, . . . , qr−1, qr = y such that for i < j, the slope of the straight line segment joining q0

to qi is smaller than that of the segment joining q0 to qj . Finally let qr+1, qr+2, . . . , qn−1 be
the remaining points of P − {q0, q1, qr} on the boundary of Conv(P ) labeled in clockwise
order such that qr+1 is the neighbor of qr on Conv(P ); see Figure 5.

Let S1 be the star-shaped polygon with vertex set {q0, q1, . . . , qr−1, qr} and edge set
{qiqi+1}, 0 ≤ i ≤ r with addition modulo r + 1.
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q0

qr = y

q1 = x

qn−1

q2

qr−1

qr+1

Fig. 5.

Let P ′ be the polygon with vertex set {q1, . . . , qr, qr+1, . . . , qn−1} and edge set {qiqi+1}∪
{qn−1q1} where 1 ≤ i ≤ n − 2. See Figure 5.

Following Fisk’s [5] proof of Chvátal’s classical Art Gallery Theorem, let T be a trian-
gulation of P ′. We can now 3-color the vertices of P ′ such that every two vertices qi and qj

that are joined by an edge of T receive different colors; see Figure 6. Since |V (P ′)| = n−1,

the smallest chromatic class has at most
⌊

n−1

3

⌋

vertices. Let v1, . . . , vs, 1 ≤ s ≤
⌊

n−1

3

⌋

, be
the vertices of such a chromatic class.

q0

1

3

1

1

3

2

1

3

1

2

1

3

2

1

1

3

2

Fig. 6.

For each vi, 1 ≤ i ≤ s, construct the polygon Si+1 which is the union of all triangles in
which vi is a vertex. Clearly each Si+1 is a star-shaped polygon, since all of its boundary is

visible from vi. Clearly the set {Si+1 : 1 ≤ s ≤
⌊

n−1

3

⌋

} together with S1 form a star-shaped

partitioning of P with at most
⌊

n−1

3

⌋

+ 1 polygons, and our result follows. See Figure 6.

We now show that this bound is tight.

Let C be a convex polygon with 2k edges labeled clockwise e1, e2, . . . , e2k. For each edge
ei with i ∈ Odd = {1, 3, 5, . . . , 2k − 1}, place a point labeled qi in the interior of C and
very close to the midpoint of ei. The vertices of C together with the points qi, i ∈ Odd ,
generate a point set Q with 3k elements. For each i ∈ Odd , consider the triangle whose
vertices are the endpoints of ei together with qi; see Figure 7.

It is easy to see that in any star-shaped partition of Conv(Q), every polygon contains
at most one of these triangles (and must contain all of it). Our result follows.
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e1

e2

e3

e4e5

e6

e7

e8

q7

q3

q5

q1

Fig. 7. The shaded triangles must necessarily be in different star-shaped polygons.

3.0.1. Proof of Theorem 1 Another result must be proved before tackling the proof of
Theorem 1. Recall that a vertex v of a polygon Q is called reflex if the internal angle of
Q at v is greater than 180 degrees.

Let Q be a bichromatic non-convex quadrilateral. Clearly Q contains exactly one reflex
vertex. Suppose that the reflex vertex of P is red, and that there are k blue points in the
interior of P. We address the following question: How many red Steiner points are needed
such that Q can be quadrangulated?

Observe that if there is exactly one blue point in the interior of Q, no Steiner points
need to be added. However if there are exactly two blue points in the interior of Q, one
Steiner point might be needed; see Figure 8. In general it is easy to see that if there are
k blue points in the interior of Q, it can always be quadragulated using at most

⌊

k
2

⌋

red
Steiner points. Thus we do not give a proof of the following result:

p

Fig. 8.

Lemma 2. Let Q be a non-convex bichromatic quadrilateral such that the reflex vertex of
Q is red (resp. blue), and it contains k blue (resp. red) points in its interior. Then Q can

be quadrangulated using at most
⌊

k
2

⌋

Steiner points placed in its interior.

We proceed now to prove the upper bound of Theorem 1.

Proof. Let us recall that we are assuming that the elements of P on the boundary of
Conv(P ) alternate in color. Temporarily remove all the points of B including those on
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the boundary of Conv(P ) (they will be replaced later). Using Theorem 2, Conv(R) can

be partitioned into a set S = {S1, . . . ,St}, 1 ≤ t ≤
⌊

n−1

3

⌋

+ 1, of star-shaped polygons.
See Figure 9.

Fig. 9.

In the interior of each Si add a Steiner point pi from which all of the boundary of Si

is visible. Color pi blue and join it to each vertex of Si by a straight line segment.

Observe that for each Si, all of its edges, except those on the boundary of Conv(R), are
diagonals of bichromatic quadrilaterals; see Figure 10. Replace the set B′ of blue points of
P that lie on the boundary of Conv(P ). Observe that each edge ei of the polygon defined
by the boundary of Conv(R) is visible from exactly one element p ∈ B′, and that by joining
the ends of ei to p, we construct a bichromatic quadrangulation of B′∪R∪{pi, 0 ≤ i ≤ t}
in which the edges of all Si, 0 ≤ i ≤ t are diagonals of the quadrilaterals; see Figure 11.
Removing all the edges of all Si, 0 ≤ i ≤ s, results in a bichromatic quadrangulation K
that uses all the points in R plus at most

⌊

n−1

3

⌋

+ 1 blue Steiner points; see Figure 12.

Fig. 10.

Now return all the remaining elements of B−B′ to their original position and proceed
to finish the quadrangulation. Let Fi be any face of K. By Lemma 2, if Fi contains bi

elements of B − B′, Fi can be quadrangulated by adding at most
⌊

bi

2

⌋

Steiner points.
Observe that

∑

Fi∈K

bi ≤ n − 2.
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Fig. 11.

Fig. 12.

And thus
∑

Fi∈K

⌊

bi

2

⌋

≤
⌊

n − 2

2

⌋

.

The worst case arises when all bi are 0 or 2. Thus the number of Steiner points used
is at most

⌊

n−1

3

⌋

+
⌊

n−2

2

⌋

+ 1 ≈ 5 m
12

and our result follows. Figure 14 shows the final
quadrangulation.

Fig. 13.

4. Beyond 2-colorings

In this section we will study quadrangulations of 3-colored point sets. For the sake of
clarity, the colors used will now be labeled by the set of integers I3 = {1, 2, 3}.
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Fig. 14. The final quadrangulation using ≈ 5 m
12

Steiner points, which are shown in gray.

Let P be a set of n points on the plane in general position. Let us assume that each
element of P is assigned a single color in the set I3. Recall that if a 3-colored point set
is quadrangulatable, its convex hull must have an even number of vertices, and adjacent
vertices on Conv(P ) must have different colors. In the rest of this section, we will assume
that our point sets satisfy these conditions.

Not all 3-colored point sets are 3-quadrangulatable. Let P6 be the 3-colored point set
{p0, . . . , p5} consisting of the set of vertices of a convex hexagon H (labeled in clockwise
order along the boundary of H) such that p0 and p3 are colored with color 1, p1 and p4

with color 2, and p3 and p5 with color 3; see Figure 15(a). It is easily to verify that P6 is
not 3-quadrangulatable.

The final quadrangulation using ≈ 5 m
12

Steiner points, which are shown in gray.0 1 2
34

5 0 1 2
34

51 2 3123 1 2 3123
Fig. 15.

In this section we study the following problem:

Problem 1. If a 3-colored point set P is not quadrangulatable, how many colored Steiner
points must be added to P to obtain a 3-colored quadrangulatable point set?

To our surprise, the answer to this question is:

Theorem 3. There is a 3-colored point set P (namely P6) such that it is not possible to
add any 3-colored point set S to P such that all the elements of S belong to the interior
of Conv(P6), and such that P ∪ S is quadrangulatable (regardless of the number, position
and colors of the elements of S).
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Let S be a set of points contained in the interior of Conv(P6) (for now S is not a
colored point set). Consider for a moment P6 ∪ S as a monochromatic point set, and let
Q be a quadrangulation of P = P6 ∪ S; see Figure 15(b). That such a quadrangulation
always exists was proved in [10]. Let G be the graph whose vertex is P6 ∪ S in which two
vertices are adjacent iff they are joined by an edge of Q; see Figure 15(b).

We now prove:

Theorem 4. In any coloring of G such that p0 and p3 are colored 1, p1 and p4 are colored
2, and p2 and p5 are colored 3, there is always an edge e of G such that the two vertices
of e receive the same color.

Proof. Let us consider any coloring of the vertices of G with colors {1, 2, 3}. Observe that
here we do not require a good coloring of G, i.e. a coloring of the vertices of G such that
adjacent vertices receive different colors. Let H be the dual graph of G, that is for each
face of G let us put a vertex in H , and for each edge e of G let us put an edge in H
connecting the vertices representing the faces of G that contain e on their boundaries.
Let v∞ denote the vertex in H representing the unbounded face of G. See Figure 16(a).
In general H may have multiple edges; for example the dual of the quadrangulation in
Figure 1 has several such edges.1 2 3123 323 2 1 2 3123 323 2 C o l o r 1C o l o r 2C o l o r 3C o l o r 0∞∞
Fig. 16.

Let us define a sum ⊕ in I3 as follows:

i ⊕ i = 0, 1 ⊕ 2 = 3, 1 ⊕ 3 = 2, and 2 ⊕ 3 = 1.

We now color the edges of H as follows: an edge e of H crossing an edge f of G whose
vertices are colored i and j will be colored with color i ⊕ j. See Figure 16(b).

We now prove that there must be an edge of H whose color is 0, that is, there is an
edge in G such that both of its vertices have the same color.

Suppose all edges of G have their vertices colored with different colors. Consider a
quadrilateral Q of G. It is easy to see that either

1. the four edges of H crossing the edges of Q have all the same color, or
2. the four edges of H crossing the four edges of Q have exactly two colors, say i and j,

and two of these edges have color i and two color j. Moreover the curves obtained by
joining edges of the same color do not cross each other, they only meet at the vertex
representing Q in H .
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Fig. 17.

The first case arises when the vertices of Q receive only two colors, and the second
when they receive three different colors; see Figure 17. We are ready to finish the proof.
Let Hi be the subgraph of H containing all the edges of H of color i, i = 1, . . . , 3. Note
that because of the above observations, all vertices of each Hi have even degree, that is
degree 2 or 4. Also for each i, v∞ is a vertex of Hi. Moreover, let Ci and Cj be simple closed
curves obtained by joining edges of Hi and Hj respectively. By the second observation
above, Ci and Cj do not cross in the interior of Conv(P6). Then since all the vertices of
H1 and H2 are even, there is a cycle in each of them containing v∞; let us call these C1

and C2 respectively. Since C1 and C2 cross at v∞, by the Jordan Curve Theorem they
must cross again. However the second crossing of C1 and C2 must be in the interior of
Conv(P6) which contradicts the second observation. The result follows.

We can now proceed with the proof of Theorem 3.

Proof. Suppose that there is a 3-chromatic set S contained in the interior of Conv(P6)
such that P6 ∪ S is quadrangulatable. Let Q be any quadrangulation of P6 ∪ S. Then the
graph G with vertex set P6 ∪ S generated by Q is 3-chromatic, contradicting Theorem 4.

5. Conclusions

In this paper we studied bichromatic and 3-chromatic quadrangulations of colored point
sets on the plane. We proved that if a bicolored point set has an even number of vertices
on its convex hull, and consecutive vertices on Conv(P ) have different colors, then by

adding at most
⌊

n−1

3

⌋

+
⌊

n−2

2

⌋

+ 1 ≈ 5 m
12

Steiner points in the interior of Conv(P ) we can

make P quadrangulatable, with ⌈n
3
⌉ points sometimes necessary. An interesting problem

is that of closing the gap between the upper and lower bounds. We believe that the tight
bound is the lower bound.

While trying to generalize our results for more than two colors, we proved a surprising
result similar in flavor to Sperner’s Lemma [1,9]. Let H be a convex hexagon, S a point
set contained in the interior of H , and let Q be any quadrangulation of H ∪ S. Then
in any 3-coloring of of the vertices of Q such that the vertices of H are colored in the
clockwise order 1, 2, 3, 1, 2, 3, there is an edge of Q whose vertices have the same color.
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