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Abstract. Let P be a set of n points in the plane in general position. A subset hk of k points of P is
called a k-hole if there is no element of P contained in the interior of the convex hull of hk. A set B of
points blocks the k-holes of P if any k-hole of P contains an element of B in its interior. In this paper
we establish upper and lower bounds on the sizes of k-hole blocking sets.

Introduction
Let P be a set of n points on the plane in general position. We say that P is in convex
position if the elements of P are the vertices of a convex polygon. A convex polygon Q
with k vertices is called a k-gon of P if all of its vertices belong to P , and Q is a k-hole
of P if it contains no element of P in its interior. A point b blocks a k-hole Q of P if it
belongs to the interior of Q. A set of points B is a k-hole blocking set of P (“k-blocking
set of P ” for short) if every k-hole of P is blocked by at least one element of B.

The problem of finding point sets that block all the 3-holes of a point set has been
studied for some time now. It is known that, if a point set P with n elements has c
points on its convex hull, then the 3-holes of P can be blocked with exactly 2n � c + 3
points; see Katchalski and Meir [4], and Czyzowicz, Kranakis and Urrutia [1]. Recently,
Sakai and Urrutia proved in [6] that there are point sets such that 2n � o(n) points are
necessary to block all their 4-holes. Surprisingly, the problem changes substantially for
k-blocking sets, k � 5. We will show that there are point sets, both in general and in
convex position, for which the number of points needed to block their 5-holes is as low as
a fifth of the number of triangles in a triangulation of the respective point set. In fact,
the number of points needed to block the 5-holes of a point set depends on the geometry
of the specific point set, unlike the case of blocking its triangles. For example, not all
sets P of n points in convex position require the same number of 5-blockers. It is worth
mentioning that the case k = 2, i.e., blocking the visibility between pairs of points, has
also received attention recently; see [5] and the references there.
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Figure 1. (a) Illustration of Theorem 1.1. (b) Point set X
4

.

1 Blocking the 5-holes of point sets
In this section we study the problem of blocking the 5-holes of point sets on the plane.
We consider first point sets in convex position, and then point sets in general position.

1.1 Point sets in convex position

Theorem 1.1. Let P a set of n points in convex position. Then any 5-blocking set for
P has at least 2dn

4

e � 3 elements.

Proof. Let B be a 5-blocking set of P with r elements. Let M be a planar geometric
matching of maximum cardinality of the elements of B; that is, a set of disjoint pairs of
the elements of B such that the line segments {`

1

, . . . , `b r
2

c} joining them do not intersect.
One at a time, extend them until they hit a line segment or a previously extended segment;
some of them might be extended to semi-lines or lines. When r is odd, take a line segment
that passes through the unmatched element of B and proceed as before; see Figure 1(a).

This will give us a decomposition of the plane into exactly d r
2

e + 1 convex regions.
Each of these regions can contain at most 4 elements of P ; otherwise we would have an
unblocked 5-hole. Then |B| = r � 2

⌃

n
4

⌥

� 3. ⇤
Károlyi, Pach and Tóth [3] constructed families of point sets which they called almost

convex sets as follows: Let R
1

be a set of two points in the plane. Assume that we already
defined R

1

, . . . , Rj such that
(1) Xj := R

1

[ · · · [ Rj is in general position,
(2) the vertex set of the convex hull �j of Xj is Rj , and
(3) any triangle determined by Rj contains precisely one point of Xj in its interior.

Let z
1

, . . . , zr denote the vertices of �j in clockwise order around �j , and let "j , �j > 0.
For any 1  i  r, let `i denote the line through zi orthogonal to the bisector of the angle
of �j at zi. Let z0i and z00i be the two points in `i at distance "j from zi. Now move z0i
and z00i away from �j by a distance �j in the direction orthogonal to `i, and denote the
resulting points by u0

i and u00
i , respectively.

We can choose "j and �j to be sufficiently small such that Rj+1

:= {u0
i, u

00
i |i = 1, . . . , r}

also satisfies the above conditions. Conditions 1 and 2 are straightforward, so we will
verify only the third.

If a 2 {u0
i, u

00
i }, b 2 {u0

m, u00
m} and c 2 {u0

s, u
0
s} are three points of Rj+1

, for three
distinct indices i, m, s, then any point of Xj+1

:= Rj+1

[ Xj which belongs to the interior
of �abc must coincide with the point of Xj in the interior of �zizmzs. If we have a = u0

i,
b = u00

i and c 2 {u0
m, u00

m}, with i 6= m, then the only point inside �abc is zi. Clearly
|Xm| = 2m+1 � 2 and |Rm| = 2m, for m � 1. See Figure 1(b). Now we prove:
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Theorem 1.2. There is a point set P in convex position with n = 2m that has a 5-blocking
set with only n

2

� 2 elements.

Proof. Let P = Rm and B = Xm�2

. Then |P | = n and |B| = n
2

� 2. We will show that
B is a 5-hole blocking set for P . Suppose that B is not a 5-hole blocking set for P ; then
we have a 5-hole of P with no point of B in its interior. Take a triangulation of such a
5-hole —it will have 3 triangles of P . By construction, each of them contains exactly one
element of Xm�1

, since B = Xm�1

\Rm�1

. Then these three points have to be elements of
Rm�1

and they form a triangle contained in the 5-hole. By construction, such a triangle
contains precisely one element of Xm�2

. Now, since B = Xm�2

, the 5-hole contains an
element of B, which is a contradiction. Thus our result follows. ⇤

1.2 Points in general position

Observe that there are point sets in general position for which roughly 2n
3

points are
necessary to block all their 5-holes. Take a set of points P that admits a convex pen-
tagonization of its convex hull, and whose convex hull has five vertices. The number of
pentagons in any pentagonization of the convex hull of P is b2n�7

3

c; clearly any 5-blocking
set of P has at least b2n�7

3

c points. We show next that there exist, surprisingly, families
of point sets for which all of their 5-holes can be blocked with fewer than b2n�7

3

c points.

(a) A point set in general position in which n
3

� 2

points are sufficient and necessary to block all of
its convex 5-holes.

(b) The general construction when k = 11.

Figure 2

Theorem 1.3. For any m there is a point set P in general position with n = 3m points
such that m � 2 points are sufficient and necessary to block all the 5-holes of P .

Proof. Suppose that m is odd. Take a circle C and m sufficiently small disjoint chords
{D

1

, . . . , Dm} of C of equal length and evenly placed along C. Each chord Di determines a
small arc Ai of C, joining its endpoints. For each chord Di select three points of the plane
as follows: The first one is the midpoint of Ai, and two points on Di are equidistant and
close enough to its mid-point so that the shaded region shown in Figure 2(a) is empty.
We can think that these 3 points become one fat point of an m point set Sm in convex
position.

Note that any convex 5-hole of P has at most two vertices in each fat point of Sm.
Thus any 5-hole of P contains a point in at least three fat points of Sm. Let P 0 be the
subset of P containing the points in the middle of Ai, i = 1, . . . , m. It is known [1, 4]
that the set of triangles of P 0 can be blocked with a set Qm of m�2 points. It is now easy
to see that these points can be chosen in such a way that they also block any triangle
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containing a point in three different fat vertices of Sm. It is not hard to see that we
need at least m � 2 points to block all the 5-holes of P . For n even, we use a similar
construction. Our result follows. ⇤

To finish this section, we prove:

Theorem 1.4. Let P be a set of points in general position. Then any 5-blocking set of
P has at least 2dn

9

e � 3 points.

As in the proof of Theorem 1.1, we match the points of a 5-blocking set and subdivide
the plane into convex regions. The main difference is that we now use a well known result
of Harborth [2] which states that a point set with ten points always has a 5-hole.

2 Blocking k-holes for larger k

Now we consider the problem of blocking convex k-holes, k � 6. Let P be a set of n
points in convex position. By a similar argument as in the proof of Theorem 1.1, it can
be verified that any k-blocking set for P has at least 2d n

k�1

e � 3 elements. This bound is
essentially tight.

To see the tightness for odd k, construct a point set P in the following way: First
define integers m and r by n = k�1

2

m + r, 0 < r < k�1

2

(here we assume further that
r 6= 0). We have m = b 2n

k�1

c. Let Q = {q
1

, . . . , qm+1

} be the set of vertices of a regular
(m + 1)-gon, and let C be the circumcircle of this polygon. We replace each qi by k�1

2

points lying on a sufficiently short arc of C (Figure 2(b)), except qm+1

, which we replace
by r points. Denote by Pi the set of these k�1

2

or r points, and let P = P
1

[ · · · [ Pm+1

.
Then any k-hole with vertices in P has vertices in at least three Pi’s. Thus the

elements of a triangle blocking set for Q (or the points obtained by shifting them slightly
if necessary) can block all convex k-holes of P . As in the proof of Theorem 1.3, take a
triangle blocking set for Q with (m + 1) � 2 = b 2n

k�1

c � 1 elements, which will also block
all k-holes of P .
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