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A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to arbitrary
n-dimensional Euclidean space R, solving Problem 2 of [3]. By an n-ball we mean a
set of the form {(x, Xp,....x))ERD: (xj-a1)% + (X3-85)2 + ... + (x,-a,)? <1} , where
(aj,ay,...,ay) €ERM and r > 0.

Theorem 1. Foreach n=>1 thereis c, >0 such that for any finite set X C R there is
ACX,|Al= 1/, (n+3), having the following property: if B 2 A is an n-ball, then
BNX|z ¢, X]

This theorem is seen to be optimal in quite a strong way. Let X be any finite set of
points on the moment curve a(t) = (t, ty, t3,....t,), X\ =m==n+1. Then X is the set of

vertices of a convex polyhedron (known as the cyclic n-polytope with m vertices) and
every , (n+l)-element subset A X is the set of vertices of one of its faces. (See

sections 4.7 and 7.4 of [2].) Clearly then, for each such A there is an n-ball B such
that BN X =A.

The following notation will be used. For a set S, II,(S) is the set of n-element
subsets of S. If A C R, then conv A is the convex hull of A.

Lemma?2. Let Y €I1,,3(R"). Thenthereis ACY,
anyn-ball B2A, Y\A)NB=@.

A| ="/ 5 (n+3) , such that for

Proof: There exist disjoint Aj, A, ©Y suchthat | A{|=| A, |= 1/, (n+3) and

conv A; Nconv Ay # @. The argument for obtaining A; and A, is essentially in [1]
and [4]. Let Y = {y, Y2y +=ss¥ps3 )> and then let Y = {yy, Y9, «es¥p13 ) © R? be its Gale
transform. (Here we are assuming, without loss of generality, that R? is the affine span
of Y.) For some y; €Y, the line A in R" through y; and the origin divides R" into
two open half-planes Py, P, suchthat |P;NY |, |P,NY| < 1/, (n+3). Let Cy, Cy,
ZCY besuchthat C;=PNY, GG=P,NYand Z= A NY. By Lemma 1 of [4],
conv (C; UZ;) Nconv (Cy, UZ,) =@ whenever Z; U Z, =Z. But this implies conv C,
NconvCy#@. Sojustlet A;,A; €Y be disjoint sets such that C; S A;,C, C A,
and | A | = |A[| =[1/, (0+3)].




We now claim that either A = A works or A = A, works.

In order to derive a contradiction, let a € conv A; M conv A,, and let By, B, be n-
balls for which A E By, A, CB, andBjNA,=@=B,NA. Clearly BjNB,#0
since a € B; N B, , and also B|\B, # @ # B,\B;. Therefore, there is a unique
hyperplane h such that h M dB; =h N dB;=h N B; (where dB; denotes the boundary
of B;). Let H;, H, be the closed half-spaces such that H; N Hy=h, B;\B, € H, and B,
\B; € H,. Then a € H; N H, =h, so there must be some b & A; Nh. Butthen b

€ B, , which is a contradiction.

A simple coumting argument allows us to deduce Theorem 1 from Lemma 2. This is

abstracted in the next lemma.

Lemma 3. Let S be an infinite set, p a collection of subsets of S, and r and m
positive integers with r = m+2. Suppose that for each Y € I1, (S) there is A € I1(Y)

such that whenever ACB &€ f,then (YAA)NBz#@. Letc= (m! (r-m-1)!D)/r1. Then
for any sufficiently large, finite X & S there is A € I, (X) such that whenever A C B

€pf,then IBNXI>clXI

Proof : First notice that

B
(*) c<1—[1—|j]] r-m

r

To see why, let b=1/| |sothatO<c<b<1. Then (*) holdsiff (1-b)1/b < (1-c)l/c,

m
and the latter inequality holds since (1-x)!/* is a decreasing function on (0, 1).

For integers t > IL consider X € II(S). Forsuch an X, there are sets A € I1,(X)
-c

and © € I1(X) such that || = % and foreach Y €m, A is as in the hypothesis of
the lemma. We claim that this is the desired A if t is large enough.

For suppose that for arbitrarily large t= IL there are X, A and m as above such
-c



that for some B € wr, B2 A and |B N X| =ct. The number of sets Y € IT(X) for
t—ct

which Y N B = A is at least [
r—-m

}. No such Y isin 7 ; therefore,

© - r% [[m] - [ -

For all t> IL’ f(t) =<g(t), where
-c

ey = o [eEmf™ et m) (et ™!
" m  (kn!] -m)! (r-m)!

Then t11_1Ln g(t) = [r;] [1 - (1-c)rm ] > 1. Therefore

1
c>1- [ 1- i;] ] rm- contradicting (*).

The above argument can be used to show that ¢, > %, improving the constant in [3].

Theorem 1 has several generalizations. We mention just one of them.

Theorem 4. For each m = 1/, (n+3) there is ¢, ,, >0 such that for any finite X &
R | X| = m, there is A € IT,(X) having the following property: if B is an n-ball and
|A < B| = 1/, (n+3) , then |[B N X| = ¢, | X].

This theorem is a consequence of Lemma 5 below (which is the analogue of Lemma 2)

and a version of Lemma 3 whose statement and proof can easily be supplied.
Let Ry(t) be the Ramsey number defined as follows: R(t) is the least r such that

whenever |Y| =1 and II(Y) = P; UP,, then there is W € I1(Y) such that either IT(W)
Py, or II(W) C P,.

Lemma5. Let m>s= 1/, (n+3) , let t>m/c, be an integer (¢, is from Theorem
1), and let r = Ry(t). Suppose Y& II(R"). Then there is A € I (Y) such thatif B is



ann-ball and |BN A| =s,then (Y\A) N B = @.

Proof: Let P={ZETI(Y): foreachn-ball B2 Z,|BN Y| =c,t} . By Ramsey's
Theorem there is W € I1(Y) such that TI(W) C P or II(W) NP #@. By Theorem 1,
I(W)NP=#@; hence, I(W) C P. Any A EII,(W) willdo, for|[BNA| =5
implies
IBNY|=c t>m=|A|.
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