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Abstract

Let P be a set of n points in general position in the plane. A subset I
of P is called an island if there exists a convex set C such that I = P ∩C.
In this paper we define the generalized island Johnson graph of P as the
graph whose vertex consists of all islands of P of cardinality k, two of
which are adjacent if their intersection consists of exactly l elements. We
show that for large enough values of n, this graph is connected, and give
upper and lower bounds on its diameter.

Keywords: Johnson graph, intersection graph, diameter, connectedness,
islands.

1 Introduction

Let [n] := {1, 2, . . . , n} and let k ≤ n be a positive integer. A k-subset of a
set is a subset of k elements. The Johnson graph J(n, k) is the graph whose
vertex set consists of all k-subsets of [n], two of which are adjacent if their
intersection has size k − 1. The Kneser graph K(n, k) is the graph whose
vertex set consists of all k-subsets of [n], two of which are adjacent if they are
disjoint. The generalized Johnson graph GJ(n, k, l) is the graph whose vertex

∗Part of the work was done in the 2nd Workshop on Discrete Geometry and its Applications.
Oaxaca, Mexico, September 2009.
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Figure 1: A subset of 5 points which is a 5-island, and a subset of 5 points which
is not (both painted black).

set consists of all k-subsets of [n], two of which are adjacent if they have exactly l
elements in common. Thus GJ(n, k, k−1) = J(n, k) and GJ(n, k, 0) = K(n, k).
Johnson graphs have been widely studied in the literature. This is in part for
their applications in Network Design—where connectivity and diameter∗ are
of importance. (Johnson graphs have small diameter and high connectivity.)
Geometric versions of these graphs have been defined in the literature. In [1]
the chromatic numbers of some “geometric type Kneser graphs” were studied.
In this paper we study the connectedness and diameter of a “geometric” version
of the generalized Johnson graph.

Let P be a set of n points in the plane. A subset I ⊆ P is called an island
if there exists a convex set C such that I = P ∩ C. We say that I is a k-
island if it has cardinality k (see Figure 1). Let 0 ≤ l < k ≤ n be integers.
The generalized island Johnson graph IJ(P, k, l) is the graph whose vertex set
consists of all k-islands of P , two of which are adjacent if their intersection has
exactly l elements. Note that IJ(P, k, l) is an induced subgraph of GJ(n, k, l).
If P is in convex position, then IJ(P, k, l) and GJ(n, k, l) are isomorphic—since
in this case every subset of k points is a k-island.

Graph parameters of IJ(P, k, l) can be translated to problems in Combina-
torial Geometry of point sets. Here are some examples.

- The number of vertices of this graph is the number of k-islands of P—the
problem of estimating this number was recently studied in [7].

- An empty triangle of P is a triangle with vertices on P and without points
of P in its interior. The empty triangles of P are precisely its 3-islands (or
the number of vertices in IJ(P, 3, l)). Counting them has been a widely
studied problem [2, 4, 6, 9, 11].

- A related question [3] is: What is the maximum number of empty triangles
that can share an edge? This translates to the problem of determining
the clique number of IJ(P, 3, 2).

∗A graph is connected if there is a path between any pair of its vertices. The distance
between two vertices is the length of the shortest path joining them. The diameter is the
maximum distance between every pair of vertices of a graph.
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The paper is organized as follows. In Section 2, we prove that IJ(P, k, l) is
connected when n is large enough with respect to k and l. The proof of this

result implies an upper bound of O
(

n
k−l

)
+ O (k − l) on the diameter of this

graph. In Section 3, we improve this bound for the case when l ≤ k/2, where
we show that the diameter is at most O (log n) + O (k − l). We also exhibit a

choice of P for which IJ(P, k, l) has diameter at least Ω
(

logn−log k
log(k−l)

)
. Note that

these bounds are asymptotically tight when l ≤ k/2 and, k and l are constant
with respect to n. A preliminary version of this paper appeared in [5].

2 Connectedness

In this section we prove the following Theorem.

Theorem 2.1. If n > (k − l)(k − l + 1) + k, then IJ(P, k, l) is connected and

its diameter is O
(

n
k−l

)
+ O (k − l).

The proof is divided in two parts:

• First we prove that IJ(P, k, l) contains a connected subgraph F of diam-

eter O
(
n−k
k−l

)
+ O (k − l).

• Next we prove that for every vertex in IJ(P, k, l) there is a path of length

at most O
(

n
k−l

)
connecting it to a vertex in F .

2.1 IJ(P, k, l) contains a connected subgraph

Let P := {p0, p1, . . . , pn−1} be a set of n points in general position in the plane.
So that p0 is the topmost point of P , and p1, . . . , pn−1 are sorted counterclock-
wise by angle around p0. For 0 ≤ i ≤ j ≤ n, let Pi,j := {pi, pi+1, . . . , pj} and
let P ′i,j := Pi,j ∪ {p0}. Observe that Pi,j and P ′i,j are both islands of P . We
call these two types of islands projectable. Projectable islands are those islands
that can be “projected” to a horizontal line, in such a way that its points are
consecutive in the image of the whole set; see Figure 2. Let F be the subgraph
of IJ(P, k, l) induced by the projectable k-islands of P . Let S be a set of n− 1
points on a horizontal line h, and let S′ := S ∪{x}, where x is a point not in h.
It is not hard to see that F is isomorphic to IJ(S′, k, l). We classify the islands
of S′ into two types: those that contain x, and those that do not. Notice that
these two types correspond to the two types of projectable islands of P .

Now we show that IJ(S′, k, l) is connected. First we consider the subgraph
of IJ(S′, k, l) induced by those islands of S′ that do not contain x. Note that
this is precisely IJ(S, k, l). Without loss of generality assume that S is a set
x1 < x2 < · · · < xn−1 of points on the real line. Observe that a k-island of S is
an interval of k consecutive elements {xi, . . . , xi+k−1}. For the sake of clarity,
in what follows we refer to k-islands of S as k-intervals.
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(b) Non projectable.

Figure 2: A 4-island which is projectable, and a 4-island which is not projectable.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A7 A11 A15

Figure 3: Three different k-intervals, for |S| = 16, k = 6, l = 2.

Two k-intervals of S are adjacent in IJ(S, k, l) if they overlap in exactly l
elements. It follows easily that if l > 0, each k-interval is adjacent to at most two
different k-intervals, one containing its first element, and the other containing
its last; see Figure 3. Since IJ(S, k, l) has no cycles and its maximum degree
is at most two, it is a union of pairwise disjoint paths. These paths can be
described as follows. For i < j, let Ai and Aj be the intervals ending at xi
and xj respectively. There is a path between Ai and Aj if and only if i ≡ j
mod (k− l). For consider the interval adjacent with Ai to its right, this interval
must end at point xi+(k−l) (leaving exactly l points on the intersection). On the
other hand, the interval adjacent with Ai to its left, must end at point xi−(k−l);
see Figure 3. For 0 ≤ r < k − l, let Pr be the subgraph of IJ(S, k, l) induced
by those k-intervals ending at a point with index congruent to r mod (k − l).
Thus we have:

Proposition 2.2. If l > 0, Pr is an induced path of IJ(S, k, l). Moreover
IJ(S, k, l) is the union of {Pr | 0 ≤ r < k − l}.

A7 A15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A′
7 A′

15

Figure 4: Four different k-islands in S′, for |S′| = 16, k = 6, l = 2.
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For l = 0 and n ≥ 3k−1, every k-interval would either intersect the left-most
k-interval or the right-most k-interval, but not both. In this case IJ(S, k, 0) is
connected and its diameter is at most 3. Note that except for some special
cases, IJ(S, k, l) is disconnected. Remarkably, as we show next, for a large
enough value of n, the addition of one extra point makes the graph connected.

As before Ai is the k-island (k-interval) that ends at point xi and does not
contain x. Let A′i be the k-island ending at point xi and containing x; see
Figure 4. The structure of IJ(S′, k, l) when l < 2 is different from when l ≥ 2.
In what follows, we assume that l ≥ 2 and briefly discuss the case l < 2 at
the end of this section. Note that the subgraph of IJ(S′, k, l) induced by the
Ai’s is precisely IJ(S, k, l). While the subgraph induced by the islands A′i is
isomorphic to IJ(S, k− 1, l− 1). From these observations, the following lemma
is not hard to prove:

Lemma 2.3. If l ≥ 2, then in IJ(S′, k, l):

1. Ai is adjacent to A′i−(k−l) and A′i+(k−l)−1 (if they exist).

2. A′i is adjacent to Ai+(k−l) and Ai−(k−l)+1 (if they exist).

The following theorem provides sufficient and necessary conditions for
IJ(S′, k, l) to be connected.

Theorem 2.4. For l ≥ 2, the graph IJ(S′, k, l) is connected if and only if
n ≥ 3k − 2l − 1 or n = k.

Proof. Let I and J be two k-islands of S′. As long as the intermediate islands
exists we can repeatedly use Lemma 2.3 to find a path from I to an island whose
endpoint is in the same residue class of (k − l) as the endpoint of J , and that
contains x if and only if J does. This is the case whenever n ≥ 3k − 2l − 1.
Afterwards Proposition 2.2 ensures that there is a path from this island to J .

Suppose that n < 3k − 2l − 1, then there exists a k-island containing x and
having less than k−l points to its left and less than k−l points to its right. This
island is an isolated vertex in IJ(S′, k, l). This sole vertex is all of IJ(S′, k, l)
when n = k (in which case the graph is connected). However, if n > k, there
are at least two such k-islands.

The proof of Theorem 2.4 implicitly provides the following bound on the
diameter of IJ(S′, k, l).

Proposition 2.5. If IJ(S′, k, l) is connected, then its diameter is O
(
n−k
k−l

)
+

O (k − l).

Proof. Suppose that n ≥ 3k−2l−1, as otherwise the bound trivially holds. Let
I and J be two k-islands of S′. Note that it takes at most 2(k− l) applications
of Lemma 2.3 to take I to an island whose endpoint is in the same residue
class of (k − l) as the endpoint of J , and that contains x if and only if J does.
The path in IJ(S′, k, l) or in IJ(S, k, l)—depending on whether J contains x or

5



not–connecting this island to J has length at most
⌈
n−k
k−l

⌉
. Since between the

starting points of two consecutive intervals in the same residue class there are
k − l points, none of these subintervals, lies in the right-most.

Finally we consider the case when l < 2. As we mentioned before, if l = 0
and n ≥ 3k−1, IJ(S, k, 0) is connected and its diameter is at most 3. This is the
case also for IJ(S′, k, 0). On the other hand, if l = 1, then the islands containing
x induce a graph isomorphic to IJ(S, k − 1, 0). From these observations and
Lemma 2.3, we get the following result.

Proposition 2.6. If n ≥ 3k, IJ(S′, k, 0) and IJ(S′, k, 1) are connected and of
diameter at most 4.

2.2 Paths between projectable and non projectable is-
lands

To finish the proof of Theorem 2.1, we prove that for any island of P , there is a
path connecting it to a projectable island. At the end of this section we present
a first bound on the diameter of IJ(P, k, l).

Recall that P = {p0, p1, . . . , pn−1}; p0 is its topmost point and p1, . . . , pn−1
are sorted counterclockwise by angle around p0. Let A be an island of P such
that |A \ {p0}| ≥ 2. Define the weight of A as the difference between the largest
and the smallest indices of the elements of A \ {p0}—an island of weight k − 1
is always projectable. The following lemma ensures the existence of a path
between any island and a projectable island, by eventually reducing the weight
of any given island.

Lemma 2.7 (Shrinking Lemma). If n > (k − l)(k − l + 1) + k, then every
non projectable k-island A of P has a neighbor in IJ(P, k, l) which is either a
projectable island or an island whose weight is less than that of A by at least
k − l.

Proof. Let the elements of A different from p0 be pi1 , . . . , pim . Thus m is equal
to k or to k−1 depending on whether A contains p0 or not. Consider all maximal
intervals of P \ {p0} containing exactly l elements of A. (That is maximal sets
of consecutive elements of P \ {p0} containing exactly l elements of A.)

We distinguish two of these intervals: the one containing the first point of
P \{p0} and the one containing the last. We refer to them as end intervals, and
to the rest as interior intervals.

Note that there are at most k − l + 1 such intervals and that every element
of P \ {p0} is in at least one of them. Since n > (k − l)(k − l + 1) + k, one of
these intervals, I, must contain at least (k − l) points of P \A.

Suppose that I is an interior interval. Let J := A ∩ I. If J is non empty let
B be the set of the k− l points of I \A closest† to Conv(J). If J is empty then

†The distance between Conv(J) and a point p /∈ Conv(J), is defined as the length of the
shortest line segment having p and a point of Conv(J) as endpoints.
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let B be any k-island contained in I \ A. Then J ∪ B is a k-island adjacent to
A in IJ(P, k, l), and its weight is smaller than the weight of A by at least k− l.

Now suppose that I is an end interval, let pS and pE be the first and last
elements in A ∩ I. If [pS , pE ] contains at least k − l elements of P \ A, then
proceed as with interior intervals. Otherwise, there are r < k− l points of P \A
in I. If I is the first interval, then let B be the k − l − r points previous to pS
in P \ {p0}. If I is the last interval, then let B be the k− l− r points after pE .
Note that in either case, [pS , pE ] ∪B is a projectable island adjacent to A.

We are ready to finish the proof of Theorem 2.1.

Theorem 2.1 If n > (k− l)(k− l+ 1) + k, then IJ(P, k, l) is connected and its

diameter is O
(

n
k−l

)
+ O (k − l).

Proof. Let A and B be k-islands of P . We apply Lemma 2.7 successively to
find a sequence of consecutive adjacent islands A = A0, A1, . . . , Am and B =
B0, B1, . . . , Bm′ , in which each element has weight smaller than the previous by
at least k − l, and the last element is a projectable island. Since the weight of

the initial terms is at most n, these sequences have length O
(

n
k−l

)
.

As noted before the subgraph induced by the projectable islands is isomor-
phic to IJ(S′, k, l). Simple arithmetic shows that if n > (k − l)(k − l + 1) + k,
then n > 3k − 2l − 2. Thus this subgraph is connected and has diameter

O
(
n−k
k−l

)
+ O (k − l) (Theorem 2.4 and Proposition 2.5). Hence the diameter of

IJ(P, k, l) is O
(

n
k−l

)
+ O (k − l) as claimed.

3 Bounds

3.1 Upper bound

In this section, for the case when l ≤ k/2, we improve the upper bound on
the diameter of IJ(P, k, l) given in Theorem 2.1. We use a divide and conquer
strategy. Let A and B be two vertices of IJ(P, k, l). First we find a neighbor
of A and a neighbor of B; discarding half of the points of P in the process.
We iterate on the new found neighbors. Just before P has very few points and
IJ(P, k, l) may be disconnected; we apply Theorem 2.1.

The following lemma provides the divide and conquer part of the argument.
The proof uses some of the ideas of the proof of the Shrinking Lemma.

Lemma 3.1. Let A and B be two vertices of IJ(P, k, l). If n ≥ 2((k − l)(k −
l + 1) + k), and l ≤ k/2, then there exists a closed halfplane, H, containing at
most n/2 and at least (k − l)(k − l + 1) + k points of P . With the additional
property that A and B, each have a neighbor contained entirely in H.

Proof. We use the ham-sandwich theorem to find a line ` so that each of the
two closed halfplanes bounded by ` contain dk/2e points of A and dk/2e points
of B.
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Without loss of generality suppose that the halfplane H above ` contains at
most n/2 points of P . If H, however, does not contain at least (k−l)(k−l+1)+k
points of P , move ` parallel down until it does. In this case H would contain at
least as many points of A and B as it previously did and since we are assuming
that n ≥ 2((k − l)(k − l + 1) + k), it still contains at most n/2 points of P .

We will now show the existence of a neighbor of A in IJ(P, k, l) with the
desired properties. The corresponding neighbor of B can be found in a similar
way. Let P ′ := P ∩H and sort its elements by distance to `. As in the proof of
Lemma 2.7 we consider maximal intervals of P ′ containing exactly l consecutive
elements of A. There is at least one such interval, given that H contains at
least k/2 points of A and that we are assuming l ≤ k/2. The rest of the proof
employs the same arguments as the proof of Lemma 2.7 to find a neighbor of A
contained in one of these intervals.

Theorem 3.2. If n ≥ 2((k − l)(k − l + 1) + k) and l ≤ k/2, then the diameter
of IJ(P, k, l) is O (log n) + O (k − l).

Proof. Consider the following algorithm. Let A and B be two k-islands of P . We
start by setting A0 := A, B0 := B, P0 := P , n0 := n. While ni ≥ 2((k−l)(k−l+
1) +k), we apply Lemma 3.1 to Pi, Ai, and Bi. At each step we obtain a closed
halfplane Hi containing at most ni/2 and at least (k − l)(k − l + 1) + k points
of Pi, with the additional property that both Ai and Bi have neighbors Ai+1

and Bi+1 contained entirely in Hi. We set Pi+1 := Hi ∩ Pi, ni+1 := |Pi+1|, and
continue the iteration. We can do this procedure at most O (log n) times. In the
last iteration, we have a point set Pm with fewer than 2((k−l)(k−l+1)+k) and
at least (k−l)(k−l+1)+k elements. The islands Am and Bm are both contained
in Pm, and are joined by paths of length O (log n) to A and B respectively. We
apply Theorem 2.1 to obtain a path of length at most O (k − l) from Am to Bm.
Concatenating the three paths we obtain a path of length O (log n) + O (k − l)
from A to B in IJ(P, k, l).

3.2 Lower bound

For the lower bound we use Horton sets [8]. We base our exposition on [10]. Let
X and Y be two point sets in the plane. We say that X is high above Y (and
that Y is deep below X), if the following conditions are met:

• No line passing through a pair of points of X ∪ Y is vertical.

• Each line passing through a pair of points of X lies above all the points
of Y .

• Each line passing through a pair of points of Y lies below all the points of
X.

For a set X = {x1, x2, . . . , xn} of points in the plane with no two points hav-
ing the same x-coordinate and with the indices chosen so that the x-coordinate
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of xi increases with i, we define the sets X0 = {x2, x4, . . . } (consisting of the
points with even indices) and X1 = {x1, x3, . . . } (consisting of the points with
odd indices). Thus X00 = {x4, x8, . . . }, X01 = {x2, x6, . . . }, X10 = {x3, x7, . . . }
and X11 = {x1, x5, . . . }.

Definition 3.3. A finite set of points H0, with not two of points having the
same x-coordinate, is said to be a Horton set if |H0| ≤ 1, or the the following
conditions are met:

• Both H00 and H01 are Horton sets.

• H00 is high above H01.

Horton sets of any size were shown to exist in [8]. We remark that in [10],
in the definition of Horton sets, the second condition is that “H00 is high above
H01 or H01 is high above H00”. For our purposes we need to fix one of these
two options.

Let H0 := {x1, . . . , xn} be a Horton set of n points. Given an island A of
H0, we define its depth, δ(A), to be the length of the longest string s := 00 . . . 0
of all zeros such that Hs contains A. Thus for example, δ(x1) = 1, δ(x2) =
2, δ(x3) = 1, δ(x4) = 3, · · · ; refer to Figure 5. Note that the depth of an island
is the depth of its shallowest point.

δ(x16) = 4δ(x14) = 2δ(x12) = 5δ(x10) = 2δ(x8) = 4δ(x6) = 2δ(x4) = 3δ(x2) = 2

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16
H00

H01

H011

H010

H011

H010

H011

H010

H011

H010

H001

H000

H001

H000

H001

H000

H001

H000

H0001
H0000 H0001

H0000

H00001 H00000
H00001

δ(x1) = 1 δ(x3) = 1 δ(x5) = 1 δ(x7) = 1 δ(x9) = 1 δ(x11) = 1 δ(x13) = 1 δ(x15) = 1

Figure 5: A Horton set with 16 points, and the depth of its elements.
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Lemma 3.4. Let x and y be two points of H0, such that x is to the left of y, and
z is a point with depth less than δ({x, y}). Then the island H0∩Conv({x, y, z})
contains at least 2δ({x,y})−δ(z)−1 − 1 points with depth greater than that of z,
and lying in between x and y.

Proof. Let A := H0 ∩ Conv({x, y, z}). We will proceed by induction on r =
δ({x, y})− δ(z). If r = 1 there is nothing to prove, since 2r−1 − 1 = 0. Assume
then that r > 1. Let s be the unique string of all zeros, such that Hs contains A
but Hs0 and Hs1 do not. Note that z lies in Hs1 while x and y both lie in Hs0;
actually since we are assuming r > 1, they both lie in Hs00. Consider the set
Hs0, since it is a Horton set, A contains at least a point in Hs01, between x and
y. Of all such points, choose xk′ to be the shallowest. The depth of xk′ is one
more than that of z. By induction, the island H0 ∩ Conv({x, y, xk′}) contains
a set I of at least 2r−2 − 1 points. These points have depth greater than that
of xk′ (thus contained in Hs00) and between x and y. Therefore I is contained
in A. For each point in I, consider the next point xm to its right in Hs0. This
point must be in Hs01 and δ(z) < δ(xm). Thus we have 2r−2 − 1 additional
points in A. Note that the point to the right of x in Hs0 is not in the previous
counting. Therefore A has at least 2r−2 − 1 + 2r−2 − 1 + 1 = 2r−1 − 1 points
with depth greater than that of z, and lying between x and y.

Lemma 3.5. If A and B are two adjacent islands in IJ(H0, k, l) (with l ≥ 2),
then their depths differ by at most O (log(k − l)).

Proof. Without loss of generality assume that the depth of A is greater than
the depth of B. Let C be the island A ∩ B. Note that the depth of C is at
least the depth of A. If z is the shallowest point of B, then δ(z) = δ(B), and
this point has depth less than δ(C). Consider an edge of the convex hull of C,
whose supporting line separates C and z. Let x and y be its endpoints. Then by
Lemma 3.4, the islandH0∩Conv({x, y, z}) contains at least 2δ({x,y})−δ(z)−1−1 ≥
2δ(A)−δ(B)−1 − 1 points, none of which is in C. However, since these points do
lie in B, there are at most k− l of them. Therefore δ(A)− δ(B) is O (log(k − l))
as claimed.

Theorem 3.6. The diameter of IJ(H0, k, l) for l ≥ 2 is Ω
(

log(n)−log(k)
log(k−l)

)
.

Proof. Let A be an island with the largest possible depth, which is dlog2(n/k)e.
Let B be an island of depth 1. By Lemma 3.5 in any path joining A and B
in IJ(H0, k, l), the depth of two consecutive vertices differs by O (log(k − l)).
Therefore any such path must have length Ω

(
log(n)−log(k)

log(k−l)

)
.

We point out that there was an error in the proof of Theorem 11 in the
preliminary version of this paper [5]; thus the bounds stated there are incorrect.

The diameter of the generalized Johnson graph can be substantially dif-
ferent from that of the generalized island Johnson graph. The diameter of
GJ(n, k, l) is O (k) when n is large enough, while the diameter of IJ(P, k, l) can

be Ω
(

log(n)−log(k)
log(k−l)

)
.
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Determining upper and lower bounds for the diameter of IJ(P, k, l) seems to
be a challenging problem when l > k/2. It might happen that there is a sharp
jump in the diameter when l rises above k/2. We leave the closing of this gap
as an open problem.
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[4] I. Bárány and P. Valtr. Planar point sets with a small number of empty
convex polygons. Studia Scientiarum Mathematicarum Hungarica, 41:243–
266, 2004.

[5] C. Bautista-Santiago, J. Cano, R. Fabila-Monroy, D. Flores-Peñaloza,
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