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Abstract

A known result in combinatorial geometry states that any collection
Pn of points on the plane contains two such that any circle containing
them contains n/c elements of  Pn,  c a constant.  We prove:  Let  F be
a family of n disjoint compact convex sets on the plane,  S  be a strictly
convex compact set.  Then there are two elements  Si, Sj  of  F  such
that any set S' homothetic to  S  that contains them contains nc   elements
of  F,  c  a constant (S' is homothetic to  S  if  S'=lS + v, where l is a
real number greater than 0 and v is a vector of  ¬2).  Our proof method
is based on a new type of Voronoi diagram,  called the "closest covered
set diagram" based on a convex distance function.  We also prove that,
unlike previous generalizations of the original result on points and
circles, our result does not generalize to higher dimensions, we construct
a set F  of n disjoint convex sets in  ¬3 such that for any subset H of
F  there is a sphere SH containing all of the elements of  H, and no
element of F-H is contained in SH.

1.  Introduction

A known result in combinatorial geometry asserts that any collection Pn  of n points
on the plane contains two elements u, v ŒPn  such that  any circle containing them contains
at least 

n
c  points of  Pn. The first proved value for c was 60 [9], which was successively

improved to 30 [2], then to  
84
5    [6] and at this point, the best known value for  c  is  4.7 (see

[3]).  Containment problems between families of points and circle, originated from the study
of circle orders, i.e. partial orders obtained from containment relations of families of circles
on the plane, see [4, 10].

In this paper we prove the following:   Let  S  be a strictly compact convex set  (i.e. it
is closed and bounded and has no piecewise linear segments on its boundary) and
F={S1,...,Sn} a family of disjoint compact convex sets.  Then there are two elements Si,
SjŒFn  such that any set  S'  homothetic to  S  containing them contains  

n-2
30    elements of

F.  (S' is homothetic to  S  if  S'=lS + v, where l is a real greater than 0 and v is a vector of
¬2).  Our proof relies heavily on a new type of Voronoi diagrams, which we suggest to call
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the "closest covered set Voronoi diagram".   In general, a Voronoi diagram is a partitioning
of the plane according to a distance function defined between the points of the plane and a
collection of sites (the elements of F) according to a distance function defined by  S.

The original result for points and circles proved in [9] has been generalized to
higher dimensions in [2]; in [1]  a surprising generalization using collections of points and
ellipsoids in euclidean spaces was given.  Our new result seems to be of a different nature
that the previous ones:  it does not generalize to higher dimensions.  An example of a family
H' of  n  disjoint convex sets in ¬3 with the property that for every pair of elements of  H'
there is a sphere that contains them and no other element of  H' is presented at the end of
our paper.  

2. Proof of our main result

Our objective in this section is to prove:

Theorem 1: Let  F = {S1,...,Sn} be a family of disjoint compact convex sets on the
plane, and  S  any strictly convex compact  set.  Then there are two elements  Si, Sj Œ F
such that any convex set  S' homothetic to  S  containing them contains at least   

n
30  

elements of  F.

In order to prove our main result, we will need the folowing:

Theorem 2: Let  H be any family of five disjoint compact convex sets,  S  a strictly
convex compact set.  Then there are two elements  Si, Sj Œ H  such that any  S' homothetic
to  S  containing them contains another element of  H.

To avoid getting lost in details, and concentrate on the main ideas behind our result,
we will prove Theorem 2  in section 3.  We now proceed to prove Theorem 1.

Proof of Theorem 1:  Construct a bipartite graph  G  with  V(G) = X  »  Y  where  X
consists of all subsets of pairs of elements of  F  and  Y  contains all of the subsets of  F
with exactly five elements.  A vertex  T Œ X  is adjacent to a vertex  T' Œ Y  iff  T Ã T'  and
any homothetic copy of  S  containing the elements of  T  contains at least another element
of  T'.  By Theorem 2, the degree of every element  T' Œ Y  is at least one and thus the sum
of the degrees of all elements in  X  is at least  Y   =Ë

Ê
¯
ˆn

5  .  Then there is a vertex in  X  with
degree at least
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Y

X   = 
Ë
Ê

¯
ˆn

5
Ë
Ê

¯
ˆn

2
  = 

(n–2)(n–3)(n-4)
60  

In other words, there exists a subset  T  of   F  containing two elemets, say Si  and
Sj  such that any set  S'  homothetic to  S  that contains them, contains at least one other
element of   

(n-2)(n-3)(n-4)
60    five subsets of  F.  Allowing for redundancies (each  T,

together with any other element of F, belongs to 
(n-3)(n-4)

2   different five subsets of  F), we
obtain that any  S'  homothetic to  S  containing Si  and  Sj  contains at least   

(n-2)
30   

elements of  F.

3.  Proof of Theorem 2

In this section we prove Theorem 2.  Some definitions and terminology will be
needed before we can start our proof.

3.1 A generalization of Voronoi diagrams

Suppose without loss of generality that  S  contains the origin  (0,0)  in its interior.
Let  Y = {lS ={lx: xŒS}: l≥0}.  All elements  lS Œ Y  are homothetic to  S.  Call  (0,0)
the vortex of  Y.  In turn we call (0,0)  the vortex of  lS " lS Œ Y.

Let  S'  be homothetic to  S.  Then  S'  is a translation by a vector  t = (a,b) of some
lS Œ Y, that is  S' =t+lS ; lS ŒY, t = (a,b).  The vortex of  S'  is now defined to be the
image of  (0,0) "under this translation, ie. vortex(S') = t.

Given any point  p  on the plane and a convex set  Q,  define the distance  dS(p,Q)
to be the smallest  l  such that S'=p+lS   and S'  contains  Q.  Given two disjoint sets  S1
and S2,  we may now define the vortex bisector  bS(S1,S2) to be the set of points  p
satisfying:

dS(p,S1) = dS(p,S2)

It is easy to see that under the restrictions imposed on  S,  the vortex bisector of  S1  and  S2
is well defined and is always a simple curve that partitions  ¬2 –bS(S1,S2)   into two disjoint
sets, the one consisting of all points closer to  S1  than to  S2  and the other containing those
closer to S2  than to  S1.
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Consider now a family  F ={S1,...,Sn} of disjoint compact convex sets.  We may
associate to each member  of  Si ŒF  a Voronoi region VorS(Si)  consisting of all points  p
on the plane  such that  dS(p,Si) ≤ dS(p,Sj)  for every  Sj Œ F, j≠i.

The set of regions  VorS(Si) thus obtained will be called the "closest covered set
Voronoi diagram" of  F with respect to  S  and will be denoted by  Vor(S,F).

It is easy to verify that if  S  is a disk  C  (a circle together with its interior), the
origin is the centre of  D  and  F  a set of points, then we obtain precisely a Voronoi
diagram.

There are, however, some important differences between  Vor(S,F)  and regular
Voronoi diagrams.  It might happen, for example, that there are elements of  F  such that
VorS(Si) =  Ø.  For example if  F = {S1 = {(-1,0)}, S2 = {(x,y): x=0, -2≤y≤2}, S3 =
{(1,0)}} and  C  is a disk with center at the origin, then VorC(S2) = Ø.  See Figure 1.

S1

S2

S3

Figure 1.

P

Q

Figure 2

Given two convex sets,  P, Q  such that  P Ã Q  we say that  P  splits  Q  if  Q - P  is
not connected;  see  Figure  2.
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We proceed now to characterize those sets   Si Œ F  for which  VorS(Si) = Ø.  The
following observation will be useful:

Observation 1:  Let  S' and  S"  be two different strictly convex and homothetic
sets.  Then their boundaries intersect in at most two points.

Lemma 1: VorS(Si) = Ø  iff there is  S'  homothetic to  S  such that

i)  Si  splits  S'

ii) There are two different components  A, B  of  S' - Si  and  two elements  Sj, Sk
of  F  such that  Sj Ã A, Sk Ã B.  See Figure 3.

S i Sj
S k

S'

Figure 3

Proof:  Suppose that VorS(Si) = Ø.  Among all  S' homothetic to  S  containing  Si

choose the one with smallest area, call it  S".  It is easy to see that under the conditions
assumed on  S  that  Si  splits  S".  Since VorS(Si) = Ø the vortex v"  of  S" belongs to
VorS(Sj) = Ø  for some  j≠i.  This implies that  Sj is contained in  S", and since  Si  splits
S"  it belongs to one component  H  of  S"-Si.  Assume for the moment that no other
element of  F  is contained in  H  (this restriction can be easily deleted and, assuming it true
simplifies considerable our proof).  Using tools in mathematical analysis, it is easy to show
that there is  a set  S' homothetic to  S  that satisfies the following conditions:

a)  S'  contains  Si  and  Sj.

b)  Si  splits  S'

c)  Sj  intersects the boundary of  S'.
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It is now easy to see using continuity arguments that if all elements  Sk  with k≠i,j
are not contained in  S'  then we could easily find a homothetic copy  Q  of  S  that contains
only  Si . (See figure 4).  That is  the vortex of  Q  belongs to VorS(Si), which is a
contradiction.

S"

S i Sj
S k

S'

Figure 4.

Conversely, suppose that there is a set  S'  satisfying the conditions of our lemma.
Then it is easy to see using observation 1 that any homothetic copy S"  of  S  containing  Si  
contains either  Sj  or  Sk  in its interior .  In either case, the vortex of  S"  belongs to
Vor(Si)  or  Vor(Sj)  respectively, and thus  Vor(Si)=∅.

We shall also need the following result:

Lemma 2: If   VorS(Si) ≠ Ø, then it is also connected.

The proof of this lemma is interesting on its own.  To avoid breaking the flow of our
paper we will postpone the proof of this lemma until section 3.3.

Next we prove:

Lemma 3: Let   F  be a family with at least four convex sets, and let   Si Œ F  such
that   VorS(Si) = Ø. Then there is   Sj Œ F  such that any   S'  homothetic to   S  containing  
Si  and   Sj  contains other elements of   F.

Proof: By Lemma 1, since  VorS(Si ) = Ø, there are two elements of  F,  say  S1
and  S2  different from  Si,  and a homothetic copy  S'  of  S  such that  Si  splits  S'  and  S1
and  S2  are in two different components,  A  and  B  of  S' \ Si  respectively.
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Since  F has at least four elements, there is  Sj Œ F different from  S1,  S2   and  Si.
We now prove that any" S"  homothetic to S  containing Si  and  Sj   contains  S1  or  S2.

Call  bA  the section of the boundary of  S'  that also belongs to the boundary"of  A.
Suppose then that there is a homothetic copy of  S"  that contains  Si  and  Sj  and does not
contain  S1.  Then  S"  intersects  bA  in at least two points (see Figure 4).  It now follows
that  B, and hence  S2  is totally contained in  S".  Similarly we can prove that if  S2  is not
contained in  S"  then  S1  is, and our lemma is proved.

We are now ready to prove Theorem 2:

Proof of Theorem 2:  Consider a family of five disjoint compact convex sets
F={S1,...,S5}  and a strictly convex compact set  S.  Consider the Voronoi diagram
Vor(S,F).  By Lemma 3 we can assume that  Vor(Si)≠∅  i=1,...,5.  Construct a graph  G  in
which for every region of  Vor(S,F)  there is a vertex in  G.  Two vertices of  G  are adjacent
if their corresponding Voronoi regions are adjacent. Then by planarity arguments there are
two different values  i  and  j  such that   Vor(Si)  and  Vor(Sj)  are not adjacent, otherwise a
planar embedding of the complete graph on five vertices would be obtained.  It is now
immediate that any  S'  homothetic to  S  containing both  Si  and  Sj   contains at least
another element  Sk  of  F, that is the set  Sk  containing the vortex of  S'.

3.2  Dimension 3

We now present an example of a family  F  of n disjoint convex sets in  ¬3  for
which for every subset  FH  of  F  there is a sphere that contains all of the elements of  FH

and does not contain any other element of  F.  First we construct a set  Q={P1,...Pn}  of  n
polygons on the plane as follows:  Consider a circle  C  on the  x-y  plane of  ¬3.  For each
non-empty subset  H  of  In={1....,n}  choose an interval  CH  of  C  such that  if  H  and  H'
are different subsets of  In then  CH « CH' = ∅.  Let  C- H  and C+H  be the initial and final
points of  CH in the counterclockwise direction. For every  non empty subset
H={i(1),...,i(k)}  of  In   take n equidistant points in the interior of CH  and label the first k
of them in the counterclockwise direction with the integers i(1),...,i(k)  and the remaining  n-
k points with the integers in  In-{i(1),...,i(k)} (See figure 5).

Let  aH  be any point in  CH  to the right of  i(k)  appearing before any of the points
on  CH  with a label in In-{i(1),...,i(k)}.   For every i let  Pi be the convex closure of all of
the  2n -1 points in  C  labelled i.
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It is easy to see that any circle that intersects  C  at  C- H  and  aH  and contains the
arc of  C  from  C- H  to  aH  contains all of the  polygons  Pi,  iŒH  and does not contain
any polygon  Pj  such that  j œ H.  For every  i, let  P'"i   be a translate of  Pi  in the direction
of the z-axes by a small  ei, i=1,...,n ;  ei≠ej , i≠j.   Let  F = {P'"1 ,...,P'"n }.  For every  subset
H={i(1),...,i(k)}  of  In  let FH={P '"

i(1) ,...,P '"
i(k) }.  It is now easy to see that  for any non

empty subset  FH  of  F  there is a sphere in  R3  that contains only the elements in  FH

and contains no other element of  F.

H={1,...,k}

1

k

k+1

n

C+
H

C-
H

.

.. .
. .

2
a

H

Figure 5

3.3 The proof of Lemma 2

We proceed now to prove that if a set  Si  is such that  VorS(Si ) ≠ Ø  then  VorS(Si
)  is connected.  We will actually prove that if the interior  Int(VorS(Si ))  of  VorS(Si )  is
non-empty, then it is connected. This suffices to prove our result.

We tackle first the case when  Si  is a convex polygon.  To this end, let us assume
that  Qi Œ F  is a convex polygon,  We may assume that for this case, the boundary of
S(a')  contains two vertices of  Qi.  Otherwise, by first shrinking  S(a')  while keeping its
vortex fixed, we can assure that the boundary of  S(a')  touches the boundary of  Qi  in at
least one vertex, say  p.  Next, consider the line segment  L  joining  a'  to  p.  For every
point  x  of  L  let  S(x,p)  be the homothetic copy of  S  with vortex  x  and containing  p
on its boundary.  Clearly  all  S(x,p)  are contained in  S(a').  If  x  is sufficiently close to  p
S(x,p)  does not contain  Qi, and since  S(a')  contains  Qi  there is a point  y  in  L  such
that  S(y,p)  contains  Qi  and intersects the boundary of  Qi  at  p  and another vertex of Qi
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different from  p.  Similarly, we can assume that  S(a") intersect the boundary of  Qi  in at
least two vertices.

Let  p  and  q  denote the vertices of  Qi  on the boundary of  S(a').  Assume without
loss of generality that the line  L  through  p  and  q  is horizontal.  Note that one or both of
p  and  q  might be the intersection points of  ∂(S(a'))«∂(S(a")).

By assumption,  a'  belongs to the bisector  bS(p, q)  of  p  and  q which is  y-
monotone since  p  and  q  have the same  y-coordinate.  This follows from a result in [7].
By definition, for each  a  in  bS(p, q)  there is a unique homothetic copy of  S(a)  of  S  with
vortex  a  whose boundary contains  p  and  q.  Let  S+(a)  and  S-(a)  be the parts of  S(a)
above (resp. below)  the horizontal line  L  (See Figure 6).

p q

S(a')

S(a")
L

a'

a"

Figure 6

Lemma 4:  As  a  moves along  bS(p, q)  in the upward direction,  S+(a)  is strictly growing
while  S-(a)  is strictly shrinking.

Proof:  Let  a  and  b  be on  bS(p, q).  Either  S+(a)  contains  S+(b)  or viceversa.  Suppose
the former holds,  We have to show that in this case,  a  lies above  b.  Let  c  be the
intersection point of the common 'outer' tangents of  S(a)  and  S(b) (See Figure 7).
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p q

S  (a')

L

a'

a"

S  (a')

S  (a)

+

-

S  (a)+

-

b   (p. q)S

Figure 7

Clearly, c is the center of a homothety between  S(a)  and  S(b).  First, assume that  c  lies
above  L.  From the point of view of  c, the tangents intersect first  S(a)  and then  S(b).
Consequently, the ray from c through  a  and  b  hits  a  first.  This implies that  a  has  a
higher coordinate than  b.  A similar arguments applies if  c  is below  L.

QED.

Now suppose that  S(a')  and  S(a")  are such that the boundary of  S+(a") contains
S+(a')  (See Figure 7).  In order to transform  S(a')  into  S(a")  starting at  a' we move a
point  a  upwards along  bS(p, q),  and study how the set  S(a)  with vortex at  a  and whose
boundary passes through  p  and  q  changes.  By lemma 4,  S+(a)  grows while  S-(a)
shrinks (See figure 8).

Lemma 5:   If  S(a)  contains  Qi, then the only set of  F  contained in  S(a)  is  Qi.

Proof: Suppose that some  Sj ≠ Qi  is also contained in  S(a).  Since  Qi  and  Sj  are
disjoint,  Sj  must be contained either in S-(a)  which is contained in  S(a')  or  S+(a)  is
contained in  S(a"), contradicting our assumptions.

QED.

We can now prove:
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Lemma 6:  Let  Qi  be a convex polygon such that Int(VorS(Qi ))≠Ø.  Then
Int(VorS(Qi )) is connected.

Proof:  Let  a'  and  a"  are poits in the interior of  VorS(Qi)  with  S(a')  and  S(a")  as
defined before.  We may assume that each of the boundaries of  S(a')  and  S(a")  contains
two vertices of  Qi.  We have to prove that there is a path from  a'  to  a"  entirely contained
in Int(VorS(Qi )).  This means that for each point  a  on this path, a  is the vortex of a
homothetic copy   S(a)  of  S  such that   S(a)  contains  Qi  and no other set  Sj≠Qi.  By
assumption,  S(a')  and  S(a")  satisfy this condition.

There are two possible events that can prevent us from moving  a  upwards along
bS(p, q).  First, it could happen that the shrinking boundary of  S(a)  hits a third vertex, say
r  of  Qi (See figure 8).  Note that it cannot happen that  r  is a vertex on the boundary
segment of  Qi  that runs from  the contact points  w and  v  of  S(a")  with  Qi; this would
cause  S(a) to intersect  S(a")  in at least four points, which is impossible, since  S(a')  and
S(a") are homothetic.  At this point, we "update"  a'  and replace it by a.

Now  p  and  q  are not the extreme points of  Qi  contained on the part of  ∂(S(a')
contained in  S(a"),  these are now  r  and  p.  Now we continue moving  a  along the
bisector  bS(r,p) in the same way as before.  and update a'  as we move  a.  Eventually, the
boundary of   S+(a)  will hit the boundary of  S+(a").  At this point,  S(a)=S(a")  and our
result follows.

QED.

We are now ready to prove Lemma 2.

Proof of Lemma 2.  We will prove that  int(Vor(Si)) is connected.  By lemma 6  we can
assume that  Si  is not a convex polygon.  Let  a'  and  a"  points in the interior of  Vor(Si).
This implies that there are sets  S(a')  and  S(a")  with vortices  a'  and  a"  such that  S1  is
contained in the interior of  S(a')  and  S(a").  Let  Qi  be a convex polygon containing  Si
such that  Qi  is contained in   S(a') « S(a").  Since  Si  is a subset of  Qi  then  Vor(Qi)  is
contained in  Vor(Si).  By lemma 6, there is a path from  a' to a"  totally contained in
int(Vor(Qi)) which in turn is contained in Vor(Si).  Our result now follows.

QED.

4.   Conclusions and open problems
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We have proved that for any  F  of disjoint convex sets, and  S  convex,  there are
two elements  Si, Sj Œ F   such that  any homothetic  S'  containing  Si  and  Sj  contains
(n–2)

30    elements  of  F.  We believe that the bound stated in Theorem 1 is far from optimal.
At this point we are unable to give a good estimate for an optimal solution to our problem,
but we believe that a bound of about  

n
4   or  

n
5   is achievable.

For points and circles,"it has been proved that if the elements of  P  are vertices of a
convex polygon,"then there are two points of  P  such that any circle containing them
contains    È

(n-3)
3  ˘  points of  P, and this is optimal  [5].  This result does not extend,

however, to the natural generalization to our problem.  A family  F   of sets is called
convexly independent if no element  Si  of  F  is contained in the convex closure of  F – Si.
We have an example consisting of  4n  elements such that for any pair of elements of
F  there is a circle containing them that contains at most  

n
4   elements of  F  (see Figure 8).

In this more restricted case we venture the next conjecture:

Conjecture: Let  F  be a family of  n  convexly independent sets,  S  a convex set.  Then
there are two elements of  F  such that any  S'  homothetic to  S  containing them contains at
least  

n
4  ±c elements of  F, c a constant.

Figure 8
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Finally, we mention that the construction of the new type of Voronoi diagrams
introduced her, can be carried out in  k O(n log n) time, using techniques developed in [8],
were k is the time it takes to calculate the vortex bisector of two elements of  F.
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