THE COMMUNICATIONS COMPLEXITY HIERARCHY IN DISTRIBUTED COMPUTING

J. B. Sidney ${ }^{+}$and J. Urrutia*

1. INTRODUCTION

Since the pioneering research of Cook [1] and Karp [3] in computational complexity, an enormous amount of research has been directed toward establishing the position of problems in the complexity hierarchy: polynomial, weakly NPcomplete, strongly NP-complete, etc. In rough terms, the computational complexity of a problem is an asymptotic measure of the "amount of time" needed to solve all instances of a problem using a finite state Turing machine with an infinitely long tape. The complexity hierarchy as currently understood depends for its existence on the assumption that $\mathrm{P} \neq \mathrm{NP}$, i.e., that there are problems solvable in exponential time but not in polynomial time. Since the computational complexity for a problem π on any real digital computing system is bounded by a polynomial transformation of the Turing machine complexity, it follows that the Turing machine complexity hierarchy is equally valid for the RAM model of computation.

With the advent of distributed computer systems, a new emphasis must be placed upon establishing the separate complexities of local processing activities (e.g., activities within a single processor) and of communication activities (e.g., information transfers between processors). More specifically, since communication activities tend to be slower and less reliable than local processing activities, algorithm designers should consider the trade-off between the two.

In this paper, we show (section 2), that NP-hard problems are intrisically "hard" also with respect to communication activities, while (section 3) "easy" (P) problems are intrinsically "easy" with respect to communication activities.

[^0]
2. COMMUNICATION COMPLEXITY FOR "HARD" PROBLEMS

Consider a computer system $\mathrm{C}=(\mathbf{P}, \mathbf{S})$ consisting of a finite state processor P and a countably infinite periferal storage devise \mathbf{S}. Processor P has a storage capacity of $\leq \mathrm{m}$ bits, where m includes system occupied space, register space, primary (rapid access) memory, etc. Define the state of C to be a (countable) vector $\square=\left(\square_{p}, \square_{s}\right)$, the concatenation of the state of \square_{p} of P and the state \square_{s} of S. Since P contains at most m bits, there are at most 2^{m} possible values \square_{p} could assume.

Suppose Π is an NP-hard problem, solvable by algorithm A on C under a "reasonable" encoding scheme E, where algorithm A cannot cycle (As discussed in Garey and Johnson [2], no definition of "reasonable" encoding scheme is known, although this notion is essential to complexity results). For any problem instance $\pi \square \Pi$, define $\mathrm{e}(\pi)$ to be the number of bits required to encode Π under E. We shall take as our measure of complexity the number of state transitions taking place during execution of algorithm A, where a state transition may occur at any integer time $t>0$ and involves a change in at most a constant w bits. For example, w could be the world length in the system C. A communication between P and S is defined to be a state transition involving a change in \square_{s}.

Let $h(n)=\operatorname{Max}\{$ number of state transitions of C to solve $\pi \mid e(\pi) \leq n\}$ and let $\mathrm{g}(\mathrm{n})=\operatorname{Max}\{$ number of communications between p and s to solve $\pi \mathrm{le}(\pi) \leq n\}$.

Theorem 1: Assume $\mathrm{P} \neq \mathrm{NP}$ and $\Pi \square \mathrm{P}$. Then there exist no constants a and b such that $\mathrm{g}(\mathrm{n}) \leq \mathrm{a}^{\mathrm{b}}$ for all $\mathrm{n}>0$.
Proof: Given a and b , set $\underline{\mathrm{a}}=2^{\mathrm{m}} \mathrm{a}$. Since $\Pi \square \mathrm{P}$, there must be some value of n such that $\mathrm{h}(\mathrm{n})>\underline{\mathrm{a}} \mathrm{n}^{\mathrm{b}}$. Let n_{o} be such that $\mathrm{h}\left(\mathrm{n}_{\mathrm{o}}\right)>\underline{\mathrm{a}} \mathrm{n}_{\mathrm{o}}{ }^{\mathrm{b}}$. Between any two successive communications between P and S there can be at most 2^{m} state transitions involving changes to only \square_{p} (otherwise there would be cycling). Therefore $g\left(n_{o}\right)>h\left(n_{0}\right) / 2^{m}=a$ $\mathrm{n}_{\mathrm{o}}{ }^{\mathrm{b}}$, from which the result follows. []

3. COMMUNICATION COMPLEXITY FOR 'EASY' PROBLEMS

The results in this section require for their proof a more formal approach based directly on the Turing machine computational model. Our presentation below is based directly on the discussion and notation in Garey and Johnson [2].

There are five procedures which the DTM performs at each iteration; q is the current state at the start of an iteration, and \square is a finite set of tape symbols including q_{o} (start), q_{Y} and q_{N} (yes and no terminate states), and a blank.
READ: read contents \square of tape square being scanned

TRANSFORM: compute $\square(q, \square)=\left(q^{\prime}, \square, \square\right)$ and set $q \quad q^{\prime}$
HALT: if current state $=\mathrm{q}_{\mathrm{Y}}$ or q_{N}, halt execution
WRITE: replace \square with \square on tape square being scanned
POINTER: translate read-write head (pointer) by \square

If a problem Π belongs to P under a "reasonable" encoding scheme E , then by definition there is a polynomial time DTM program M that "solves" Π under the encoding scheme E. In other words, the number of steps or iterations $G(\pi)$ to solve any instance $\pi \square \Pi$ is bounded by a polynomial function $f(e(\pi))$, i.e. $G(\pi) \leq f(e(\pi))$ for all $\pi \square \Pi$. Subject to certain reasonably non-restrictive assumptions, we shall show how M can be realized on a distributed system with the number of required communication activities (to be defined) bounded by a polynomial in e((π).

In order to accomplish this, we define below a model of distributed computer and prove the desired result for this system model. We belive the model is flexible enough to be adapted to deal with most real systems.

Let the computer system $\mathrm{C}=\left(\mathrm{S}_{0}, S\right)$ consist of a finite state processor S_{o} and a countable set S of periferal storage devices $\mathrm{S}_{\mathrm{j}}(\mathrm{j}= \pm 1, \pm 2, \ldots) . \mathrm{S}_{\mathrm{j}}(\mathrm{j} \neq 0)$ has a storage capacity of $\mathrm{m}_{\mathrm{j}}+1 \geq \mathrm{m}$ words ($\mathrm{m} \geq 1$ an integer), each word having at least Max\{ $\left.\square \log _{2}\left(\mathrm{~m}_{\mathrm{j}}+1\right) \square \square\right\}$ where \square is the number of bits required to store the bit-wise longest element of \square. S_{o} will have a reserved storage area consisting of one word whose content is denoted by $S_{0}(1)$, and of bit lenght at least \square. The words in $S_{j}(j \neq 0)$ are addressed by the numbers from 0 to m_{j}; and $S_{j}(i)$ denotes the contents of the word in S_{j} whose address is i. Note that word length at site $j \neq 0$ is sufficiently large to accommodate the binary expansion of m_{j}. Included in S_{j} is a small processor P_{j} whose functions are described later.

The sites $\mathrm{S}_{\mathrm{j}}(\mathrm{j}=0, \pm 1, \pm 2, \ldots)$ are serially linked by two-way communication lines, so that for all $\mathrm{j}, \mathrm{S}_{\mathrm{j}}$ has the capability to communicate directly (send to and receive messages from) $\mathrm{S}_{\mathrm{j}-1}$ and $\mathrm{S}_{\mathrm{j}+1}$. No other communication lines exist between the sites.

An equivalence between the DTM tape positions and the positions in the sites S_{j} is defined as follows, where the empty sum by definition $=0$.

- for $\mathrm{j} \geq 1, S_{j}(h)$ corresponds to DTM tape position $\quad i=1, j-1 m_{i}+h$ for $((1 \leq h \leq$ m_{j}), $1 \leq j$),
- for $\mathrm{j} \leq-1, \mathrm{~S}_{\mathrm{j}}(\mathrm{h})$ corresponds to DTM tape position $\sum_{\mathrm{i}=1, \mathrm{j}-1} \mathrm{~m}_{-\mathrm{i}}-\mathrm{h}$ for $((1 \leq \mathrm{h} \leq$ $\mathrm{m}_{\mathrm{j}}, \mathrm{j} \leq 1$)
$-S_{0}(1)$ corresponds to tape position 0 . The first word $S_{j}(0)(j \neq 0)$ is a pointer;
the set of pointers provides the distributed system with the position of the "square" currently being scanned, as described later. For any DTM tape square t, define $\underline{S}(t)=$ S_{j} where S_{j} contains the image of t, and let $\underline{T}(t)=$ address in $\underline{S}(t)$ of the image of tape square t. The vector $(\underline{S}(t), \underline{T}(t))$ is called the position of tape square t.

The processor S_{o} plays the role of the finite state control, and "contains" the transition function \square and the current state indicator q. S_{0} contains sufficient storage to execute the tasks assigned to it; e.g., calculation of \square, message transmission and reception.

A basic communication activity (BCA) is the sending from S_{j} and reception by $\mathrm{S}_{\mathrm{j}-1}$ or $\mathrm{S}_{\mathrm{j}+1}$ of a message of the form (a,b) where a $\square \square \square\{0\}$ and $\mathrm{b} \square\{-1,0,1\}$ (without loss of generality, assume 0 is not in \square). It is assumed that all sites S_{j} have the capability of sending and receiving messages as described.

The execution of algorithm M on C is straightforward. Initially, the system memory is assumed to have contents as follows:
(i) the DTM input string x is stored in positions $(\underline{\mathrm{S}}(1), \underline{T}(1))=(1,1)$ to $\left(\mathrm{S}_{\mathrm{h}}, \mathrm{T}(|\mathrm{x}|)=(\underline{\mathrm{S}}(|\mathrm{x}|), \underline{\mathrm{T}}(|\mathrm{x}|)\right.$.
(ii) $\mathrm{S}_{\mathrm{j}}(0)=0, \mathrm{j} \neq 0$
(iii) $\mathrm{S}_{\mathrm{h}}(\mathrm{i})=$ blank; $\mathrm{T}(|\mathrm{x}|)<\mathrm{i} \leq \mathrm{m}_{\mathrm{h}}$
(iv) S_{j} (i) $=$ blank, $\left(\left(\mathrm{i} \leq \mathrm{i} \leq \mathrm{m}_{\mathrm{i}}\right), \mathrm{j} \square\{1, \ldots, \mathrm{~h}\}\right)$
(v) Current state $q=q_{o}$

The execution of algorithm M on C is accomplished by exploiting the correspondence between the memory storage of the processors and tape positions; any time an operation (read, write, transform) must be executed by M at tape position t a control token (as well as the specification of the function to be applied) will be sent from P_{o} to the processor P_{j} having the storage device associated with tape position $t ; P_{j}$ will then execute the operation and send the control token and the result of the operation back to P_{o} which will determine the next step to be performed. In a similar manner, a move operation can be executed.

A formal description of the simulation of algorithm M on C can be found in the appendix, where Table 1 describes the five procedures READ, TRANSFORM, HALT, WRITE, and POINTER, and Table 2 specifies precisely the messages transferred from site to site. Column 1 of Table 1 gives an upper bound on the number of BCA's required for eachj procedure, where $n=|x|, f(n)$ is the DTM complexity function, and the precise description of the system communication rules is given in Table 2. $\mathrm{k}=\square \mathrm{f}(\mathrm{n})+1 / \mathrm{m} \square$ is a constant of the problem.

Theorem 2: Let M be a DTM algorithm that requires at most $f(n)$ iterations to solve any problem whose encoding x has length $\leq n$, where x is the "reasonable" encoding of $\mathrm{p} \square \mathrm{P}$. Then the distributed version of algorithms M on $\mathrm{C}=\left(\mathrm{S}_{0}, \mathrm{~S}\right)$ requires at most $1+\square \mathrm{f}(\mathrm{n})+1 / \mathrm{m} \square \mathrm{f}(\mathrm{n})$ basic communication activities.

Proof: Clearly, $f(n)$ is an upper bound on the number of iterations, and hence $f(n)+1$ is an upper bound on the number of positions in memory required. Thus, $\square \mathrm{f}(\mathrm{n})+1) / \mathrm{m} \square \mathrm{is}$ an upper bound on the number of sites $\mathrm{S}_{\mathrm{j}}(\mathrm{j} \neq 0)$ accessed during execution.
Examination of Table I in the appendix makes it evident that the sequence of procedures READ, TRANSFORM, HALT, WRITE, POINTER will require at most one message in each direction between each two adjacent sites during any complete iteration. Thus, an upper bound of $1+f(n) \llbracket f(n)+1) / m \square B C A ' s$ is required to execute M on C, where 1 corresponds to the initial message from S_{0} to S_{1}. []

We have explored the relationship between the serial computational complexity of a problem Π and the communications complexity of solving Π on a distributed system. In broad terms, the communication complexity hierarchy is "inherited" from the serial complexity, that is, a problem which is NP hard with respect to serial complexity has been shown to be NP hard with respect to the communication complexity and any algorithm with polynomial serial complexity can be realized in a distributed system with polynomial communication complexity. The latter result is based upon a particular model of a distributed system.

REFERENCES

[1] S. Cook, "The complexity of theorem-proving procedures", Proc. 3rd ACM Symp. on Theory of Computing, 1970, 151-158.
[2] M.R. Garey, D.S. Johnson, "Computers and Intractability: a Guide to the Theory of NP-Completeness", Freeman, San Francisco.
[3] R.M. Karp, "Reducibility among combinatorial problems", in "Complexity of Computer Computations", Pergamon Press, New York, 1972.

APPENDIX

TABLE 1

PROCEDURE	UPPER BOUND ON NUMBER OF BCA'S PER ITERATION	HOW PROCEDURE IS ACCOMPLISHED (Note: "Messages" from S_{O} to S_{O} are executed internally in S_{0})
READ	K	Set $S_{j}=\underline{S}(t) . \quad S_{j}$ sends the message $\square=\mathrm{S}_{\mathrm{j}}(\square(\mathrm{t})$)
TRANSFORM	0	Internally, S_{0} computes $\square(\mathrm{q}, \square)=\left(\mathrm{q}^{\prime}, \square^{\prime}, \square\right)$,

HALT 0

WRITE

POINTER
S_{0} sets $q \quad q^{\prime}$

0

K
$\underline{\mathrm{S}}(\mathrm{t})$ writes \square at position $(\underline{\mathrm{S}}(\mathrm{t}), \underline{\mathrm{T}}(\mathrm{t}))$.

Let $S_{j}=\underline{S}(t)$ and $S_{k}=\underline{S}(t+\square)$. Necessarily, $k=(j-1)$, j , or $(\mathrm{j}+1)$

Case 1:0

Case 2:1

Case 1: $\mathrm{j}=\mathrm{k} \neq 0$

Case 2: $\mathrm{j} \neq 0, \mathrm{k} \neq 0, \mathrm{j} \neq \mathrm{k}$
S_{j} sets $S_{j}(0) \quad 0$. There are four cases:

$$
\mathrm{j}<0 \quad \mathrm{j}>0
$$

$\mathrm{k}=\mathrm{j}-1 \quad \mathrm{~S}_{\mathrm{j}}$ sends message to $\mathrm{S}_{\mathrm{j}-1} \quad \mathrm{~S}_{\mathrm{j}}$ sends message to $\mathrm{S}_{\mathrm{j}-1}$
to set $\mathrm{S}_{\mathrm{j}-1}(0)=1$ and \quad to set $\mathrm{S}_{\mathrm{j}-1}(0)=\mathrm{m}_{\mathrm{j}-1}$ and commence READ
commence READ
$\mathrm{k}=\mathrm{j}+1 \quad \mathrm{~S}_{\mathrm{j}}$ sends message to $\mathrm{S}_{\mathrm{j}-1} \quad \mathrm{~S}_{\mathrm{j}}$ sends message to $\mathrm{S}_{\mathrm{j}-1}$
to set $\mathrm{S}_{\mathrm{j}-1}(0)=\mathrm{m}_{\mathrm{j}+1}$ and \quad to set $\mathrm{S}_{\mathrm{j}-1}(0)=1$ and
commence READ
commence READ
$1=2 / 2$
(2 BCA's.
But

Case 3: \quad Case 3: $(\mathrm{j}=-1, \mathrm{k}=0)$ or $(\mathrm{j}=+1, \mathrm{k}=0)$. This case is special, and includes in addition to the initial POINTER procedure, a complete iteration.
S_{j} sets $S_{j}(0) \quad 1$ and sends message to S_{0} that current

POINTER	position being scanned is $S_{0}(1)$.
procedure	Internally, S_{0} executes READ, TRANSFORM, HALT
is executed	and WRITE. Let TRANSFORM result in $\left(q^{\prime}, \square, \square\right)$,
for two	and let $S_{h}=\underline{S}(\square$.
iterations.)	S_{0} sends message to S_{h} to set $\mathrm{S}_{\mathrm{h}}(0)=1$ and commence
	READ

TABLE 2 - MESSAGE DEFINITION

Receiving site	Transmitting site	Message	Response	Associated Procedures (Table 1)
S_{0}	S_{1}	($\downarrow 1$)	(i) S_{0} computes $\square(\mathrm{q}, \square)=\left(\mathrm{q}^{\prime}, \square, \square\right.$ (ii) $\mathrm{q} \mathrm{q}^{\prime}$ (iii) If $\mathrm{q}=\mathrm{q}_{\mathrm{y}}$ or q_{N}, stop. (iv) Message (\square, \square sent to S_{1}	TRANSFORM 11 HALT WRITE, POINTER
	S_{1}	$(0,0)$	Note: this occurs when pointer goes from S_{1} to S_{0} (0) S_{0} sets $\square=\mathrm{S}_{0}(1)$ (i) as above (ii) as above (iii) as above (iv) S_{0} sets $\mathrm{S}_{0}(1)$ (v) Message $(0,0)$ sent to $\underline{S}(\square$	POINTER, READ as above as above as above WRITE POINTER
	S-1	(, 1)	(i) as above (ii) as above (iii) as above (iv) Message (\square, \square) sent to S_{-1}	\supseteq as above \square as above \square as above WRITE, POINTER
	S-1	$(0,0)$	Note: this occurs when pointer goes from S_{-1} to S_{0} (0) S_{0} sets $\square=\mathrm{S}_{0}(1)$ (i) as above (ii) as above (iii) as above (iv) S_{0} sets $\mathrm{S}_{0}(1)$ (v) Message $(0,0)$ sent to $S(\square)$	POINTER, READ as above as above as above WRITE POINTER
$\mathrm{S}_{\mathrm{j}}(\mathrm{j} \geq 1)$	$\mathrm{S}_{\mathrm{j}-1}$	() ,	(i) If $\mathrm{S}_{\mathrm{j}}(0)=0$ send (■П) to $\mathrm{S}_{\mathrm{j}+1}$ (ii) If $\mathrm{S}_{\mathrm{j}}(0) \neq 0$ then $\mathrm{S}_{\mathrm{j}}(\mathrm{T}(\mathrm{t}))$ \square and (a), (b), or (c) is executed as required:	WRITE, POINTER WRITE

			(a) If $\underline{\mathrm{S}}(\mathrm{t}+\square)=\mathrm{S}_{\mathrm{j}}$ Set $\mathrm{S}_{\mathrm{j}}(0)=\mathrm{S}_{\mathrm{j}}(0)+\square$ Set $\left[=S_{j}\left(S_{j}(0)\right)\right.$ and send message ($\square 1$) to $\mathrm{S}_{\mathrm{j}-1}$ (b) If $\underline{S}\left(t+\square=S_{j+1}\right.$ Set $\mathrm{S}_{\mathrm{j}}(0)=0$ Send message (0,0) to $\mathrm{S}_{\mathrm{j}+1}$ (c) If $\mathrm{S}\left(\mathrm{t}+\square=\mathrm{S}_{\mathrm{j}-1}\right.$ Set $\mathrm{S}_{\mathrm{j}}(0)=0$ Send message $(0,0)$ to $\mathrm{S}_{\mathrm{j}-1}$	POINTER READ POINTER POINTER POINTER POINTER
	$\mathrm{S}_{\mathrm{j}-1}$	$(0,0)$	(i) $\operatorname{Set} \mathrm{S}_{\mathbf{j}}(0)=1$ (ii) $\operatorname{Set}\left[=\mathrm{S}_{\mathrm{j}}(1)\right.$ (iii) Send message ($\square 1$) to $\mathrm{S}_{\mathrm{j}-1}$	$\begin{aligned} & \text { POINTER } \\ & \text { READ } \\ & \text { READ } \end{aligned}$
	$\mathrm{S}_{\mathrm{j}+1}$	(11	Send message ([1) to $\mathrm{S}_{\mathrm{j}-1}$	READ
	$\mathrm{S}_{\mathrm{j}+1}$	$(0,0)$	(i) $\operatorname{Set} \mathrm{S}_{\mathrm{j}}(0)=\mathrm{m}_{\mathrm{j}}$ (ii) Set $\left\lceil=\mathrm{S}_{\mathrm{j}}\left(\mathrm{m}_{\mathrm{j}}\right)\right.$ (iii) Send message ($\square 1$) to $\mathrm{S}_{\mathrm{j}-1}$	POINTER READ READ
$S_{(-j)}(\mathrm{j} \geq 1)$			Reverse the sign of all subscripts in the table for $\mathrm{S}_{\mathrm{j}}(\mathrm{j} \geq 1)$ to get the corresponding entries for $\mathrm{S}_{(-\mathrm{j})}(\mathrm{j} \geq 1)$.	

[^0]: +Faculty of Administration, University of Ottawa, Ottawa, Ontario, Canada
 *Department of Computer Science, University of Ottawa, Ottawa, Ontario, Canada.
 This research was supported under a Natural Sciences and Engineering Research Council (Canada) research grant.

