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Abstract A polygon @ is tree monotone if, for some highest or lowest
point p on @ and for any point ¢ interior to @, there is a y-monotone
curve from p to ¢ whose interior is interior to Q. We show how to parti-
tion an n vertex polygon P in ©(n) time into tree monotone subpolygons
such that any y-monotone curve interior to P intersects at most two of
the subpolygons. We then use this partition to further partition P into
y-monotone subpolygons such that the number of subpolygons needed
to cover any given y-monotone curve interior to P is O(logn). Our al-
gorithm runs in ©(n) time and space which is an improvement by an
O(log n) factor in time and space over the best previous result.
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1 Introduction

The monotone cover number of a decomposition IT of an n vertex simple polygon
P into (possibly overlapping) subpolygons, denoted C,(IT), is the smallest number
k such that any y-monotone curve contained in P can be covered by at most & of
the subpolygons and their interiors [2]. A Hierarchical Vertical Decomposition [6]
of P (modified to use a horizontal visibility map instead of a vertical visibility
map [8]) contains a set D of overlapping y-monotone subpolygons of P such that
C,(D) = O(logn) and D requires O(nlogn) storage.

We present two algorithms that also construct decompositions of P into y-
monotone subpolygons such that the monotone cover number is O(logn). These
algorithms have the advantages that they produce decompositions requiring
O(n) storage, they run in ©(n) time, and the decompositions of P construc-
ted are partitions; that is the interiors of the subpolygons do not overlap.

We first present a partition of P of interest in its own right. We call a y-
monotone curve whose interior is interior to P a y-curve of P. We call P tree
monotone if there is a highest or lowest point p on P such that, for any point ¢
interior to P, there is a y-curve of P from p to q. We call a partition, say II, of
P by chords a tree monotone partition of P if the following two conditions hold
(opposition is defined in Section 3):
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Figurel. Left: A tree +y-monotone polygon Q, its cusps (V1 — Y10), and its lids.
Right: A tree monotone partition of a polygon R. Note that the interior of any y-curve
of R intersects at most two subpolygons of the partition

1. The subpolygons of IT are tree monotone.
2. Any pair of coincident subpolygons of IT are in opposition.

The key property of any tree monotone partition II of P (shown to hold in
Section 3) is that G, (IT) < 2. This property can sometimes be used to reduce
a problem on polygons to the special case of polygons partition-able into two
tree monotone subpolygons in opposition. This is the approach taken in [2, 3]
to develop a solution to the circular ray shooting problem [1].! We present a
simple algorithm (given the horizontal visibility map of P) that constructs a
tree monotone partition of P in ©(n) time.

We then present two algorithms that use this tree monotone partition of P to
further partition P into y-monotone subpolygons such that the monotone cover
number of the partition is O(logn). The first algorithm constructs a partition
of P into y-monotone subpolygons by chords whose monotone cover number is
within two of the minimum monotone cover number of any partition of P into y-
monotone subpolygons by chords. The second algorithm pays more attention to
the sizes of the y-monotone subpolygons of the partition. It produces a partition
such that any given y-curve of P can be broken into two halves such that each
half is covered by a sequence of O(logn) subpolygons (and their interiors) of
the partition and the number of vertices of the subpolygons in each sequence
decreases exponentially. This property of the partition is used in [2,3] to develop
a solution to the circular ray shooting problem with the same space and query
complexity as the best previous result [6] but which is simpler.2

The remainder of this paper is organized as follows. In Section 2 we develop
some basic tools that we need. In Section 3 we establish a properties of tree
monotone polygons and tree monotone polygon partitions and use them to de-
velop an algorithm that builds a tree monotone partition of P. In Section 4 we
use a tree monotone subpolygon partition of P to construct the y-monotone
subpolygon partitions of P described in the previous paragraph.

! The circular ray shooting problem is to preprocess P so that, given a query directed
circular arc ¢, one can quickly find the first intersection of ¢ with P.
% The preprocessing complexity was also improved by an O(logn) factor.



2 Some Notation And Tools

Let P be an n vertex simple polygon with vertices {vg,v1,...,v,—-1} in counter-
clockwise order and edges {e,,...,e,—1} such that v; and v;41 are the vertices
of e; addition taken modulo n. We will use v; to denote v(; mod n)- To simplify
the discussion we assume no adjacent edges of P are collinear. We denote the
interior of P by interior(P) and denote region(P) = interior(P) U P. By parti-
tion of P we mean a set of polygons whose interiors do not intersect and whose
regions together contain region(P).

A cusp ¢ of P is either a vertex v; of P such that v;_1, and v;;1 lie on the
same side of the horizontal line through v;, or a horizontal edge e; of P such
that v;_; and v;42 lie on the same side of the line through e,. We say that
is a reflex (convez) cusp if it is either a reflex (convex) vertex or an edge whose
endpoints are both reflex (convex) vertices. For any point or segment e, mid(e)
denotes e if e is a point and the midpoint of e if e is a segment.

In this paper any subpolygon R of P, including P itself, has a special point
we call its start point and which we denote by start(R). We assume start(P) =
mid(¢) where v is some convex cusp of P. The choice of start(P) has no impact
on the results of this paper but it does cause the algorithms presented here to
produce slightly different partitions. The chords of P used in this paper are
assumed to not intersect start(P). For any chord v of P we denote by P, the
subpolygon of P, of the two determined by -, that does not contain start(P).

Let @ be any simple subpolygon of P such that each edge of () is the union of
one or more chords, edges, or parts of edges of P. Then we call Q a cut subpolygon
of P. All subpolygons in this paper will be cut subpolygons. When we say that a
path is interior to P we mean its interior is contained in interior(P). By the door
of @, denoted door(Q), we mean the chord of P on an edge of () that must be
crossed by every path interior to P between any interior point of @ and start(P);
if start(P) is a point on @ then the cusp of P containing start(P) is door(Q).
By the windows of @), denoted windows((), we mean the remaining chords of P
that are edges of @ or parts thereof. We assume that start(Q)) = mid(door(Q)).

Let II be a partition of P into cut subpolygons. Then we call II a tree
partition of P. This term is appropriate because the graph in which each vertex
corresponds to an subpolygon of IT and the edges of the graph correspond to
coincident pairs of subpolygons of IT is a tree. All partitions used in this paper
are tree partitions. Let R and S be two subpolygons of IT such that door(S) €
windows(R). Then we say that R is the parent subpolygon of S and S is a child
subpolygon of R. For any subpolygon U of IT we denote by parent(U) the parent
of U if U has a parent and the value nil otherwise.

We denote by ITg(P) the tree partition of P into trapezoids by the horizontal
visibility map of P. To simplify the discussion we assume IIg(P) contains at
least two trapezoids. We may abbreviate the term horizontal chord to h-chord.
Let t be any trapezoid of IIg(P) and p be the midpoint of the h-chord whose
endpoints are the midpoints of the non-horizontal edges of ¢. If some convex cusp
¥ of P is a top or bottom edge of ¢ then let ¢ = mid(v); otherwise let ¢ = p.
We denote mid(t) = g. Let T be the dual tree of IIg(P) such that the root node



of 7 corresponds to the subpolygon of ITg(P) that contains start(P) and each
edge of 7 is directed towards its parent node. We denote by A(P) the plane
embedding of 7 such that:

1. For each trapezoid ¢ € IIg(P), mid(t) is the vertex of A(P) corresponding
to the the dual vertex of t in 7.

2. For any two trapezoids ¢t and ¢, of IIg(P) such that parent(t) = ¢, the chain
C = mid(t), mid(door(¢)), mid(¢,) corresponds to the edge of 7 joining the
vertices of 7 corresponding to ¢ and t,. Chain C' is directed upwards if
mid(¢,) is above mid(¢) and downwards otherwise.

3. Each vertex of A(P) is colored pink (brown) if its outgoing edge is directed
upwards (downwards); the root vertex of A(P) is given the color shared by
its child vertices.

Note that A(P) intersects each h-chord of P and start(P) is its root vertex; see
Fig. 2.

3 Tree Monotone Polygons and Partitions

Many properties of tree monotone polygons are established in [2]. Here we need
the following result.

Lemma 1. P is tree monotone if and only if all vertices of A(P) have the same
color.

Proof. = Consider otherwise that there are two differently colored and adjacent
vertices u, and u. of A(P) such that u, is the parent of u.. Let t, and ¢. be the
trapezoids of IIg(P) containing u, and u. respectively. Then some horizontal
line ¢ contains both door(t,) and door(t.) since u, and u,. have different colors.
Let C be a y-curve of P from start(P) to u.; C exists since P is tree monotone.
Now C' intersects both door(t,) and door(t.) so C intersects ¢ twice which is
impossible.

< We will show that any point p interior to P and start(P) are the endpoints
of some y-curve of P. Let ¢ be a point on A(P) and g be the path on A(P) from
start(P) to ¢ such that some h-chord of P contains pg and pgN p = ¢. Then the
path o Ugp forms a y-curve of P since all the vertices of A(P) have the same
color and thus the edges joining them have the same orientation.

Let v be a reflex cusp of P. Then we call the two h-chords of P with an endpoint
on 1 the lids of 1. We denote £(P) = {7 : v is a lid of some reflex cusp of P}.
We use 7(P) to denote the partition of P induced by £(P). Clearly, the sub-
polygons of m(P) are y-monotone. Let £ be the subset of edges of A(P) whose
endpoints are colored differently. We denote by £,.(P) the subset of elements of
£(P) intersected by some element of &; note that |£,(P)| = |£]. We denote by
7 (P) be the partition of P induced by £,(P). We now show that =,.(P) is a
tree monotone partition of P.



Observation 1. Let Q) be a subpolygon of P such that IIg(Q) C IIg(P). Then,
for any trapezoid t in II5(Q), vertex mid(t) has the same color in A(Q) as in
A(P) (but not necessarily the same location).

If P is tree monotone and start(P) is a lowest (highest) point of P then we
call P tree +y-monotone (tree —y-monotone). We say that two tree monotone
subpolygons of P are in opposition if one is +y-monotone and the other is —y-
monotone and the door of one is a window of the other. The following theorem
establishes the key property of tree monotone partitions.

Theorem 1. Let II be any tree monotone partition of P. Then the interior of
any y-curve of P intersects at most two subpolygons of II.

Proof. Assume otherwise that the interior of some directed y-curve C' of P in-
tersects three different subpolygons Q,R,T" € IT in succession. We consider only
the case that door(Q) and door(T") are both windows of R. The remaining case,
that door(R) is a window of either @ or T, is handled similarly; see [2]. Let
ug = A(P) Nndoor(Q) and ur = A(P) N door(T"). Let pg be the path on A(P)
from ug to start(P) and pr be the path on A(P) from ur to start(P). Let v be
the point on A(P) that is the endpoint of pg N pr other than start(P). Then
v = mid(t) where ¢ is some trapezoid of /Ig(P). Let pp) be the portion of pq
from ug to v and E§ be the portion of pr from ur to v. By Lemma 1, ©p) is
y-monotone and the edges of p, have the same orientation, either upwards or
downwards. Similarly the edges of pf have the same orientation. Now () and
T are not in opposition since they are both in opposition with R so the edges
of pg) and 7. all have the same orientation. Thus o and pr enter ¢ through
different windows but from the same top or bottom edge, say e, of t. But now C
must also cross both of these windows so C' must cross e twice which contradicts
that C is y-monotone.

We call a tree monotone cut subpolygon @ of P mazimal if no tree monotone
cut subpolygon of P with the same door as ) properly contains Q.

Lemma 2. The subpolygons of 7.(P) are mazimal tree monotone.

Proof. Consider any subpolygon Q of 7, (P). By construction and Observation 1,
the vertices of A(Q) have the same color so @ is tree monotone by Lemma 1. Now
assume that there exists a subpolygon Q' of P such that region(Q) C region(Q’)
and door(Q’') = door(Q). We will show that Q' is not tree monotone. Let ¢
be a trapezoid of IIg(Q’) — ITg(Q) such that door(t) € windows(Q@). Then
region(t) C region(¢p) for some trapezoid ¢tp of IIg(P). Now mid(¢) and mid(¢p)
have the same color and, by the construction of A(P), this color differs from the
shared color of the vertices of A(Q). Therefore @’ is not tree monotone by Lemma
1.

We say that two subpolygons of a tree partition are coincident if one subpolygon
is the parent of the other.
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Figure2. Tree A(P) and the construction of £-(P) and m(P) using Rule 1

Lemma 3. All coincident pairs of subpolygons of 7.(P) are in opposition.

Proof. Assume otherwise that ,.(P) has a coincident pair of subpolygons, say
@1 and 2, that are not in opposition. Assume, without loss of generality, that
@1 = parent(Q2) and that both are tree +y-monotone. Let Q3 be the polygon
whose interior is the union of the interiors of Q1, Q2, and door(Q-); note that
door(Q3) = door(Q1). Now Q3 is tree +y-monotone and properly contains ¢y
which is impossible by Lemma 2.

Theorem 2. 7,.(P) is a tree monotone partition of P.
Proof. This follows directly from Lemmas 2 and 3.
The following result is also of interest.

Theorem 3. Any convex set S contained in region(P) intersects the interior of
at most two subpolygons of 7. (P).

Proof. Let T be the subset of the subpolygons of 7,.(P) that intersect S. Then
S contains a directed strictly y-monotone curve C with endpoints p; and po
such that p; and p, have the maximum y-coordinate and minimum y-coordinate
respectively of any point on the boundary of S, C intersects every polygon in T,
and C is a y-curve of P. Now, applying Theorem 1 to C, implies that |T| < 2.

The following additional results on m,.(P) are established in [2].

Lemma 4. Any curve in interior(P) and decomposable into k interior disjoint
y-curves of P intersects the interior of at most k+1 of the subpolygons of 7,.(P).



Lemma 5. Any curve in interior(P) and on the boundary of a convex set in-
tersects the interior of at most four subpolygons of w,.(P).

For any subpolygon @ of 7,.(P) with at least one window let family(Q) be the
subpolygon of P whose interior is the union of the interiors of @, the windows
of @, and the child subpolygons of Q. Let Dy, (P) = {P} if |7-(P)| = 1 and
D (P) = U@, e, (P) and windows(Q;)#0 (family(Q;)) otherwise.

Theorem 4. Any conver set in region(P) is contained in one of the elements of
D (P) and the total number of vertices in all the elements of Dy (P) is O(n).

Theorem 4 suggests an approach to the well studied problem of finding convex
objects in P: search each of the elements of Dy, (P). This will prove useful if
either the elements of Dy, (P) are substantially smaller than P or if the proper-
ties of the elements of Dy, (P) can be exploited in some way.

We now show that 7,.(P) can be constructed in ©(n) time. Though £, (P)
(and thus 7, (P)) can be found by first constructing A(P), it is more easily found
directly. For any window, say w, of any subpolygon @ of any tree partition I of
P we denote door (11, w) = door(Q). We now assign each of the elements of £(P)
one of the colors red, blue, and green such that the red ones constitute £, (P);
see Fig. 2. Each element of £(P) is initially colored blue. Next the following rule
is applied to each chord v € £(P) in any order:

Rule 1. Let 0 = door(IIg(P),v). If v and o are collinear then 1) color ~ red
and 2) color o green if it is colored blue but not if it is colored red.

Theorem 5. £,(P) is the subset of the elements of £(P) that are red.

Proof. Let u,v, and w be vertices of A(P) and d and e be edges of A(P) such
that u,d, v, e, w is a path of A(P) directed towards the root of A(P). Let t,, ¢,
and t,, be the trapezoids of IIg(P) containing u,v, and w respectively. Then d
crosses door(t,,) and e crosses door(t,). By Rule 1, door(¢,,) is colored red if and
only if door(t,) and door(t,) are collinear. Also, door(t,,) € £,(P) if and only if
one of d and e are directed upwards and the other is directed downwards. But
this occurs if and only if door(t,,) and door(t,) are collinear so door(t,) € £,(P)
if and only if it is red. Now u, d, v, e, w was an arbitrary path of A(P) so door(t,,)
can be any element of £(P) except the elements of S where S is the subset of
£(P) that cross an edge of A(P) connected to start(P). But any element A of
S is neither red nor collinear with door(7(P), A) = door(P) so £,(P) is exactly
the set of red elements of £(P).

Corollary 1. [2] The blue lids of £(P) are the lids of the subpolygons of m.(P)
and the green lids of £(P) are chords but not lids of the subpolygons of m.(P).

Now let ¥ be any reflex cusp of P. If the lids of v are not lids of any other
cusp of P then an even simpler rule can be used to color them. Also, if the dual
tree of ITg(P) is not available then Rule 1 can be modified so that the door of
each trapezoid can be found using an orientation of the chords of the horizontal
visibility map of P. This orientation is shown in Fig. 2. For details of these
modifications to Rule 1 see [2].



Theorem 6. £,.(P) and 7,.(P) can be constructed in ©(n) time.

Proof. In ©(n) time IIg(P) can be constructed [4].> Then, the red chords of
£(P) can be found in O(n) time using ITg(P) and Rule 1. But these red chords
are just £,.(P) by Theorem 5. Finally, 7,.(P) is easily constructed from £, (P)
and IIg(P) in O(n) time.

A variation of our algorithm for constructing =,.(P) deals with polygons with
holes. It constructs a partition of a polygon with holes into tree monotone sub-
polygons with holes such that the pockets of the holes are also tree monotone
polygons; see [2].

4 Y -Monotone Partitions

We now present an algorithm for constructing a partition of a tree monotone
polygon into y-monotone subpolygons such that the monotone cover number
of the partition is minimized. Using this algorithm we can partition a simple
polygon into y-monotone subpolygons such that the monotone cover number
of the partition is within two of the minimum monotone cover number of any
partition of the polygon into y-monotone subpolygons. The proofs of the lemmas
in this section are found in [2].

Figure3. Partitions 7.(Q) and 7w (Q) of an tree +y-monotone polygon Q into y-
monotone subpolygons; G, (7.(Q)) = 3 and C, (7., (Q)) = 4

3 There are many simpler O (nlogn) time algorithms to choose from; e.g. [5,8].



A tree, say T, can be partitioned into paths by deleting all edges on each
internal node except the edge to the parent node and the edge of one child node.
If, for each internal node, the edge kept is to the child node that is the root of
the largest subtree the centroid path decomposition of T' [7] is constructed. If,
instead, for each internal node, the edge kept is to the child that is the root of
the subtree of maximum height then the partition constructed is what we call
the longest path decomposition of T. In both cases we break ties arbitrarily.

Let @ be an m vertex tree monotone polygon, T, be the centroid path
decomposition of A(Q), and T}, be its longest path decomposition. We denote
by 7, (Q) the partition of Q induced by the edges of 7(Q) crossed by some edge
of T, and by 71 (Q) the partition of ) induced by the edges of 7(Q) crossed by
some edge of T7..

Lemma 6. C, (71(Q)) < logm and this value is the minimum monotone cover
number of any partition of QQ by chords.

We denote 71, (P) = Ug, ex,(p)TL(Q:) and my (P) = Ug, er, (P)Tw(Q:); note that
7 (P) and m,,(P) are partitions of P.

Lemma 7. Partitions 7w, (P) and 7, (P) can be constructed in O(n) time.

From Theorem 1 and Lemma 6 it is clear that C, (7 (P)) is within a factor of
two of the minimum monotone cover number of any partition of P by chords.
However, this bound is actually much tighter.

Lemma 8. (, (7 (P)) is at most 2logn — 1 and within two (one) of the min-
imum monotone cover number of any partition of P by chords (h-chords).

While this result is interesting mathematically it ignores the size of the subpoly-
gons. For designing algorithms, partition ., (P) may be a better choice because
of the following result. Let Il be a tree partition of a polygon U. We say that
Iy has the telescoping property if, for every subpolygon R of IIy such that
parent(R) # nil, that |I[Ig(parent(R))| > 2 |IIg(R)].

Lemma 9. 7,(Q) has the telescoping property.

Note that this lemma implies that C, (7, (Q)) < logm. More importantly, this
property may allow @ to be searched more efficiently in situations where we can
assign weights to the trapezoids of a y-monotone polygon so that the trapezoids
with large weight are found more quickly by the search algorithm, as for example
occurs with weight-balanced trees.

In [2, 3] this property of 7, (Q) is used find a solution to the circular ray
shooting problem on () matching the space and query complexity of the best
previous result [6] but with a simpler algorithm. We point out that if 77 (Q)
were used instead of 7, (Q), the solution would have a query time of O(log® m).
However, if A(Q) has a height of O(logm) the cost of a query is O(logm) even
using 77,(Q). This matters because in this case the solution can be made much
simpler and also faster by a constant factor if 77, (Q) is used.



Finally, using Theorem 1, this solution is easily generalized to apply to simple
polygons.

Perhaps this approach can also be used to develop a simpler ray shooting
algorithm for polygons. This would require that a sufficiently simple algorithm
for ray shooting in y-monotone polygons be found. We are exploring further
applications of the results of this paper.
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