Blocking the \boldsymbol{k}-holes of point sets on the plane

Javier Cano ${ }^{1}$, Alfredo García ${ }^{2}$, Ferran Hurtado ${ }^{3}$, Toshinori Sakai ${ }^{4}$, Javier Tejel ${ }^{2}$, Jorge Urrutia ${ }^{1}$
${ }^{1}$ Instituto de Matemáticas, UNAM, Mexico
j_cano@uxmcc2.iimas.unam.mx, urrutia@matem.unam.mx
${ }^{2}$ Departamento de Métodos Estadísticos, IUMA, Universidad de Zaragoza, Spain
olaverri@unizar.es, jtejel@unizar.es
${ }^{3}$ Departament de Matemàtica Aplicada II, UPC, Spain
Ferran.Hurtado@upc.edu
${ }^{4}$ Research Institute of Educational Development, Tokai University, Japan sakai@tokai-u.co.jp

Abstract

Let P be a set of n points in the plane in general position. A subset h_{k} of k points of P is called a k-hole if there is no element of P contained in the interior of the convex hull of h_{k}. A set B of points blocks the k-holes of P if any k-hole of P contains an element of B in its interior. In this paper we establish upper and lower bounds on the sizes of k-hole blocking sets.

Introduction

Let P be a set of n points on the plane in general position. We say that P is in convex position if the elements of P are the vertices of a convex polygon. A convex polygon \mathcal{Q} with k vertices is called a k-gon of P if all of its vertices belong to P, and \mathcal{Q} is a k-hole of P if it contains no element of P in its interior. A point b blocks a k-hole \mathcal{Q} of P if it belongs to the interior of \mathcal{Q}. A set of points B is a k-hole blocking set of P (" k-blocking set of P " for short) if every k-hole of P is blocked by at least one element of B.

The problem of finding point sets that block all the 3 -holes of a point set has been studied for some time now. It is known that, if a point set P with n elements has c points on its convex hull, then the 3 -holes of P can be blocked with exactly $2 n-c+3$ points; see Katchalski and Meir [4], and Czyzowicz, Kranakis and Urrutia [1]. Recently, Sakai and Urrutia proved in [6] that there are point sets such that $2 n-o(n)$ points are necessary to block all their 4 -holes. Surprisingly, the problem changes substantially for k-blocking sets, $k \geq 5$. We will show that there are point sets, both in general and in convex position, for which the number of points needed to block their 5 -holes is as low as a fifth of the number of triangles in a triangulation of the respective point set. In fact, the number of points needed to block the 5 -holes of a point set depends on the geometry of the specific point set, unlike the case of blocking its triangles. For example, not all sets P of n points in convex position require the same number of 5 -blockers. It is worth mentioning that the case $k=2$, i.e., blocking the visibility between pairs of points, has also received attention recently; see [5] and the references there.

[^0]

Figure 1. (a) Illustration of Theorem 1.1. (b) Point set \mathcal{X}_{4}.

1 Blocking the 5-holes of point sets

In this section we study the problem of blocking the 5 -holes of point sets on the plane. We consider first point sets in convex position, and then point sets in general position.

1.1 Point sets in convex position

Theorem 1.1. Let P a set of n points in convex position. Then any 5 -blocking set for P has at least $\left\lceil\left\lceil\frac{n}{4}\right\rceil-3\right.$ elements.
Proof. Let B be a 5 -blocking set of P with r elements. Let \mathcal{M} be a planar geometric matching of maximum cardinality of the elements of B; that is, a set of disjoint pairs of the elements of B such that the line segments $\left\{\ell_{1}, \ldots, \ell_{\left\lfloor\frac{r}{2}\right\rfloor}\right\}$ joining them do not intersect. One at a time, extend them until they hit a line segment or a previously extended segment; some of them might be extended to semi-lines or lines. When r is odd, take a line segment that passes through the unmatched element of B and proceed as before; see Figure 1(a).

This will give us a decomposition of the plane into exactly $\left\lceil\frac{r}{2}\right\rceil+1$ convex regions. Each of these regions can contain at most 4 elements of P; otherwise we would have an unblocked 5-hole. Then $|B|=r \geq 2\left\lceil\frac{n}{4}\right\rceil-3$.

Károlyi, Pach and Tóth [3] constructed families of point sets which they called almost convex sets as follows: Let \mathcal{R}_{1} be a set of two points in the plane. Assume that we already defined $\mathcal{R}_{1}, \ldots, \mathcal{R}_{j}$ such that
(1) $\mathcal{X}_{j}:=\mathcal{R}_{1} \cup \cdots \cup \mathcal{R}_{j}$ is in general position,
(2) the vertex set of the convex hull Γ_{j} of \mathcal{X}_{j} is \mathcal{R}_{j}, and
(3) any triangle determined by \mathcal{R}_{j} contains precisely one point of \mathcal{X}_{j} in its interior.

Let z_{1}, \ldots, z_{r} denote the vertices of Γ_{j} in clockwise order around Γ_{j}, and let $\varepsilon_{j}, \delta_{j}>0$. For any $1 \leq i \leq r$, let ℓ_{i} denote the line through z_{i} orthogonal to the bisector of the angle of Γ_{j} at z_{i}. Let z_{i}^{\prime} and $z_{i}^{\prime \prime}$ be the two points in ℓ_{i} at distance ε_{j} from z_{i}. Now move z_{i}^{\prime} and $z_{i}^{\prime \prime}$ away from Γ_{j} by a distance δ_{j} in the direction orthogonal to ℓ_{i}, and denote the resulting points by u_{i}^{\prime} and $u_{i}^{\prime \prime}$, respectively.

We can choose ε_{j} and δ_{j} to be sufficiently small such that $\mathcal{R}_{j+1}:=\left\{u_{i}^{\prime}, u_{i}^{\prime \prime} \mid i=1, \ldots, r\right\}$ also satisfies the above conditions. Conditions 1 and 2 are straightforward, so we will verify only the third.

If $a \in\left\{u_{i}^{\prime}, u_{i}^{\prime \prime}\right\}, b \in\left\{u_{m}^{\prime}, u_{m}^{\prime \prime}\right\}$ and $c \in\left\{u_{s}^{\prime}, u_{s}^{\prime}\right\}$ are three points of \mathcal{R}_{j+1}, for three distinct indices i, m, s, then any point of $\mathcal{X}_{j+1}:=R_{j+1} \cup \mathcal{X}_{j}$ which belongs to the interior of $\Delta a b c$ must coincide with the point of \mathcal{X}_{j} in the interior of $\Delta z_{i} z_{m} z_{s}$. If we have $a=u_{i}^{\prime}$, $b=u_{i}^{\prime \prime}$ and $c \in\left\{u_{m}^{\prime}, u_{m}^{\prime \prime}\right\}$, with $i \neq m$, then the only point inside $\Delta a b c$ is z_{i}. Clearly $\left|\mathcal{X}_{m}\right|=2^{m+1}-2$ and $\left|\mathcal{R}_{m}\right|=2^{m}$, for $m \geq 1$. See Figure 1(b). Now we prove:

Theorem 1.2. There is a point set P in convex position with $n=2^{m}$ that has a 5 -blocking set with only $\frac{n}{2}-2$ elements.
Proof. Let $P=\mathcal{R}_{m}$ and $B=\mathcal{X}_{m-2}$. Then $|P|=n$ and $|B|=\frac{n}{2}-2$. We will show that B is a 5 -hole blocking set for P. Suppose that B is not a 5 -hole blocking set for P; then we have a 5 -hole of P with no point of B in its interior. Take a triangulation of such a 5-hole -it will have 3 triangles of P. By construction, each of them contains exactly one element of \mathcal{X}_{m-1}, since $B=\mathcal{X}_{m-1} \backslash \mathcal{R}_{m-1}$. Then these three points have to be elements of \mathcal{R}_{m-1} and they form a triangle contained in the 5 -hole. By construction, such a triangle contains precisely one element of \mathcal{X}_{m-2}. Now, since $B=\mathcal{X}_{m-2}$, the 5 -hole contains an element of B, which is a contradiction. Thus our result follows.

1.2 Points in general position

Observe that there are point sets in general position for which roughly $\frac{2 n}{3}$ points are necessary to block all their 5 -holes. Take a set of points P that admits a convex pentagonization of its convex hull, and whose convex hull has five vertices. The number of pentagons in any pentagonization of the convex hull of P is $\left\lfloor\frac{2 n-7}{3}\right\rfloor$; clearly any 5 -blocking set of P has at least $\left\lfloor\frac{2 n-7}{3}\right\rfloor$ points. We show next that there exist, surprisingly, families of point sets for which all of their 5 -holes can be blocked with fewer than $\left\lfloor\frac{2 n-7}{3}\right\rfloor$ points.

(a) A point set in general position in which $\frac{n}{3}-2$ points are sufficient and necessary to block all of its convex 5 -holes.

(b) The general construction when $k=11$.

Figure 2

Theorem 1.3. For any m there is a point set P in general position with $n=3 m$ points such that $m-2$ points are sufficient and necessary to block all the 5-holes of P.
Proof. Suppose that m is odd. Take a circle \mathcal{C} and m sufficiently small disjoint chords $\left\{\mathcal{D}_{1}, \ldots, \mathcal{D}_{m}\right\}$ of \mathcal{C} of equal length and evenly placed along \mathcal{C}. Each chord \mathcal{D}_{i} determines a small $\operatorname{arc} \mathcal{A}_{i}$ of \mathcal{C}, joining its endpoints. For each chord \mathcal{D}_{i} select three points of the plane as follows: The first one is the midpoint of \mathcal{A}_{i}, and two points on \mathcal{D}_{i} are equidistant and close enough to its mid-point so that the shaded region shown in Figure 2(a) is empty. We can think that these 3 points become one fat point of an m point set S_{m} in convex position.

Note that any convex 5 -hole of P has at most two vertices in each fat point of S_{m}. Thus any 5 -hole of P contains a point in at least three fat points of S_{m}. Let P^{\prime} be the subset of P containing the points in the middle of $\mathcal{A}_{i}, i=1, \ldots, m$. It is known $[1,4]$ that the set of triangles of P^{\prime} can be blocked with a set Q_{m} of $m-2$ points. It is now easy to see that these points can be chosen in such a way that they also block any triangle
containing a point in three different fat vertices of S_{m}. It is not hard to see that we need at least $m-2$ points to block all the 5 -holes of P. For n even, we use a similar construction. Our result follows.

To finish this section, we prove:
Theorem 1.4. Let P be a set of points in general position. Then any 5-blocking set of P has at least $\left\lceil\frac{n}{9}\right\rceil-3$ points.

As in the proof of Theorem 1.1, we match the points of a 5 -blocking set and subdivide the plane into convex regions. The main difference is that we now use a well known result of Harborth [2] which states that a point set with ten points always has a 5 -hole.

2 Blocking \boldsymbol{k}-holes for larger \boldsymbol{k}

Now we consider the problem of blocking convex k-holes, $k \geq 6$. Let P be a set of n points in convex position. By a similar argument as in the proof of Theorem 1.1, it can be verified that any k-blocking set for P has at least $2\left\lceil\frac{n}{k-1}\right\rceil-3$ elements. This bound is essentially tight.

To see the tightness for odd k, construct a point set P in the following way: First define integers m and r by $n=\frac{k-1}{2} m+r, 0<r<\frac{k-1}{2}$ (here we assume further that $r \neq 0)$. We have $m=\left\lfloor\frac{2 n}{k-1}\right\rfloor$. Let $Q=\left\{q_{1}, \ldots, q_{m+1}\right\}$ be the set of vertices of a regular $(m+1)$-gon, and let C be the circumcircle of this polygon. We replace each q_{i} by $\frac{k-1}{2}$ points lying on a sufficiently short arc of C (Figure 2(b)), except q_{m+1}, which we replace by r points. Denote by P_{i} the set of these $\frac{k-1}{2}$ or r points, and let $P=P_{1} \cup \cdots \cup P_{m+1}$.

Then any k-hole with vertices in P has vertices in at least three P_{i} 's. Thus the elements of a triangle blocking set for Q (or the points obtained by shifting them slightly if necessary) can block all convex k-holes of P. As in the proof of Theorem 1.3, take a triangle blocking set for Q with $(m+1)-2=\left\lfloor\frac{2 n}{k-1}\right\rfloor-1$ elements, which will also block all k-holes of P.

References

[1] J. Czyzowicz, E. Kranakis, J. Urrutia, Guarding the convex subsets of a point set, in 12th Canadian Conference on Computational Geometry, Fredericton, New Brunswick, Canada, 2000, 47-50.
[2] H. Harborth, Konvexe, Fünfecke in ebenen Punktmengen. Elemente Math. 33 (1978), 116-118.
[3] G. Károlyi, J. Pach, G. Tóth, A modular version of the Erdős-Szekeres theorem, Studia Scientiarum Mathematicarum Hungarica 51 (2001), 245-260.
[4] M. Katchalski, A. Meir, On empty triangles determined by points in the plane, Acta Math. Hungar. 51 (1988), 323-328.
[5] A. Pór, D. R. Wood, On visibility and blockers, J. Computational Geometry 1(1) (2010), 29-40.
[6] T. Sakai, J. Urrutia, Covering the convex quadrilaterals of point sets, Graphs and Combinatorics $\mathbf{3 8}$ (2007), 343-358.

[^0]: ${ }^{1}$ Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (Mexico).
 ${ }^{2}$ Partially suported by projects MTM2009-07242 and E58-DGA.
 ${ }^{3}$ Partially supported by projects MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

