Covering the Convex Quadrilaterals of Point Sets

Toshinori Sakai ${ }^{1}$, Jorge Urrutia ${ }^{2 *}$
${ }^{1}$ Research Institute of Educational Development, Tokai University, 2-28-4 Tomigaya, Shibuyaku, Tokyo 151-8677, Japan
${ }^{2}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, México D.F. C.P. 04510

Abstract

For a point set P on the plane, a four element subset $S \subset P$ is called a 4-hole of P if the convex hull of S is a quadrilateral and contains no point of P in its interior. Let R be a point set on the plane. We say that a point set B covers all the 4 -holes of R if any 4 -hole of R contains an element of B in its interior. We show that if $|R| \geq 2|B|+5$ then B cannot cover all the 4 -holes of R. A similar result is shown for a point set R in convex position. We also show a point set R for which any point set B that covers all the 4 -holes of R has approximately $2|R|$ points.

Key words. k-Hole, Bicolored point set, Covering

1. Introduction

Throughout this paper, P denotes a point set on the plane. P is said to be in general position if no three of its elements lie on a line. We denote by $\operatorname{Conv}(P)$ the convex hull of P, and we say that P is in convex position if P is in general position and all of its elements lie on the boundary of $\operatorname{Conv}(P)$.

For an integer $k \geq 3$ and any point set P on the plane, a k-subset S of P is called a k-hole of P if S is in convex position and no element of P lies in the interior of $\operatorname{Conv}(S)$. A k-hole is often identified with its convex hull. In 1931, Esther Klein proved that any point set P in general position with at least 5 elements contains a 4 -subset in convex position $[4,6]$. It is easy to see that it also contains a 4 -hole.

We say that P is a bicolored point set if P is the union of disjoint point sets R and B. Call the elements of R and B the red and blue points of P respectively. A monochromatic 4 -hole of P is a 4 -hole of P such that all its elements are either in R or in B. In [2], O. Devillers et al. showed many results on k-holes of m-colored point sets, $k \geq 3, m \geq 2$. Concerning monochromatic 4 -holes of a bicolored point set, they conjecture:

Conjecture A. Let P be a bicolored point set in general position consisting of a sufficiently large number of points. Then P contains a monochromatic 4-hole.

For a 4 -hole S of a red point set R and a blue point $b \in B$, we say that b covers S if $\operatorname{Conv}(S)$ contains b in its interior. Furthermore, we say that B covers all the 4 -holes

[^0]of R if each 4-hole of R is covered with a point of B. In this paper, we will study the following question: Given a red point set R, how many points must a blue point set B have so that it covers all the 4 -holes of R ? Our objective here is to continue the study of a similar problem concerning coverings of 3 -holes of point sets. The problem of coverings of 3-holes has been studied by M. Katchalski et al.[5] and independently by J. Czyzowicz et al.[1]. They proved:

Theorem A. For any red point set R in general position, $2|R|-K-2$ blue points are necessary and sufficient to cover all 3 -holes of R, where K denotes the number of points of R on the boundary of $\operatorname{Conv}(R)$.
Observe that any triangulation of R (in the language of this paper, a set of 3-holes of R with disjoint interiors such that their union is $\operatorname{Conv}(R)$) contains exactly $2|R|-K-2$ triangles. Thus it follows that if a point set B of $2|R|-K-2$ blue points covers all the triangles of R, then each 3-hole of R contains exactly one element of B.

In Section 2 we prove the following results:
Theorem 1. Let $P=R \cup B$ be a bicolored point set such that R is in general position. Then if $|R| \geq 2|B|+5, P$ contains a red 4 -hole.
(The inequality of Theorem 1 is sharp when $|B|=0$ and $|B|=1$.) If R is in convex position, we obtain a better bound.

Theorem 2. Let $P=R \cup B$ be a bicolored point set such that R is in convex position. Then if $|R| \geq \frac{3}{2}|B|+4, P$ contains a red 4-hole.

For a red point set R, let $\beta(R)$ denote the minimum number of blue points that cover all 4-holes of R. From Theorems 1 and 2, it follows that $\beta(R)>\frac{|R|-5}{2}$ for any red point set R in general position, and $\beta(R)>\frac{2|R|-8}{3}$ for any red point set R in convex position. In Section 4 we prove:

Theorem 3. Let n be a positive integer. Then

$$
\max _{\substack{|R|=n \\ R \text { is in convex position }}} \beta(R)=n+o(n) .
$$

For a positive integer n, let

$$
\beta_{n}=\max _{|R|=n} \beta(R)
$$

It follows from Theorem A that $\beta_{n} \leq 2 n-5$ (it is not difficult to show $\beta_{n} \leq 2 n-6$ for the problem of covering red 4-holes). In Section 4, we also show that there exist red point sets R for which approximately $2|R|$ blue points are needed to cover all 4-holes of R :

Theorem 4. $\beta_{n}=2 n+o(n)$.

2. Proof of Theorems 1 and 2

For a point set $\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$, we denote by $p_{1} p_{2} \ldots p_{m}$ the polygon whose vertices in the clockwise are $p_{1}, p_{2}, \ldots, p_{m}$.

Fig. 1. Labeling of the points and two convex quadrilaterals with disjoint interiors.

2.1. Proof of Theorem 1

First note that B covers every red 4 -hole if and only if so does a blue point set obtained by any slight perturbation of points in B. Thus it suffices to prove Theorem 1 for the case where $P=R \cup B$ is in general position.

We proceed by induction on $|B|$. The result is true for the case where $|B|=0$ (the Esther Klein's Theorem mentioned above). Next we show the result for the case where $|B|=1$. For this purpose, it suffices to prove the following proposition:

Proposition 1. Any point set R with exactly seven elements in general position contains the vertices of two convex quadrilaterals with disjoint interiors.

Proof. Choose the leftmost vertex on the convex hull of R, assuming without loss of generality that this point is unique, and let it be labeled p_{0}. Label the elements of $R-\left\{p_{0}\right\}$ by p_{1}, \ldots, p_{6} in descending order according to the slope of the segments joining p_{i} to p_{0}, $i=1, \ldots 6$; see Fig. 1(a). For each $i=2, \ldots, 5$, assign the signature + or - to p_{i} according to whether the inner angle at p_{i} of the quadrilateral $p_{0} p_{i-1} p_{i} p_{i+1}$ is greater than or less than 180°.

If the sequence of signatures assigned to p_{2}, \ldots, p_{5} contains two non-consecutive minus signs, then our result follows (Fig. 1(b)). Our result also follows if the sequence contains a minus sign and consecutive plus signs, see Fig. 1(c). The remaining cases to be analyzed, are for the sequences +--+ or ++++ . For the latter case, $p_{1} p_{2} p_{3} p_{4}$ and $p_{1} p_{4} p_{5} p_{6}$ are convex quadrilaterals with disjoint interiors.

Assume then that our sequence is +--+ . Let l denote the straight line connecting p_{2} and p_{5}. If at least one of p_{1} or p_{6} is in the same side of l as p_{0}, then $p_{2} p_{3} p_{4} p_{5}$ and at least one of $p_{0} p_{1} p_{2} p_{5}$ or $p_{0} p_{2} p_{5} p_{6}$ are convex quadrilaterals with disjoint interiors. Thus assume that both of p_{1} and p_{2} are in the opposite side of l to that containing p_{0}. Let m denote the straight line connecting p_{3} and p_{4}, and D the half-plane bounded by m and containing p_{2} and p_{5}. If $p_{1} \in D$ (resp. $p_{6} \in D$), then $p_{1} p_{2} p_{4} p_{3}$ and $p_{0} p_{2} p_{4} p_{5}$ (resp. $p_{3} p_{5} p_{6} p_{4}$ and $p_{0} p_{2} p_{3} p_{5}$) are convex quadrilaterals with disjoint interiors. Assume next that $p_{1} \notin D$ and $p_{6} \notin D$. In this case, $p_{1} p_{3} p_{4} p_{6}$ and $p_{2} p_{3} p_{4} p_{5}$ are convex quadrilaterals with disjoint interiors.

Returning to the proof of Theorem 1, we consider the case where there are at least two blue points. Let p and p^{\prime} be consecutive vertices of the boundary of $\operatorname{Conv}(B)$, and let D denote a half-plane bounded by the straight line $p p^{\prime}$, and containing no element of $B-\left\{p, p^{\prime}\right\}$. If D contains at least five red points, then the result follows from the Esther Klein's Theorem. Thus we may assume that D contains at most four red points. Then if

Fig. 2. p_{i} and p_{i}^{\prime}.

Fig. 3. Red point set $R=R(k, \varepsilon, n)$.
we write $D^{\prime}=\mathbb{R}^{2}-D,\left|R \cap D^{\prime}\right| \geq|R|-4 \geq 2(|B|-2)+5=2\left|B \cap D^{\prime}\right|+5$, and the desired conclusion follows from the induction hypothesis.

2.2. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. In place of Proposition 1, we use the fact that any point set R with $|R|=6$ in convex position contains two convex quadrilaterals with disjoint interiors.

3. Point set $R(k, \varepsilon, n)$ and Theorem 5

3.1. Point set $R(k, \varepsilon, n)$

Let $k \geq 3$ be an odd integer and n an integer, and consider a regular k-gon $P_{0}=p_{1} p_{2} \ldots p_{k}$ inscribed in a unit circle. Rotate each point p_{i} by a sufficiently small angle ε around the center of P_{0} to obtain a point p_{i}^{\prime} (Fig. 2). We may assume that

$$
\begin{equation*}
\frac{p_{1} p_{k}^{\prime}}{p_{1} p_{1}^{\prime}}>k n \tag{1}
\end{equation*}
$$

in particular (we use this inequality in the proof of Lemma 1). Furthermore, since no three diagonals of P_{0} meet at a point (see [3]), we may assume that no three quadrilaterals $p_{i_{1}} p_{i_{1}}^{\prime} p_{j_{1}} p_{j_{1}}^{\prime}, p_{i_{2}} p_{i_{2}}^{\prime} p_{j_{2}} p_{j_{2}}^{\prime}$ and $p_{i_{3}} p_{i_{3}}^{\prime} p_{j_{3}} p_{j_{3}}^{\prime}\left(i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}\right.$ are all different) have a common point.

Take n red points $r_{i, 1}=p_{i}, r_{i, 2}, \ldots, r_{i, n-1}, r_{i, n}=p_{i}^{\prime}$ at regular intervals on segment $p_{i} p_{i}^{\prime}$ (Fig. 3). Set $R_{i}=\left\{r_{i, 1}, r_{i, 2}, \ldots, r_{i, n}\right\}$ and define the set $R=R(k, \varepsilon, n)$ consisting of $k n$ red points by $R=R(k, \varepsilon, n)=\cup_{i=1}^{k} R_{i}$.

3.2. Theorem 5

To prove Theorems 3 and 4, we show the following result:
Theorem 5. Let k and n be positive integers. Then

$$
\frac{\beta(R(k, \varepsilon, n))}{|R(k, \varepsilon, n)|} \rightarrow 1 \text { as } n \rightarrow \infty \text { and } \frac{k}{n} \rightarrow \infty
$$

Fig. 4. •: red point, ○: blue point.

Fig. 5. D_{i} and $E_{i, j}$.

Observe that for a red point set R in convex position, if we place $|R|-1$ blue points inside the convex hull of R (shown in Fig. 4 as small empty circles) all the 4 -holes of R are covered. From a similar observation, we see that

$$
\begin{equation*}
\beta(R(k, \varepsilon, n)) \leq k n-1 \tag{2}
\end{equation*}
$$

3.3. Proof of Theorem 5

We will prove that

$$
\frac{\beta(R(k, \varepsilon, n))}{k n} \rightarrow 1 \text { as } n \rightarrow \infty \text { and } \frac{k}{n} \rightarrow \infty
$$

Define D_{i} and $E_{i, j}\left(=E_{j, i}\right)$ by

$$
\begin{aligned}
D_{i} & =\bigcup_{\substack{1 \leq l<m \leq k \\
l \neq i, m \neq i}}\left(p_{i} p_{i}^{\prime} p_{l} p_{l}^{\prime} \cap p_{i} p_{i}^{\prime} p_{m} p_{m}^{\prime}\right) \\
E_{i, j} & =p_{i} p_{i}^{\prime} p_{j} p_{j}^{\prime}-\left(D_{i} \cup D_{j}\right), \quad \text { where } i \neq j \text {; see Fig. } 5 .
\end{aligned}
$$

Lemma 1. The intersection of quadrilaterals $r_{i, m} r_{i, m+1} r_{j, l} r_{j, l+1}$ and $r_{i, m^{\prime}} r_{i, m^{\prime}+1} r_{j, l^{\prime}} r_{j, l^{\prime}+1}$ is contained in $E_{i, j}$ for any $i, j, m, m^{\prime}, l, l^{\prime}, 1 \leq i<j \leq k, 2 \leq m+1<m^{\prime} \leq n-1$ and $2 \leq l+1<l^{\prime} \leq n-1$.

Proof. It suffices to consider the case where $p_{i} p_{j}^{\prime}<p_{i}^{\prime} p_{j}$ (Fig. 6). Take any point x in the intersection of quadrilaterals $r_{i, m} r_{i, m+1} r_{j, l} r_{j, l+1}$ and $r_{i, m^{\prime}} r_{i, m^{\prime}+1} r_{j, l^{\prime}} r_{j, l^{\prime}+1}$. For this x, we can take points p, q, p^{\prime} and q^{\prime} such that they are on the segments $r_{i, m} r_{i, m+1}, r_{j, l} r_{j, l+1}, r_{i, m^{\prime}} r_{i, m^{\prime}+1}$ and $r_{j, l^{\prime}} r_{j, l^{\prime}+1}$, respectively, and the intersection point of the segments $p q$ and $p^{\prime} q^{\prime}$ is x. Take the point r such that $\overrightarrow{q^{\prime} r}=\overrightarrow{p_{i} p_{i}^{\prime}}$, and let y be the intersection point of $p r$ and $p^{\prime} q^{\prime}$. Then we have $p^{\prime} x>p^{\prime} y$ and $\frac{p^{\prime} y}{q^{\prime} y}=\frac{p p^{\prime}}{r q^{\prime}} \geq \frac{1}{n-1}$, and hence

$$
p^{\prime} x>\frac{p^{\prime} q^{\prime}}{n}>\frac{p_{i} p_{j}^{\prime}}{n} \geq \frac{p_{1} p_{k}^{\prime}}{n} .
$$

On the other hand, since the convex hull of D_{i} is a regular k-gon which has $p_{i} p_{i}^{\prime}$ as one of its sides (Fig. 7), the diameter of D_{i} is less than $k p_{i} p_{i}^{\prime}$, which is the perimeter of the regular k-gon. Since $k p_{i} p_{i}^{\prime}<\frac{p_{1} p_{k}^{\prime}}{n}$ by (1), $x \notin D_{i}$, as desired.

Fig. 6. A point x in the intersection and the point y.

Fig. 7. D_{i} and its convex hull.

Let B be a set of blue points of minimum cardinality which cover all the 4-holes of R. For each $1 \leq i \leq k$, let $E_{i}=\cup_{j \neq i} E_{i, j}$. Then two cases arise:
Case 1. For each $1 \leq i \leq k$, either $\left|D_{i} \cap B\right|>n-\sqrt{n}$ or $\left|E_{i} \cap B\right|>4(n-\sqrt{n})$.
Case 2. There exists i with $1 \leq i \leq k$ such that $\left|D_{i} \cap B\right| \leq n-\sqrt{n}$ and $\left|E_{i} \cap B\right| \leq 4(n-\sqrt{n})$.

Case 1. Let $I=\{1,2, \ldots, k\}$,

$$
\begin{aligned}
& I_{1}=\left\{i| | D_{i} \cap B \mid>n-\sqrt{n}, 1 \leq i \leq k\right\} \quad \text { and } \\
& I_{2}=I-I_{1}
\end{aligned}
$$

Then

$$
\left|E_{i} \cap B\right|>4(n-\sqrt{n}) \quad \text { for each } i \in I_{2}
$$

Since any point $b \in \cup_{1 \leq i \leq k}\left(E_{i} \cap B\right)$ is contained in at most four E_{i} 's, we have $\mid \cup_{i \in I_{2}}\left(E_{i} \cap\right.$ $B) \left.\left|\geq \frac{1}{4} \sum_{i \in I_{2}}\right| E_{i} \cap B \right\rvert\,$. Thus

$$
\begin{aligned}
|B| & \geq\left|\bigcup_{i \in I_{1}}\left(D_{i} \cap B\right)\right|+\left|\bigcup_{i \in I_{2}}\left(E_{i} \cap B\right)\right| \\
& \geq \sum_{i \in I_{1}}\left|D_{i} \cap B\right|+\frac{1}{4} \sum_{i \in I_{2}}\left|E_{i} \cap B\right| \\
& >\left|I_{1}\right|(n-\sqrt{n})+\frac{1}{4}\left(k-\left|I_{1}\right|\right) \cdot 4(n-\sqrt{n}) \\
& =k(n-\sqrt{n})=k(n+o(n)) .
\end{aligned}
$$

From this, together with (2), we obtain the desired conclusion.
Case 2. Take i with $1 \leq i \leq k$ such that $\left|D_{i} \cap B\right| \leq n-\sqrt{n}$ and $\left|E_{i} \cap B\right| \leq 4(n-\sqrt{n})$. From this point on, we fix i. Let

$$
J=\left\{j \mid E_{i, j} \cap B=\emptyset, j \neq i\right\}
$$

Since $\left|\left\{j^{\prime} \mid E_{i, j^{\prime}} \cap B \neq \emptyset, j \neq i\right\}\right| \leq\left|E_{i} \cap B\right| \leq 4(n-\sqrt{n})$,

$$
\begin{equation*}
|J| \geq(k-1)-4(n-\sqrt{n})=k+o(k) \tag{3}
\end{equation*}
$$

for k, n with $\frac{k}{n} \rightarrow \infty$. Take any $j \in J$. Since $n-1$ blue points arranged suitably close to the midpoints of segments $r_{j, m} r_{j, m+1}, 1 \leq m \leq n-1$, are sufficient to cover all 4-holes of R containing these segments, it follows from the minimality of $|B|$ that

$$
\begin{equation*}
\left|D_{j} \cap B\right| \leq n-1 \tag{4}
\end{equation*}
$$

Fig. 8. m_{2} must be greater than or equal to m_{1}^{\prime}.
Lemma 2. $\left|D_{j} \cap B\right|=n+o(n)$.
To prove this lemma, we introduce some notation. Let e_{l} be the segment connecting $r_{i, l}$ and $r_{i, l+1}$, and f_{m} be the segment connecting $r_{j, m}$ and $r_{j, m+1}$, where $1 \leq l \leq n-1$ and $1 \leq m \leq n-1$. We denote by $\left[e_{l}, f_{m}\right]$ the quadrilateral containing e_{l} and f_{m} as its sides.

Let $b \in D_{i} \cap B$. Then it can be easily observed that the set \mathcal{Q}_{b} of quadrilaterals $\left[e_{l}, f_{m}\right]$ which are covered with b is expressed in the following form:

$$
\begin{aligned}
\mathcal{Q}_{b}=\left\{\left[e_{l_{1}}, f_{m}\right] \mid m_{1} \leq m \leq m_{1}^{\prime}\right\} & \cup\left\{\left[e_{l_{1}+1}, f_{m}\right] \mid m_{2} \leq m \leq m_{2}^{\prime}\right\} \cup \\
\ldots & \cup\left\{\left[e_{l_{1}+h}, f_{m}\right] \mid m_{h+1} \leq m \leq m_{h+1}^{\prime}\right\},
\end{aligned}
$$

where l_{1} and h are integers with $1 \leq l_{1} \leq l_{1}+h \leq n-1$, and the m_{t} and the m_{t}^{\prime}, $1 \leq t \leq h+1$, are integers with $1 \leq m_{t} \leq m_{t}^{\prime} \leq n-1$.
Lemma 3. $h \in\{0,1\}$; and in the case where $h=1, m_{2} \geq m_{1}^{\prime}$.
Proof. We have $h \in\{0,1\}$ from Lemma 1. Next assume $h=1$. Then since $b \in$ $\operatorname{Int}\left(\left[e_{l_{1}}, f_{m_{1}^{\prime}}\right]\right) \cap \operatorname{Int}\left(\left[e_{l_{1}+1}, f_{m_{2}}\right]\right)$, where $\operatorname{Int}(X)$ denotes the interior of X, we must have $\operatorname{Int}\left(\left[e_{l_{1}}, f_{m_{1}^{\prime}}^{\prime}\right]\right) \cap \operatorname{Int}\left(\left[e_{l_{1}+1}, f_{m_{2}}\right]\right) \neq \emptyset$, and hence $m_{2} \geq m_{1}^{\prime}$ (Fig. 8).

Consider an $(n-1) \times(n-1)$ table whose (l, m)-component corresponds to the quadrilateral $\left[e_{l}, f_{m}\right]$. By Lemma 3, each $\mathcal{Q}_{b}, b \in D_{i} \cap B$, is expressed as a set of components as shown in Fig. 9 (the case where $m_{2}=m_{1}^{\prime}$). We identify such a set of components with the set \mathcal{Q}_{b}. Set

$$
\mathcal{Q}=\bigcup_{b \in D_{i} \cap B} \mathcal{Q}_{b} \quad \text { (Fig. 10). }
$$

For each $b \in D_{i} \cap B$ such that \mathcal{Q}_{b} is expressed in the form of $\mathcal{Q}_{b}=\left\{\left[e_{l_{1}}, f_{m}\right] \mid m_{1} \leq m \leq\right.$ $\left.m_{1}^{\prime}\right\} \cup\left\{\left[e_{l_{1}+1}, f_{m}\right] \mid m_{1}^{\prime} \leq m \leq m_{2}^{\prime}\right\}$, let $U_{b}=\left[e_{l_{1}+1}, f_{m_{1}^{\prime}}\right]$ (Fig. 9), and let \mathcal{U} denote the set of all such U_{b} 's. We have

$$
\begin{equation*}
|\mathcal{U}| \leq\left|D_{i} \cap B\right| \leq n-\sqrt{n} . \tag{5}
\end{equation*}
$$

For each m with $1 \leq m \leq n-1$, call the column consisting of $n-1$ components $\left[e_{1}, f_{m}\right],\left[e_{2}, f_{m}\right], \ldots,\left[e_{n-1}, f_{m}\right]$ the column f_{m}. Let \mathcal{F} be the set of columns $f_{1}, f_{2}, \ldots, f_{n-1}$, and $\mathcal{F}^{*}(\subseteq \mathcal{F})$ the set of columns f_{m} each of which contains at most $\sqrt[4]{n}$ components corresponding to elements of \mathcal{U}. Since we consider the case where n and k are sufficiently large, we may assume $n \geq 7$ in particular.
Lemma 4. Let $f_{m} \in \mathcal{F}^{*}$. Then there is a component $\left[e_{l}, f_{m}\right]$ which does not belong to any \mathcal{Q}_{b}, i.e., there is a quadrilateral $\left[e_{l}, f_{m}\right]$ which is covered with some $b^{\prime} \in D_{j} \cap B$.
Proof. We identify the column f_{m} with the set of components contained in it, i.e., we let $f_{m}=\left\{\left[e_{l}, f_{m}\right] \mid 1 \leq l \leq n-1\right\}$. Since

$$
\left|\mathcal{Q} \cap f_{m}\right| \leq\left|D_{i} \cap B\right|+\left|\mathcal{U} \cap f_{m}\right| \leq(n-\sqrt{n})+\sqrt[4]{n}
$$

there are at least $\sqrt{n}-\sqrt[4]{n}-1(>0$ for $n \geq 7)$ components $\left[e_{l}, f_{m}\right] \in f_{m}$ which do not belong to any \mathcal{Q}_{b}.

Fig. 9. Components corresponding to \mathcal{Q}_{b}.

Fig. 10. Components corresponding to \mathcal{Q}.

Lemma 5. $\left|\mathcal{F}^{*}\right| \geq n-\sqrt[4]{n^{3}}+\sqrt[4]{n}-1$.
Proof. By way of contradiction, suppose that $\left|\mathcal{F}^{*}\right|<n-\sqrt[4]{n^{3}}+\sqrt[4]{n}-1$. Then we must have

$$
\begin{aligned}
|\mathcal{U}| & >\sqrt[4]{n} \times\left|\mathcal{F}-\mathcal{F}^{*}\right| \\
& >\sqrt[4]{n} \times\left(\sqrt[4]{n^{3}}-\sqrt[4]{n}\right) \\
& =n-\sqrt{n}
\end{aligned}
$$

This contradicts (5).
Now consider points of $D_{j} \cap B$. For $b^{\prime} \in D_{j} \cap B$, we use the same notation used above: denote by $\mathcal{Q}_{b^{\prime}}$ the set of quadrilaterals $\left[e_{l}, f_{m}\right]$ which are covered with b^{\prime}. In the same way as in the proof of Lemma 3, the following lemma follows:

Lemma 6. $\mathcal{Q}_{b^{\prime}}$ is in the form of $\left\{\left[e_{l}, f_{m}\right] \mid l_{1} \leq l \leq l_{1}^{\prime}\right\}$ or $\left\{\left[e_{l}, f_{m}\right] \mid l_{1} \leq l \leq l_{1}^{\prime}\right\} \cup$ $\left\{\left[e_{l}, f_{m+1}\right] \mid l_{2} \leq l \leq l_{2}^{\prime}\right\}$, where $l_{2} \geq l_{1}^{\prime}$ (Fig. 11).

Let $\mathcal{S}\left(\subseteq \mathcal{F}^{*}\right)$ be the set of columns $f_{m} \in \mathcal{F}^{*}$ which satisfy at least one of the following conditions (i), (ii) or (iii):
(i) $m=1$;
(ii) f_{m-1} is not contained in \mathcal{F}^{*};
(iii) no two quadrilaterals $\left[e_{l}, f_{m}\right]$ and $\left[e_{l^{\prime}}, f_{m-1}\right]$ are covered with a single point $b^{\prime} \in D_{j} \cap B$.

Let $s=|\mathcal{S}|$ and write $\mathcal{S}=\left\{f_{m_{1}}, f_{m_{2}}, \ldots, f_{m_{s}}\right\}$. Then \mathcal{F}^{*} is expressed in the following form:

$$
\begin{align*}
\mathcal{F}^{*}=\left\{f_{m_{1}}, f_{m_{1}+1}, \ldots, f_{m_{1}^{\prime}}\right\} \cup & \left\{f_{m_{2}}, f_{m_{2}+1}, \ldots, f_{m_{2}^{\prime}}\right\} \cup \\
& \ldots \cup\left\{f_{m_{s}}, f_{m_{s}+1}, \ldots, f_{m_{s}^{\prime}}\right\} . \tag{6}
\end{align*}
$$

Let

$$
\mathcal{F}_{t}^{*}=\left\{f_{m_{t}}, f_{m_{t}+1}, \ldots, f_{m_{t}^{\prime}}\right\}, \quad 1 \leq t \leq s
$$

(so $\mathcal{F}^{*}=\mathcal{F}_{1}^{*} \cup \mathcal{F}_{2}^{*} \cup \ldots \cup \mathcal{F}_{s}^{*}$), and let B_{t} denote the set of points $b^{\prime} \in D_{j} \cap B$ each of which covers a quadrilateral of $\left\{\left[e_{l}, f_{m}\right] \mid 1 \leq l \leq n-1, f_{m} \in \mathcal{F}_{t}^{*}\right\}$. From Lemmas 4,6 and the definition of \mathcal{F}_{t}^{*}, the following lemma follows:

Fig. 11. Components corresponding to $\mathcal{Q}_{b^{\prime}}$.

Fig. 12. Components corresponding to \mathcal{Q}_{b} 's.

Lemma 7. $\left|B_{t}\right| \geq\left|\mathcal{F}_{t}^{*}\right|-1$ for $1 \leq t \leq s$.
Furthermore, the following holds.
Lemma 8. Let $1 \leq t \leq s$, and suppose $\left|\mathcal{F}_{t}^{*}\right| \leq \sqrt[4]{n}-1$. Then $\left|B_{t}\right| \geq\left|\mathcal{F}_{t}^{*}\right|$.
Proof. By way of contradiction, suppose $\left|B_{t}\right| \leq\left|\mathcal{F}_{t}^{*}\right|-1$ (so $\left|B_{t}\right|=\left|\mathcal{F}_{t}^{*}\right|-1$ by Lemma 7). Then it follows from Lemmas 4, 6 and the definition of \mathcal{F}_{t}^{*} again that for each m with $m_{t} \leq m \leq m_{t}^{\prime}-1$, there exists exactly one point $b^{\prime} \in B_{t}$ such that

$$
\begin{equation*}
\mathcal{Q}_{b^{\prime}}=\left\{\left[e_{l}, f_{m}\right] \mid l_{1} \leq l \leq l_{1}^{\prime}\right\} \cup\left\{\left[e_{l}, f_{m+1}\right] \mid l_{2} \leq l \leq l_{2}^{\prime}\right\}, \tag{7}
\end{equation*}
$$

where $l_{1}, l_{1}^{\prime}, l_{2}, l_{2}^{\prime}$ are some positive integers with $l_{1} \leq l_{1}^{\prime}, l_{2} \leq l_{2}^{\prime}$ and $l_{1}^{\prime} \leq l_{2}$; and furthermore, there exists no point $b^{\prime \prime} \in D_{j} \cap B$ such that $\mathcal{Q}_{b^{\prime \prime}}$ is expressed in the form $\left\{\left[e_{l}, f_{m}\right] \mid l_{1} \leq l \leq l_{1}^{\prime}\right\}$.

For $b^{\prime} \in B_{t}$ such that $l_{1}^{\prime}=l_{2}$ holds in the expression (7), let $V_{b^{\prime}}=\left[e_{l_{2}}, f_{m+1}\right]$, and
 the (sub)row consisting of $\left[e_{l}, f_{m_{t}}\right],\left[e_{l}, f_{m_{t}+1}\right], \ldots,\left[e_{l}, f_{m_{t}^{\prime}}\right]$, the row e_{l} (a row of the table shown in Fig. 12). Let \mathcal{R} denote the set of rows e_{l} containing no element of \mathcal{V}. Since $|\mathcal{V}| \leq\left|B_{t}\right| \leq\left|\mathcal{F}_{t}^{*}\right|-1$ by assumption, $|\mathcal{R}| \geq(n-1)-|\mathcal{V}| \geq n-\left|\mathcal{F}_{t}^{*}\right|$. On the other hand, among $\left|\mathcal{F}_{t}^{*}\right|$ components of each row $e_{l} \in \mathcal{R}$, at most $\left|B_{t}\right|\left(\leq\left|\mathcal{F}_{t}^{*}\right|-1\right)$ components correspond to quadrilaterals which are covered with points of B_{t}. Hence, from each $e_{l} \in \mathcal{R}$, we can take one component $\left[e_{l}, f_{m}\right]$ which is not covered with any point of B_{t} (e.g. each component marked with $*$ in Fig. 12). Let \mathcal{W} be the set of these components. Then

$$
\begin{equation*}
|\mathcal{W}|=|\mathcal{R}| \geq n-\left|\mathcal{F}_{t}^{*}\right| . \tag{8}
\end{equation*}
$$

Since distinct components of $\mathcal{W}-\mathcal{U}$ must be covered with distinct points of $D_{i} \cap B$, we must have

$$
\begin{equation*}
|\mathcal{W}-\mathcal{U}| \leq\left|D_{i} \cap B\right| \leq n-\sqrt{n} \tag{9}
\end{equation*}
$$

from the assumption of Case 2. On the other hand, since the columns $f_{m_{t}}, \ldots, f_{m_{t}^{\prime}}$ belong to \mathcal{F}^{*}, it follows from the definition of \mathcal{F}^{*} and (8) that

$$
|\mathcal{W}-\mathcal{U}| \geq\left(n-\left|\mathcal{F}_{t}^{*}\right|\right)-\sqrt[4]{n}\left|\mathcal{F}_{t}^{*}\right|
$$

$$
\begin{aligned}
& =n-(\sqrt[4]{n}+1)\left|\mathcal{F}_{t}^{*}\right| \\
& \geq n-(\sqrt[4]{n}+1)(\sqrt[4]{n}-1) \quad \text { (by the assumption of Lemma } 8) \\
& =n-\sqrt{n}+1
\end{aligned}
$$

which contradicts (9).
Now let $T=\{1,2, \ldots, s\}, T_{1}=\left\{t \in T| | \mathcal{F}_{t}^{*} \mid>\sqrt[4]{n}-1\right\}$ and $T_{2}=T-T_{1}$. Since

$$
\begin{equation*}
\left|T_{1}\right|<\frac{\left|\mathcal{F}^{*}\right|}{\sqrt[4]{n}-1} \leq \frac{|\mathcal{F}|}{\sqrt[4]{n}-1} \leq \frac{n-1}{\sqrt[4]{n}-1}=O\left(n^{\frac{3}{4}}\right) \tag{10}
\end{equation*}
$$

and since $B_{t} \cap B_{t^{\prime}}=\emptyset$ for $1 \leq t<t^{\prime} \leq s$, it follows from Lemmas 7 and 8 that

$$
\begin{aligned}
\left|D_{j} \cap B\right| & \geq \sum_{t \in T_{1}}\left|B_{t}\right|+\sum_{t \in T_{2}}\left|B_{t}\right| \\
& \geq \sum_{t \in T_{1}}\left(\left|\mathcal{F}_{t}^{*}\right|-1\right)+\sum_{t \in T_{2}}\left|\mathcal{F}_{t}^{*}\right| \\
& =\sum_{t \in T}\left|\mathcal{F}_{t}^{*}\right|-\left|T_{1}\right| \\
& =\left|\mathcal{F}^{*}\right|-\left|T_{1}\right| \\
& =n+o(n) \quad(\text { by Lemma } 5 \text { and }(10)) .
\end{aligned}
$$

From this together with (4), Lemma 2 follows. This completes the proof of Lemma 2.
Now the conclusion of Theorem 5 follows in Case 2 as well from (2), (3) and Lemma 2.

4. Proofs of Theorems 3 and 4

Concerning Theorem 5, note that the same conclusion holds even if we construct the red point set by taking n red points at regular intervals, on each $\operatorname{arc} p_{i} p_{i}^{\prime}, 1 \leq i \leq k$, of the unit circle in which the regular k-gon P_{0} is inscribed (recall the construction of $R(k, \varepsilon, n)$ stated in Section 3.1). The point set we obtain in this way is in convex position, and hence Theorem 3 holds.

We can construct another red point set with the desired property by placing n red points at regular intervals, around consecutive k vertices of a regular k^{\prime}-gon, $k^{\prime}>k$, as shown in Fig. 13 (all the points lie on a circle). Let $R_{k^{\prime}}(k, \varepsilon, n)$ denote a point set obtained in this way. We now prove Theorem 4. First choose n, and k sufficiently large with respect to n, and K sufficiently large with respect to $k n$, and construct $R(K, \varepsilon, k n)$ for ε sufficiently small. To obtain the final point set, we replace each point set $\left\{r_{i, 1}, r_{i, 2}, \ldots, r_{i, k n}\right\}$ by a copy of $R_{k^{\prime}}\left(k, \varepsilon^{\prime}, n\right)$ as shown in Fig. 14, where k^{\prime} is a sufficiently large number with respect to K, so that Lemma 1 can be applied. Denote by R^{*} the red point set we obtain in this way. Then we have $\left|R^{*}\right|=K k n$ and if we let $m=k n$ and $M=K k n(=K m)$,

$$
\beta\left(R^{*}\right)=K(m+o(m))+(M+o(M))=2 M+o(M)
$$

as $n \rightarrow \infty, \frac{k}{n} \rightarrow \infty$ and $\frac{K}{k n} \rightarrow \infty$ (though not all pairs of adjacent points of $R_{k^{\prime}}\left(k, \varepsilon^{\prime}, n\right)$ are at regular intervals), and hence Theorem 4 holds.

Acknowledgements. The authors would like to thank an anonymous referee for his valuable comments and suggestions.

Fig. 13. Red point set R^{\prime} with $\left|R^{\prime}\right|=k n$.
$k n$ red points
$\xrightarrow{\sim}$

$k n$ red points

Fig. 14. Red point set R^{*} with $\left|R^{*}\right|=K k n$.

References

1. Czyzowicz, J., Kranakis, E., Urrutia, J.: Dissections, cuts and triangulations. in proceedings of 11th Canadian Conference on Computational Geometry, CCCG-99, 154-157, Vancouver Aug. 15-18 (1999)
2. Devillers, O., Hurtado, F., Károlyi, G., Seara C.: Chromatic variants of the Erdős-Szekeres theorem on points in convex position. Computational Geometry: Theory and Applications 26, 193-208 (2003)
3. Heineken, H.: Regelmassige Vielecke und ihre Diagonalen. Enseignement Math. 2, ser. 8 (1962) 275-278
4. Kalbfleisch J. D., Kalbfleisch, J. G., Stanton, R. G.: A combinatorial problem on convex n-gons. Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, 180-188 (1970)
5. Katchalski, M., Meir, A.: On empty triangles determined by points in the plane. Acta Math. Hungar. 51, 323-328 (1988)
6. Moser, W.: Research Problems in Discrete Geometry (McGill Univ., 1981)

[^0]: * Supported by CONACYT of Mexico, Proyecto SEP-2004-Co1-45876, and PAPIIT (UNAM), Proyecto IN110802.

