I. Barani, J. H. Schmerl, S. J. Sidney, J. Urrutia

A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to arbitrary n-dimensional Euclidean space \mathbb{R}^{n}, solving Problem 2 of [3]. By an n-ball we mean a set of the form $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \square \mathbb{R}^{n}:\left(x_{1}-a_{1}\right)^{2}+\left(x_{2}-a_{2}\right)^{2}+\ldots+\left(x_{n}-a_{n}\right)^{2} \leq r\right\}$, where $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \square \mathbb{R}^{\mathrm{n}}$ and $\mathrm{r}>0$.

Theorem 1. For each $n \geq 1$ there is $c_{n}>0$ such that for any finite set $X \square \mathbb{R}^{n}$ there is A $\square \mathrm{X},|\mathrm{A}| \leq 1 / 2(\mathrm{n}+3)$, having the following property: if $\mathrm{B} \supseteq \mathrm{A}$ is an n -ball, then $|B \square X| \geq c_{n}|X|$.

This theorem is seen to be optimal in quite a strong way. Let X be any finite set of points on the moment curve $\square(\mathrm{t})=\left(\mathrm{t}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots, \mathrm{t}_{\mathrm{n}}\right),|\mathrm{X}|=\mathrm{m} \geq \mathrm{n}+1$. Then X is the set of vertices of a convex polyhedron (known as the cyclic n-polytope with m vertices) and every $2(n+1)$-element subset A X is the set of vertices of one of its faces. (See sections 4.7 and 7.4 of [2].) Clearly then, for each such A there is an n-ball B such that $\mathrm{B} \square \mathrm{X}=\mathrm{A}$.

The following notation will be used. For a set $S, \square_{n}(S)$ is the set of n-element subsets of S. If $A \square \mathbb{R}^{n}$, then conv A is the convex hull of A.

Lemma 2. Let $Y \square \square_{n+3}\left(\mathbb{R}^{n}\right)$. Then there is $A \square Y,|A|={ }^{1 /} 2_{2}(n+3)$, such that for any n-ball $\quad \mathrm{B} \supseteq \mathrm{A},(\mathrm{Y} \backslash \mathrm{A}) \square \mathrm{B} \neq \emptyset$.

Proof: There exist disjoint $A_{1}, A_{2} \square Y$ such that $\left|A_{1}\right|=\left|A_{2}\right|=1 / 2(n+3)$ and conv $A_{1} \square \operatorname{conv} A_{2} \neq \emptyset$. The argument for obtaining A_{1} and A_{2} is essentially in [1] and [4]. Let $Y=\left\{y_{2}, y_{2}, \ldots, y_{n+3}\right)$, and then let $\underline{Y}=\left\{y_{2}, y_{2}, \ldots, y_{n+3}\right) \square \mathbb{R}^{2}$ be its Gale transform. (Here we are assuming, without loss of generality, that \mathbb{R}^{n} is the affine span of Y.) For some $y_{i} \square Y$, the line \square in \mathbb{R}^{n} through y_{i} and the origin divides \mathbb{R}^{n} into two open half-planes P_{1}, P_{2} such that $\left|P_{1} \square \underline{Y}\right|,\left|P_{2} \square \underline{Y}\right| \leq 1 / 2(n+3)$. Let C_{1}, C_{2}, Z $\square \mathrm{Y}$ be such that $\underline{C}_{1}=\mathrm{P}_{1} \square \underline{Y}, \underline{\mathrm{C}}_{2}=\mathrm{P}_{2} \square \underline{\mathrm{Y}}$ and $\mathrm{Z}=\square \square \underline{\mathrm{Y}}$. By Lemma 1 of [4], conv $\left(\mathrm{C}_{1} \square \mathrm{Z}_{1}\right) \square \operatorname{conv}\left(\mathrm{C}_{2} \square \mathrm{Z}_{2}\right) \neq \emptyset$ whenever $\mathrm{Z}_{1} \square \mathrm{Z}_{2}=\mathrm{Z}$. But this implies conv C_{1} \square conv $C_{2} \neq \emptyset$. So just let $A_{1}, A_{1} \square Y$ be disjoint sets such that $C_{1} \square A_{1}, C_{2} \square A_{2}$ and $|\mathrm{A}|=\left|\mathrm{A}_{1}\right|=[1 / 2(\mathrm{n}+3)]$.

We now claim that either $\mathrm{A}=\mathrm{A}_{1}$ works or $\mathrm{A}=\mathrm{A}_{2}$ works.
In order to derive a contradiction, let a \square conv $A_{1} \square$ conv A_{2}, and let B_{1}, B_{2} be n balls for which $A_{1} \square B_{1}, A_{2} \square B_{2}$ and $B_{1} \square A_{2}=\emptyset=B_{2} \square A_{1}$. Clearly $B_{1} \square B_{2} \neq \emptyset$ since a $\square B_{1} \square B_{2}$, and also $B_{1} \backslash B_{2} \neq \emptyset \neq B_{2} \backslash B_{1}$. Therefore, there is a unique hyperplane h such that $h \square \partial \mathrm{~B}_{1}=\mathrm{h} \square \partial \mathrm{B}_{1}=\mathrm{h} \square \mathrm{B}_{1}$ (where $\partial \mathrm{B}_{\mathrm{i}}$ denotes the boundary of B_{i}). Let \square_{1}, \square_{2} be the closed half-spaces such that $\square_{1} \square \square_{2}=h, B_{1} \backslash B_{2} \square \square_{1}$ and B_{2} $\backslash \mathrm{B}_{1} \square \mathrm{H}_{2}$. Then a $\square \square_{1} \square \square_{2}=\mathrm{h}$, so there must be some $\mathrm{b} \square \square_{1} \square \mathrm{~h}$. But then b $\square \mathrm{B}_{2}$, which is a contradiction.

A simple coumting argument allows us to deduce Theorem 1 from Lemma 2. This is abstracted in the next lemma.

Lemma 3. Let S be an infinite set, \square a collection of subsets of S, and r and m positive integers with $r \geq m+2$. Suppose that for each $Y \square \square_{r}(S)$ there is $A \square \square_{m}(Y)$ such that whenever $A \square B \square \square$, then $(Y \backslash A) \square B \neq \emptyset$. Let $c=(m!(r-m-1)!) / r!$. Then for any sufficiently large, finite $X \square S$ there is $A \square \square_{m}(X)$ such that whenever $A \square B$ $\square \square$, then $|B| X|>c| X \mid$.

Proof: First notice that

$$
\mathrm{c}<1-\left[1-\frac{1}{\left[\begin{array}{c}
\mathrm{r} \tag{*}\\
\mathrm{~m}
\end{array}\right]}\right]^{\frac{1}{\mathrm{r}-\mathrm{m}}}
$$

To see why, let $\mathrm{b}=1 / \operatorname{Cr}_{n}\left[\right.$ so that $0<\mathrm{c}<\mathrm{b}<1$. Then $(*)$ holds iff $(1-\mathrm{b})^{1 / \mathrm{b}}<(1-\mathrm{c})^{1 / \mathrm{c}}$, and the latter inequality holds since $(1-\mathrm{x})^{1 / \mathrm{x}}$ is a decreasing function on $(0,1)$.

For integers $\mathrm{t} \geq \frac{r}{1 \square c}$ consider $\mathrm{X} \square \square_{\mathrm{t}}(\mathrm{S})$. For such an X , there are sets $\mathrm{A} \square \square_{\mathrm{m}}(\mathrm{X})$ and $\square \square \square_{\mathrm{r}}(\mathrm{X})$ such that $|\square| \geq \frac{\text { 虽 }}{\square t \square}$ and for each Y $\square \square, \mathrm{A}$ is as in the hypothesis of the lemma. We claim that this is the desired A if t is large enough.

For suppose that for arbitrarily large $\mathrm{t} \geq \frac{r}{1 \square c}$ there are X, A and \square as above such
that for some $\mathrm{B} \square \square, \mathrm{B} \supseteq \mathrm{A}$ and $\square \mathrm{B} \square \mathrm{X} \square \leq \mathrm{ct}$. The number of sets $\mathrm{Y} \square \square_{\mathrm{r}}(\mathrm{X})$ for

$$
\left.\mathrm{f}(\mathrm{t}) \equiv \frac{\left[\begin{array}{c}
\mathrm{t} \\
\mathrm{~m}
\end{array}\right]}{\left[\begin{array}{l}
\mathrm{t} \\
\mathrm{r}
\end{array}\right]}\left[\begin{array}{l}
\mathrm{t}-\mathrm{m} \\
\mathrm{r}-\mathrm{m}
\end{array}\right]-\left[\begin{array}{c}
\mathrm{t}-\mathrm{ct} \\
\mathrm{r}-\mathrm{m}
\end{array}\right]\right] \geq 1
$$

For all $\mathrm{t} \geq \frac{r}{1 \square c}, \mathrm{f}(\mathrm{t}) \leq \mathrm{g}(\mathrm{t})$, where

$$
\mathrm{g}(\mathrm{t}) \equiv \stackrel{\mathrm{t}^{\mathrm{m}}}{\mathrm{~m}} \cdot \underset{(\mathrm{k}!\mathrm{r})!}{\mathrm{r}!}\left[\begin{array}{cc}
(\mathrm{t}-\mathrm{m})^{\mathrm{r}-\mathrm{m}} \\
(\mathrm{r}-\mathrm{m})! & -(\mathrm{t}-\mathrm{ct})^{\mathrm{r}-\mathrm{m}}-(\mathrm{r}-\mathrm{m})^{2} \\
(\mathrm{t}-\mathrm{ct})^{\mathrm{r}-\mathrm{m}-1}
\end{array}\right]
$$

Then $\lim _{\mathrm{t} \square} \mathrm{g}(\mathrm{t})=\left[\begin{array}{c}\mathrm{r} \\ \mathrm{m}\end{array}\right]\left[1-(1-\mathrm{c})^{\mathrm{r}-\mathrm{m}}\right] \geq 1$. Therefore
$c \geq 1-\left[1-\frac{1}{\left[\begin{array}{c}r \\ m\end{array}\right]}\right]^{\frac{1}{\mathrm{r}-\mathrm{m}}} \quad$, contradicting $\left(^{*}\right)$.

The above argument can be used to show that $\mathrm{c}_{2}>\frac{1}{30}$, improving the constant in [3].
Theorem 1 has several generalizations. We mention just one of them.

Theorem 4. For each $m \geq 1 / 2(n+3)$ there is $c_{n, m}>0$ such that for any finite $X \square$ $\mathbb{R}^{\mathrm{n}}, \square \mathrm{X} \square \geq \mathrm{m}$, there is $A \square \square_{\mathrm{m}}(\mathrm{X})$ having the following property: if B is an n-ball and $\square A \square B \square \geq 1 / 2(n+3)$, then $\square B \square X \square \geq c_{n, m} \square X \square$

This theorem is a consequence of Lemma 5 below (which is the analogue of Lemma 2) and a version of Lemma 3 whose statement and proof can easily be supplied.

Let $R_{s}(t)$ be the Ramsey number defined as follows: $R_{s}(t)$ is the least r such that whenever $\square \mathrm{Y} \square \geq \mathrm{r}$ and $\square_{s}(\mathrm{Y})=\mathrm{P}_{1} \square \mathrm{P}_{2}$, then there is $\mathrm{W} \square \square_{\mathrm{t}}(\mathrm{Y})$ such that either $\square_{\mathrm{s}}(\mathrm{W})$ P_{1}, or $\square_{s}(W) \square P_{2}$.

Lemma 5. Let $\mathrm{m} \geq \mathrm{s}=1 / 2(\mathrm{n}+3)$, let $\mathrm{t}>\mathrm{m} / \mathrm{c}_{\mathrm{n}}$ be an integer $\left(\mathrm{c}_{\mathrm{n}}\right.$ is from Theorem 1), and let $r=R_{s}(t)$. Suppose $Y \square \square_{r}\left(\mathbb{R}^{n}\right)$. Then there is $A \square \square_{m}(Y)$ such that if B is
an n-ball and $\square \beta \cdot A \square \geq s$, then $(Y \backslash A) \square B \neq \emptyset$.

Proof: Let $\mathrm{P}=\left\{\mathrm{Z}_{\mathrm{\square}} \square_{\mathrm{s}}(\mathrm{Y})\right.$: for each n -ball $\left.\mathrm{B} \supseteq \mathrm{Z}, \mathrm{B} \square \mathrm{Y} \square \geq \mathrm{c}_{\mathrm{n}} \mathrm{t}\right\}$. By Ramsey's Theorem there is $W \square \square_{t}(Y)$ such that $\square_{s}(W) \square P$ or $\square_{s}(W) \square P \neq \emptyset$. By Theorem 1, $\square_{s}(W) \square \mathrm{P} \neq \emptyset$; hence, $\square_{\mathrm{s}}(\mathrm{W}) \square \mathrm{P}$. Any $A \square \square_{\mathrm{m}}(\mathrm{W})$ will do, for $\square \mathrm{B} \square \mathrm{A} \square \geq \mathrm{s}$ implies
$\square \mathrm{B} \square \mathrm{Y} \square \geq \mathrm{c}_{\mathrm{n}} \mathrm{t}>\mathrm{m}=\square \mathrm{A} \square$

References

[1] Eckhoff, J., Primitive Random Partitions, Mathematika 21 (1974), 32-37.
[2] Grünbaum, B., Convex Polytopes, (London-New York-Sydney, 1967).
[3] Neumann-Lara, V., and Urrutia, J.. A Combinatorial Result on Points and Circles on the Plane
[4] Shepard, G. C., Neighbourliness and Radon's Theorem, Mathematika 16 (1969), 273-275.

