A Combinatorial Result About Points and Balls in Euclidean Space

I. Barani, J. H. Schmerl, S. J. Sidney, J. Urrutia

A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to arbitrary n-dimensional Euclidean space \mathbb{R}^n , solving Problem 2 of [3]. By an n-*ball* we mean a set of the form $\{(x_1, x_2, ..., x_n) \in \mathbb{R}^n: (x_1-a_1)^2 + (x_2-a_2)^2 + ... + (x_n-a_n)^2 \le r\}$, where $(a_1, a_2, ..., a_n) \in \mathbb{R}^n$ and r > 0.

<u>Theorem 1</u>. For each $n \ge 1$ there is $c_n > 0$ such that for any finite set $X \subseteq \mathbb{R}^n$ there is $A \subseteq X$, $|A| \le 1/2$ (n+3), having the following property: if $B \supseteq A$ is an n-ball, then $|B \cap X| \ge c_n |X|$.

This theorem is seen to be optimal in quite a strong way. Let X be any finite set of points on the *moment curve* $\alpha(t) = (t, t_2, t_3, ..., t_n)$, $|X| = m \ge n+1$. Then X is the set of vertices of a convex polyhedron (known as *the cyclic* n-*polytope with* m *vertices*) and every $_2$ (n+1) -element subset A X is the set of vertices of one of its faces. (See sections 4.7 and 7.4 of [2].) Clearly then, for each such A there is an n-ball B such that $B \cap X = A$.

The following notation will be used. For a set S, $\Pi_n(S)$ is the set of n-element subsets of S. If $A \subseteq \mathbb{R}^n$, then conv A is the convex hull of A.

Lemma 2. Let $Y \in \Pi_{n+3}(\mathbb{R}^n)$. Then there is $A \subseteq Y$, $|A| = \frac{1}{2} (n+3)$, such that for any n-ball $B \supseteq A$, $(Y \setminus A) \cap B \neq \emptyset$.

<u>Proof</u>: There exist disjoint $A_1, A_2 \subseteq Y$ such that $|A_1| = |A_2| = 1/2$ (n+3) and conv $A_1 \cap \text{conv } A_2 \neq \emptyset$. The argument for obtaining A_1 and A_2 is essentially in [1] and [4]. Let $Y = \{y_2, y_2, ..., y_{n+3}\}$, and then let $\underline{Y} = \{\underline{y}_2, \underline{y}_2, ..., \underline{y}_{n+3}\} \subseteq \mathbb{R}^2$ be its Gale transform. (Here we are assuming, without loss of generality, that \mathbb{R}^n is the affine span of Y.) For some $y_i \in Y$, the line λ in \mathbb{R}^n through \underline{y}_i and the origin divides \mathbb{R}^n into two open half-planes P_1, P_2 such that $|P_1 \cap \underline{Y}|$, $|P_2 \cap \underline{Y}| \leq 1/2$ (n+3). Let $C_1, C_2,$ $Z \subseteq Y$ be such that $\underline{C}_1 = P_1 \cap \underline{Y}, \ \underline{C}_2 = P_2 \cap \underline{Y}$ and $Z = \lambda \cap \underline{Y}$. By Lemma 1 of [4], conv $(C_1 \cup Z_1) \cap$ conv $(C_2 \cup Z_2) \neq \emptyset$ whenever $Z_1 \cup Z_2 = Z$. But this implies conv C_1 \cap conv $C_2 \neq \emptyset$. So just let $A_1, A_1 \subseteq Y$ be disjoint sets such that $C_1 \subseteq A_1, C_2 \subseteq A_2$ and $|A| = |A_1| = [1/2 (n+3)]$. We now claim that either $A = A_1$ works or $A = A_2$ works.

In order to derive a contradiction, let $a \in \operatorname{conv} A_1 \cap \operatorname{conv} A_2$, and let B_1, B_2 be nballs for which $A_1 \subseteq B_1$, $A_2 \subseteq B_2$ and $B_1 \cap A_2 = \emptyset = B_2 \cap A_1$. Clearly $B_1 \cap B_2 \neq \emptyset$ since $a \in B_1 \cap B_2$, and also $B_1 \setminus B_2 \neq \emptyset \neq B_2 \setminus B_1$. Therefore, there is a unique hyperplane h such that $h \cap \partial B_1 = h \cap \partial B_1 = h \cap B_1$ (where ∂B_1 denotes the boundary of B_1). Let H_1, H_2 be the closed half-spaces such that $H_1 \cap H_2 = h, B_1 \setminus B_2 \subseteq H_1$ and B_2 $\setminus B_1 \subseteq H_2$. Then $a \in H_1 \cap H_2 = h$, so there must be some $b \in A_1 \cap h$. But then $b \in B_2$, which is a contradiction.

A simple counting argument allows us to deduce Theorem 1 from Lemma 2. This is abstracted in the next lemma.

<u>Lemma 3</u>. Let S be an infinite set, β a collection of subsets of S, and r and m positive integers with $r \ge m+2$. Suppose that for each $Y \in \Pi_r(S)$ there is $A \in \Pi_m(Y)$ such that whenever $A \subseteq B \in \beta$, then $(Y \setminus A) \cap B \ne \emptyset$. Let c = (m! (r-m-1)!)/r!. Then for any sufficiently large, finite $X \subseteq S$ there is $A \in \Pi_m(X)$ such that whenever $A \subseteq B \in \beta$, then $|B \cap X| > c |X|$.

<u>Proof</u>: First notice that

(*)
$$c < 1 - \left[1 - \frac{1}{\begin{bmatrix} r \\ m \end{bmatrix}} \right]^{\frac{1}{r-m}}$$

To see why, let $b = 1/{\binom{r}{m}}$ so that 0 < c < b < 1. Then (*) holds iff $(1-b)^{1/b} < (1-c)^{1/c}$,

and the latter inequality holds since $(1-x)^{1/x}$ is a decreasing function on (0, 1).

For integers $t \ge \frac{r}{1-c}$ consider $X \in \Pi_t(S)$. For such an X, there are sets $A \in \Pi_m(X)$ and $\pi \in \Pi_r(X)$ such that $|\pi| \ge \frac{\begin{bmatrix} t \\ r \end{bmatrix}}{\begin{bmatrix} t \\ m \end{bmatrix}}$ and for each $Y \in \pi$, A is as in the hypothesis of

the lemma. We claim that this is the desired A if t is large enough.

For suppose that for arbitrarily large $t \ge \frac{r}{1-c}$ there are X, A and π as above such

that for some $B \in \pi$, $B \supseteq A$ and $|B \cap X| \le ct$. The number of sets $Y \in \Pi_r(X)$ for which $Y \cap B = A$ is at least $\begin{bmatrix} t - ct \\ r - m \end{bmatrix}$. No such Y is in π ; therefore,

$$f(t) = \begin{bmatrix} t \\ m \end{bmatrix} \begin{bmatrix} t - m \\ r - m \end{bmatrix} - \begin{bmatrix} t - ct \\ r - m \end{bmatrix} \ge 1$$

For all $t \ge \frac{r}{1-c}$, $f(t) \le g(t)$, where

$$g(t) = \frac{t^{m}}{m} \cdot \frac{r!}{(k-r)!} \begin{bmatrix} (t-m)^{r-m} & (t-ct)^{r-m} - (r-m)^{2} & (t-ct)^{r-m-1} \\ (r-m)! & (r-m)! \end{bmatrix}$$

Then $\lim_{t \to \infty} g(t) = \begin{bmatrix} r \\ m \end{bmatrix} \begin{bmatrix} 1 - (1-c)^{r-m} \end{bmatrix} \ge 1$. Therefore $c \ge 1 - \begin{bmatrix} 1 - \begin{bmatrix} \frac{1}{r} \\ m \end{bmatrix} \end{bmatrix}^{\frac{1}{r-m}}$, contradicting (*).

The above argument can be used to show that $c_2 > \frac{1}{30}$, improving the constant in [3]. Theorem 1 has several generalizations. We mention just one of them.

<u>Theorem 4</u>. For each $m \ge 1/2$ (n+3) there is $c_{n,m} > 0$ such that for any finite $X \subseteq \mathbb{R}^n$, $|X| \ge m$, there is $A \in \Pi_m(X)$ having the following property: if B is an n-ball and $|A \leftrightarrow B| \ge 1/2$ (n+3), then $|B \cap X| \ge c_{n,m}|X|$.

This theorem is a consequence of Lemma 5 below (which is the analogue of Lemma 2) and a version of Lemma 3 whose statement and proof can easily be supplied.

Let $R_s(t)$ be the Ramsey number defined as follows: $R_s(t)$ is the least r such that whenever $|Y| \ge r$ and $\Pi_s(Y) = P_1 \cup P_2$, then there is $W \in \Pi_t(Y)$ such that either $\Pi_s(W)$ P_1 , or $\Pi_s(W) \subseteq P_2$.

<u>Lemma 5</u>. Let $m \ge s = 1/2$ (n+3), let $t > m/c_n$ be an integer (c_n is from Theorem 1), and let $r = R_s(t)$. Suppose $Y \in \Pi_r(\mathbb{R}^n)$. Then there is $A \in \Pi_m(Y)$ such that if B is

an n-ball and $|B \cap A| \ge s$, then $(Y \setminus A) \cap B \ne \emptyset$.

.

<u>Proof</u>: Let $P = \{Z \in \Pi_s(Y) : \text{ for each n-ball } B \supseteq Z, |B \cap Y| \ge c_n t\}$. By Ramsey's Theorem there is $W \in \Pi_t(Y)$ such that $\Pi_s(W) \subseteq P$ or $\Pi_s(W) \cap P \neq \emptyset$. By Theorem 1, $\Pi_s(W) \cap P \neq \emptyset$; hence, $\Pi_s(W) \subseteq P$. Any $A \in \Pi_m(W)$ will do, for $|B \cap A| \ge s$ implies $|B \cap Y| \ge c_n t > m = |A|$.

References

[1] Eckhoff, J., Primitive Random Partitions, Mathematika 21 (1974), 32-37.

[2] Grünbaum, B., *Convex Polytopes*, (London-New York-Sydney, 1967).

[3] Neumann-Lara, V., and Urrutia, J.. A Combinatorial Result on Points and Circles on the Plane

[4] Shepard, G. C., Neighbourliness and Radon's Theorem, Mathematika *16* (1969), 273-275.