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A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to arbitrary
n-dimensional Euclidean space Rn, solving Problem 2 of [3].  By an n-ball  we mean a
set of the form  {(x1, x2,...,xn)ŒRn:  (x1-a1)2 + (x2-a2)2 + ... + (xn-an)2 ≤ r} , where
(a1,a2,...,an) Œ Rn  and r > 0.

Theorem 1.  For each  n ≥ 1  there is  cn > 0  such that for any finite set  X Õ Rn  there is
A Õ X, |A| ≤    1/2  (n+3) , having the following property:  if  B ⊇ A  is an n-ball, then
|B « X| ≥  cn|X|.

This theorem is seen to be optimal in quite a strong way.  Let  X  be any finite set of
points on the moment curve   a(t) = (t, t2, t3,...,tn),  |X| = m ≥ n+1.  Then  X  is the set of
vertices of a convex polyhedron (known as the cyclic  n-polytope with  m vertices) and
every   2 (n+1) -element subset    A   X  is the set of vertices of one of its faces.  (See
sections 4.7 and 7.4 of [2].)  Clearly then, for each such  A  there is an n-ball   B  such
that   B « X = A.

The following notation will be used.  For a set  S,  Pn(S) is the set of n-element
subsets of  S.  If A Õ Rn, then  conv A  is the convex hull of  A.

Lemma 2.  Let  Y Œ Pn+3(Rn).  Then there is  A Õ Y, |A| =1/ 2 (n+3) , such that for
any n-ball      B ⊇ A,  (Y \ A) « B ≠ Ø.

Proof:  There exist disjoint  A1, A2 Õ Y  such that  | A1| =| A2 | =  1/2 (n+3)  and
conv A1 « conv A2 ≠ Ø.  The argument for obtaining  A1  and  A2  is essentially in [1]
and [4].  Let  Y = {y2, y2, ...,yn+3 ), and then let  Y = {y2, y2, ...,yn+3 ) Õ R2  be its Gale
transform.  (Here we are assuming, without loss of generality, that  Rn  is the affine span
of  Y.)  For some  yi Œ Y, the line l  in  Rn  through  yi  and the origin divides  Rn  into
two open half-planes  P1, P2  such that  P1«Y,  P2 « Y ≤  1/2 (n+3) .  Let   C1, C2,
Z Õ Y  be such that  C1 = P1 « Y,  C2 = P2 « Y and  Z =   l  « Y.  By Lemma 1 of [4],
conv (C1 » Z1) « conv (C2 » Z2) ≠ Ø  whenever  Z1 » Z2 = Z. But this implies conv C1
« conv C2 ≠ Ø.  So just let  A1 , A1 Õ Y  be disjoint sets such that  C1 Õ A1 , C2 Õ A2
and  A  = A1 = [1/ 2 (n+3)].



We now claim that either  A = A1 works or A = A2 works.
In order to derive a contradiction, let  a Œ conv A1 « conv A2, and let  B1, B2  be n-

balls for which  A1 Õ B1,  A2 Õ B2  and B1 « A2 = Ø = B2 « A1.  Clearly  B1 « B2 ≠ Ø
since a Œ  B1 «  B2 , and also  B1\B2 ≠ Ø ≠ B2\B1.  Therefore, there is a unique
hyperplane  h  such that  h  « ∂B1 = h « ∂B1= h « B1 (where ∂Bi denotes the boundary
of Bi).  Let  H1, H2  be the closed half-spaces such that  H1 « H2= h, B1\B2 Õ H1 and  B2
\B1 Õ H2 .  Then  a Œ H1 « H2 = h,  so there must be some  b Œ A1 « h.  But then  b
Œ B2 , which is a contradiction.

A simple coumting argument allows us to deduce Theorem 1 from Lemma 2.  This is
abstracted in the next lemma.

Lemma  3. Let  S  be an infinite set,  b  a collection of subsets of  S, and  r  and  m
positive integers with  r ≥ m+2.  Suppose that for each  Y Œ Pr (S)  there is  A Œ Pm(Y)
such that whenever  A Õ B Œ b , then  (Y\A ) « B ≠ Ø.   Let c = (m! (r-m-1)!)/r!.  Then
for any sufficiently large, finite X Õ S  there is  A Œ Pm (X)  such that whenever  A Õ B
Œ b , then   | B « X | > c | X |.

Proof :  First notice that
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  and for each  Y Œ p,  A  is as in the hypothesis of

the lemma.  We claim that this is the desired  A  if  t  is large enough.

For suppose that for arbitrarily large  t ≥  
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that for some  B  Œ  p,  B ⊇ A  and ÁB « XÁ ≤ ct .  The number of sets  Y Œ Pr(X)  for
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The above argument can be used to show that c2 > 
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, improving the constant in [3].

Theorem 1 has several generalizations.  We mention just one of them.

Theorem 4.  For each  m ≥ 1/2 (n+3)   there is  cn,m > 0 such that for any finite X Õ
Rn, ÍXÍ ≥ m, there is  A Œ Pm(X)  having the following property:  if  B  is an n-ball  and
ÍA ´ BÍ ≥  1/ 2 (n+3)  ,  then ÍB « XÍ ≥ cn,mÍXÍ.

This theorem is a consequence of Lemma 5 below (which is the analogue of Lemma 2)
and a version of Lemma 3 whose statement and proof can easily be supplied.

Let Rs(t) be the Ramsey number defined as follows:  Rs(t)  is the least  r  such that
whenever  ÁYÁ ≥ r  and Ps(Y) = P1 » P2,  then there is W Œ Pt(Y)  such that either Ps(W)
P1,  or  Ps(W) Õ P2.

Lemma 5.  Let  m ≥ s =  1/ 2 (n+3)  , let  t > m/cn  be an integer (cn  is from Theorem
1), and let r = Rs(t).  Suppose  YŒ Pr(Rn).  Then there is A Œ Pm(Y)  such that if  B  is



an n-ball and ÁB « AÁ ≥ s , then (Y \ A) « B ≠ Ø.

Proof:  Let  P = {Z Œ Ps(Y) :  for each n-ball  B ⊇ Z , ÁB « YÁ ≥ cnt}  .  By Ramsey's
Theorem there is W Œ Pt(Y)  such that  Ps(W) Õ P  or  Ps(W) « P ≠ Ø.  By Theorem 1,
Ps(W) « P ≠ Ø ;  hence, Ps(W)  Õ  P .  Any  A Œ Pm(W)  will do,  for ÍB « AÍ ≥ s
implies
ÍB « YÍ ≥ cnt > m =ÍAÍ.

˙
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