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Abstract. For a point set P on the plane, a four element subset S ⊂ P is called a 4-hole of P

if the convex hull of S is a quadrilateral and contains no point of P in its interior. Let R be a
point set on the plane. We say that a point set B covers all the 4-holes of R if any 4-hole of R

contains an element of B in its interior. We show that if |R| ≥ 2|B|+ 5 then B cannot cover all
the 4-holes of R. A similar result is shown for a point set R in convex position. We also show a
point set R for which any point set B that covers all the 4-holes of R has approximately 2|R|
points.
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1. Introduction

Throughout this paper, P denotes a point set on the plane. P is said to be in general
position if no three of its elements lie on a line. We denote by Conv(P ) the convex hull
of P , and we say that P is in convex position if P is in general position and all of its
elements lie on the boundary of Conv(P ).

For an integer k ≥ 3 and any point set P on the plane, a k-subset S of P is called a
k-hole of P if S is in convex position and no element of P lies in the interior of Conv(S).
A k-hole is often identified with its convex hull. In 1931, Esther Klein proved that any
point set P in general position with at least 5 elements contains a 4-subset in convex
position [4,6]. It is easy to see that it also contains a 4-hole.

We say that P is a bicolored point set if P is the union of disjoint point sets R and B.
Call the elements of R and B the red and blue points of P respectively. A monochromatic
4-hole of P is a 4-hole of P such that all its elements are either in R or in B. In [2], O.
Devillers et al. showed many results on k-holes of m-colored point sets, k ≥ 3, m ≥ 2.
Concerning monochromatic 4-holes of a bicolored point set, they conjecture:

Conjecture A. Let P be a bicolored point set in general position consisting of a suffi-
ciently large number of points. Then P contains a monochromatic 4-hole.

For a 4-hole S of a red point set R and a blue point b ∈ B, we say that b covers S

if Conv(S) contains b in its interior. Furthermore, we say that B covers all the 4-holes
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of R if each 4-hole of R is covered with a point of B. In this paper, we will study the
following question: Given a red point set R, how many points must a blue point set B

have so that it covers all the 4-holes of R? Our objective here is to continue the study of
a similar problem concerning coverings of 3-holes of point sets. The problem of coverings
of 3-holes has been studied by M. Katchalski et al.[5] and independently by J. Czyzowicz
et al.[1]. They proved:

Theorem A. For any red point set R in general position, 2|R| − K − 2 blue points are
necessary and sufficient to cover all 3-holes of R, where K denotes the number of points
of R on the boundary of Conv(R).

Observe that any triangulation of R (in the language of this paper, a set of 3-holes of R

with disjoint interiors such that their union is Conv(R)) contains exactly 2|R| − K − 2
triangles. Thus it follows that if a point set B of 2|R| − K − 2 blue points covers all the
triangles of R, then each 3-hole of R contains exactly one element of B.

In Section 2 we prove the following results:

Theorem 1. Let P = R ∪ B be a bicolored point set such that R is in general position.
Then if |R| ≥ 2|B| + 5, P contains a red 4-hole.

(The inequality of Theorem 1 is sharp when |B| = 0 and |B| = 1.) If R is in convex
position, we obtain a better bound.

Theorem 2. Let P = R ∪ B be a bicolored point set such that R is in convex position.
Then if |R| ≥ 3

2
|B| + 4, P contains a red 4-hole.

For a red point set R, let β(R) denote the minimum number of blue points that cover

all 4-holes of R. From Theorems 1 and 2, it follows that β(R) >
|R|−5

2
for any red point

set R in general position, and β(R) >
2|R|−8

3
for any red point set R in convex position.

In Section 4 we prove:

Theorem 3. Let n be a positive integer. Then

max
|R| = n

R is in convex position

β(R) = n + o(n).

For a positive integer n, let
βn = max

|R|=n
β(R).

It follows from Theorem A that βn ≤ 2n − 5 (it is not difficult to show βn ≤ 2n − 6 for
the problem of covering red 4-holes). In Section 4, we also show that there exist red point
sets R for which approximately 2|R| blue points are needed to cover all 4-holes of R:

Theorem 4. βn = 2n + o(n).

2. Proof of Theorems 1 and 2

For a point set {p1, p2, . . . , pm}, we denote by p1p2 . . . pm the polygon whose vertices in
the clockwise are p1, p2, . . . , pm.
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Fig. 1. Labeling of the points and two convex quadrilaterals with disjoint interiors.

2.1. Proof of Theorem 1

First note that B covers every red 4-hole if and only if so does a blue point set obtained
by any slight perturbation of points in B. Thus it suffices to prove Theorem 1 for the case
where P = R ∪ B is in general position.

We proceed by induction on |B|. The result is true for the case where |B| = 0 (the
Esther Klein’s Theorem mentioned above). Next we show the result for the case where
|B| = 1. For this purpose, it suffices to prove the following proposition:

Proposition 1. Any point set R with exactly seven elements in general position contains
the vertices of two convex quadrilaterals with disjoint interiors.

Proof. Choose the leftmost vertex on the convex hull of R, assuming without loss of
generality that this point is unique, and let it be labeled p0. Label the elements of R−{p0}
by p1, . . . , p6 in descending order according to the slope of the segments joining pi to p0,
i = 1, . . . 6; see Fig. 1(a). For each i = 2, . . . , 5, assign the signature + or − to pi according
to whether the inner angle at pi of the quadrilateral p0pi−1pipi+1 is greater than or less
than 180◦.

If the sequence of signatures assigned to p2, . . . , p5 contains two non-consecutive minus
signs, then our result follows (Fig. 1(b)). Our result also follows if the sequence contains a
minus sign and consecutive plus signs, see Fig. 1(c). The remaining cases to be analyzed,
are for the sequences + −−+ or + + ++. For the latter case, p1p2p3p4 and p1p4p5p6 are
convex quadrilaterals with disjoint interiors.

Assume then that our sequence is + − −+. Let l denote the straight line connecting
p2 and p5. If at least one of p1 or p6 is in the same side of l as p0, then p2p3p4p5 and at
least one of p0p1p2p5 or p0p2p5p6 are convex quadrilaterals with disjoint interiors. Thus
assume that both of p1 and p2 are in the opposite side of l to that containing p0. Let m

denote the straight line connecting p3 and p4, and D the half-plane bounded by m and
containing p2 and p5. If p1 ∈ D (resp. p6 ∈ D), then p1p2p4p3 and p0p2p4p5 (resp. p3p5p6p4

and p0p2p3p5) are convex quadrilaterals with disjoint interiors. Assume next that p1 6∈ D

and p6 6∈ D. In this case, p1p3p4p6 and p2p3p4p5 are convex quadrilaterals with disjoint
interiors.

Returning to the proof of Theorem 1, we consider the case where there are at least
two blue points. Let p and p′ be consecutive vertices of the boundary of Conv(B), and
let D denote a half-plane bounded by the straight line pp′, and containing no element of
B − {p, p′}. If D contains at least five red points, then the result follows from the Esther
Klein’s Theorem. Thus we may assume that D contains at most four red points. Then if
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Fig. 3. Red point set R = R(k, ε, n).

we write D′ = IR2 − D, |R ∩ D′| ≥ |R| − 4 ≥ 2(|B| − 2) + 5 = 2|B ∩ D′| + 5, and the
desired conclusion follows from the induction hypothesis.

2.2. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. In place of Proposition 1, we
use the fact that any point set R with |R| = 6 in convex position contains two convex
quadrilaterals with disjoint interiors.

3. Point set R(k, ε, n) and Theorem 5

3.1. Point set R(k, ε, n)

Let k ≥ 3 be an odd integer and n an integer, and consider a regular k-gon P0 = p1p2 . . . pk

inscribed in a unit circle. Rotate each point pi by a sufficiently small angle ε around the
center of P0 to obtain a point p′i (Fig. 2). We may assume that

p1p
′
k

p1p
′
1

> kn (1)

in particular (we use this inequality in the proof of Lemma 1). Furthermore, since no three
diagonals of P0 meet at a point (see [3]), we may assume that no three quadrilaterals
pi1p

′
i1
pj1p

′
j1

, pi2p
′
i2
pj2p

′
j2

and pi3p
′
i3
pj3p

′
j3

(i1, i2, i3, j1, j2, j3 are all different) have a common
point.

Take n red points ri,1 = pi, ri,2, . . . , ri,n−1, ri,n = p′i at regular intervals on segment
pip

′
i (Fig. 3). Set Ri = {ri,1, ri,2, . . . , ri,n} and define the set R = R(k, ε, n) consisting of

kn red points by R = R(k, ε, n) = ∪k
i=1Ri.

3.2. Theorem 5

To prove Theorems 3 and 4, we show the following result:

Theorem 5. Let k and n be positive integers. Then

β(R(k, ε, n))

|R(k, ε, n)| → 1 as n → ∞ and
k

n
→ ∞.
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Fig. 4. •: red point, ◦: blue point.
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Observe that for a red point set R in convex position, if we place |R| − 1 blue points
inside the convex hull of R (shown in Fig. 4 as small empty circles) all the 4-holes of R

are covered. From a similar observation, we see that

β(R(k, ε, n)) ≤ kn − 1. (2)

3.3. Proof of Theorem 5

We will prove that

β(R(k, ε, n))

kn
→ 1 as n → ∞ and

k

n
→ ∞.

Define Di and Ei,j(= Ej,i) by

Di =
⋃

1 ≤ l < m ≤ k

l 6= i, m 6= i

(pip
′
iplp

′
l ∩ pip

′
ipmp′m)

Ei,j = pip
′
ipjp

′
j − (Di ∪ Dj), where i 6= j; see Fig. 5.

Lemma 1. The intersection of quadrilaterals ri,mri,m+1rj,lrj,l+1 and ri,m′ri,m′+1rj,l′rj,l′+1

is contained in Ei,j for any i, j, m, m′, l, l′, 1 ≤ i < j ≤ k, 2 ≤ m + 1 < m′ ≤ n − 1 and
2 ≤ l + 1 < l′ ≤ n − 1.

Proof. It suffices to consider the case where pip
′
j < p′ipj (Fig. 6). Take any point x in the

intersection of quadrilaterals ri,mri,m+1rj,lrj,l+1 and ri,m′ri,m′+1rj,l′rj,l′+1. For this x, we can
take points p, q, p′ and q′ such that they are on the segments ri,mri,m+1, rj,lrj,l+1, ri,m′ri,m′+1

and rj,l′rj,l′+1, respectively, and the intersection point of the segments pq and p′q′ is x.

Take the point r such that
−→
q′r =

−→
pip

′
i, and let y be the intersection point of pr and p′q′.

Then we have p′x > p′y and p′y

q′y
= pp′

rq′
≥ 1

n−1
, and hence

p′x >
p′q′

n
>

pip
′
j

n
≥ p1p

′
k

n
.

On the other hand, since the convex hull of Di is a regular k-gon which has pip
′
i as one

of its sides (Fig. 7), the diameter of Di is less than kpip
′
i, which is the perimeter of the

regular k-gon. Since kpip
′
i <

p1p′
k

n
by (1), x 6∈ Di, as desired.
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Let B be a set of blue points of minimum cardinality which cover all the 4-holes of R.
For each 1 ≤ i ≤ k, let Ei = ∪j 6=iEi,j. Then two cases arise:

Case 1. For each 1 ≤ i ≤ k, either |Di ∩ B| > n −√
n or |Ei ∩ B| > 4(n −√

n).
Case 2. There exists i with 1 ≤ i ≤ k such that |Di∩B| ≤ n−√

n and |Ei∩B| ≤ 4(n−√
n).

Case 1. Let I = {1, 2, . . . , k},

I1 = {i| |Di ∩ B| > n −√
n, 1 ≤ i ≤ k} and

I2 = I − I1.

Then
|Ei ∩ B| > 4(n −

√
n) for each i ∈ I2.

Since any point b ∈ ∪1≤i≤k(Ei ∩B) is contained in at most four Ei’s, we have | ∪i∈I2 (Ei ∩
B)| ≥ 1

4

∑

i∈I2 |Ei ∩ B|. Thus

|B| ≥
∣

∣

∣

∣

∣

∣

⋃

i∈I1

(Di ∩ B)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⋃

i∈I2

(Ei ∩ B)

∣

∣

∣

∣

∣

∣

≥
∑

i∈I1

|Di ∩ B| + 1

4

∑

i∈I2

|Ei ∩ B|

> |I1|(n −√
n) +

1

4
(k − |I1|) · 4(n −√

n)

= k(n −
√

n) = k(n + o(n)).

From this, together with (2), we obtain the desired conclusion.

Case 2. Take i with 1 ≤ i ≤ k such that |Di ∩ B| ≤ n −√
n and |Ei ∩ B| ≤ 4(n −√

n).
From this point on, we fix i. Let

J = {j |Ei,j ∩ B = ∅, j 6= i}.

Since | {j ′ |Ei,j′ ∩ B 6= ∅, j 6= i} | ≤ |Ei ∩ B| ≤ 4(n −√
n),

|J | ≥ (k − 1) − 4(n −
√

n) = k + o(k) (3)

for k, n with k
n
→ ∞. Take any j ∈ J . Since n − 1 blue points arranged suitably close to

the midpoints of segments rj,mrj,m+1, 1 ≤ m ≤ n − 1, are sufficient to cover all 4-holes of
R containing these segments, it follows from the minimality of |B| that

|Dj ∩ B| ≤ n − 1. (4)
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Lemma 2. |Dj ∩ B| = n + o(n).

To prove this lemma, we introduce some notation. Let el be the segment connecting
ri,l and ri,l+1, and fm be the segment connecting rj,m and rj,m+1, where 1 ≤ l ≤ n−1 and
1 ≤ m ≤ n − 1. We denote by [el, fm] the quadrilateral containing el and fm as its sides.

Let b ∈ Di∩B. Then it can be easily observed that the set Qb of quadrilaterals [el, fm]
which are covered with b is expressed in the following form:

Qb = {[el1 , fm] |m1 ≤ m ≤ m′
1} ∪ {[el1+1, fm] |m2 ≤ m ≤ m′

2} ∪
. . . ∪ {[el1+h, fm] |mh+1 ≤ m ≤ m′

h+1},
where l1 and h are integers with 1 ≤ l1 ≤ l1 + h ≤ n − 1, and the mt and the m′

t,
1 ≤ t ≤ h + 1, are integers with 1 ≤ mt ≤ m′

t ≤ n − 1.

Lemma 3. h ∈ {0, 1}; and in the case where h = 1, m2 ≥ m′
1.

Proof. We have h ∈ {0, 1} from Lemma 1. Next assume h = 1. Then since b ∈
Int([el1 , fm′

1
]) ∩ Int([el1+1, fm2

]), where Int(X) denotes the interior of X, we must have
Int([el1 , fm′

1
]) ∩ Int([el1+1, fm2

]) 6= ∅, and hence m2 ≥ m′
1 (Fig. 8).

Consider an (n−1)× (n−1) table whose (l, m)-component corresponds to the quadri-
lateral [el, fm]. By Lemma 3, each Qb, b ∈ Di ∩ B, is expressed as a set of components
as shown in Fig. 9 (the case where m2 = m′

1). We identify such a set of components with
the set Qb. Set

Q =
⋃

b∈Di∩B

Qb (Fig. 10).

For each b ∈ Di ∩ B such that Qb is expressed in the form of Qb = {[el1 , fm] |m1 ≤ m ≤
m′

1} ∪ {[el1+1, fm] |m′
1 ≤ m ≤ m′

2}, let Ub = [el1+1, fm′

1
] (Fig. 9), and let U denote the set

of all such Ub’s. We have
|U| ≤ |Di ∩ B| ≤ n −

√
n. (5)

For each m with 1 ≤ m ≤ n − 1, call the column consisting of n − 1 com-
ponents [e1, fm], [e2, fm], . . . , [en−1, fm] the column fm. Let F be the set of columns
f1, f2, . . . , fn−1, and F∗(⊆ F) the set of columns fm each of which contains at most
4
√

n components corresponding to elements of U . Since we consider the case where n and
k are sufficiently large, we may assume n ≥ 7 in particular.

Lemma 4. Let fm ∈ F∗. Then there is a component [el, fm] which does not belong to any
Qb, i.e., there is a quadrilateral [el, fm] which is covered with some b′ ∈ Dj ∩ B.

Proof. We identify the column fm with the set of components contained in it, i.e., we let
fm = {[el, fm]|1 ≤ l ≤ n − 1}. Since

|Q ∩ fm| ≤ |Di ∩ B| + |U ∩ fm| ≤ (n −
√

n) + 4
√

n,

there are at least
√

n − 4
√

n − 1(> 0 for n ≥ 7) components [el, fm] ∈ fm which do not
belong to any Qb.
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Lemma 5. |F ∗| ≥ n − 4
√

n3 + 4
√

n − 1.

Proof. By way of contradiction, suppose that |F ∗| < n − 4
√

n3 + 4
√

n − 1. Then we must
have

|U| > 4
√

n × |F − F∗|
> 4

√
n × (

4
√

n3 − 4
√

n)

= n −
√

n.

This contradicts (5).

Now consider points of Dj ∩B. For b′ ∈ Dj ∩B, we use the same notation used above:
denote by Qb′ the set of quadrilaterals [el, fm] which are covered with b′. In the same way
as in the proof of Lemma 3, the following lemma follows:

Lemma 6. Qb′ is in the form of {[el, fm] | l1 ≤ l ≤ l′1} or {[el, fm] | l1 ≤ l ≤ l′1} ∪
{[el, fm+1] | l2 ≤ l ≤ l′2}, where l2 ≥ l′1 (Fig. 11).

Let S(⊆ F∗) be the set of columns fm ∈ F∗ which satisfy at least one of the following
conditions (i), (ii) or (iii):

( i ) m = 1;
(ii) fm−1 is not contained in F∗;
(iii) no two quadrilaterals [el, fm] and [el′ , fm−1] are covered with a single point b′ ∈ Dj∩B.

Let s = |S| and write S = {fm1
, fm2

, . . . , fms
}. Then F∗ is expressed in the following

form:

F∗ = {fm1
, fm1+1, . . . , fm′

1
} ∪ {fm2

, fm2+1, . . . , fm′

2
} ∪

. . . ∪ {fms
, fms+1, . . . , fm′

s
}. (6)

Let
F∗

t = {fmt
, fmt+1, . . . , fm′

t
}, 1 ≤ t ≤ s

(so F∗ = F∗
1 ∪ F∗

2 ∪ . . . ∪ F∗
s ), and let Bt denote the set of points b′ ∈ Dj ∩ B each of

which covers a quadrilateral of {[el, fm] | 1 ≤ l ≤ n−1, fm ∈ F∗
t }. From Lemmas 4, 6 and

the definition of F∗
t , the following lemma follows:
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Lemma 7. |Bt| ≥ |F ∗
t | − 1 for 1 ≤ t ≤ s.

Furthermore, the following holds.

Lemma 8. Let 1 ≤ t ≤ s, and suppose |F ∗
t | ≤ 4

√
n − 1. Then |Bt| ≥ |F ∗

t |.

Proof. By way of contradiction, suppose |Bt| ≤ |F ∗
t |−1 (so |Bt| = |F ∗

t |−1 by Lemma 7).
Then it follows from Lemmas 4, 6 and the definition of F∗

t again that for each m with
mt ≤ m ≤ m′

t − 1, there exists exactly one point b′ ∈ Bt such that

Qb′ = {[el, fm] | l1 ≤ l ≤ l′1} ∪ {[el, fm+1] | l2 ≤ l ≤ l′2}, (7)

where l1, l′1, l2, l′2 are some positive integers with l1 ≤ l′1, l2 ≤ l′2 and l′1 ≤ l2; and fur-
thermore, there exists no point b′′ ∈ Dj ∩ B such that Qb′′ is expressed in the form
{[el, fm] | l1 ≤ l ≤ l′1}.

For b′ ∈ Bt such that l′1 = l2 holds in the expression (7), let Vb′ = [el2 , fm+1], and
let V denote the set of all such Vb′’s. Furthermore, for each l with 1 ≤ l ≤ n − 1, call
the (sub)row consisting of [el, fmt

], [el, fmt+1], . . . , [el, fm′

t
], the row el (a row of the table

shown in Fig. 12). Let R denote the set of rows el containing no element of V. Since
|V| ≤ |Bt| ≤ |F ∗

t | − 1 by assumption, |R| ≥ (n − 1) − |V| ≥ n − |F ∗
t |. On the other

hand, among |F ∗
t | components of each row el ∈ R, at most |Bt|(≤ |F ∗

t | − 1) components
correspond to quadrilaterals which are covered with points of Bt. Hence, from each el ∈ R,
we can take one component [el, fm] which is not covered with any point of Bt (e.g. each
component marked with ∗ in Fig. 12). Let W be the set of these components. Then

|W| = |R| ≥ n − |F ∗
t |. (8)

Since distinct components of W −U must be covered with distinct points of Di ∩ B, we
must have

|W − U| ≤ |Di ∩ B| ≤ n −√
n (9)

from the assumption of Case 2. On the other hand, since the columns fmt
, . . . , fm′

t
belong

to F∗, it follows from the definition of F∗ and (8) that

|W − U| ≥ (n − |F ∗
t |) − 4

√
n |F ∗

t |
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= n − ( 4
√

n + 1)|F ∗
t |

≥ n − ( 4
√

n + 1)( 4
√

n − 1) (by the assumption of Lemma 8)

= n −√
n + 1,

which contradicts (9).

Now let T = {1, 2, . . . , s}, T1 = {t ∈ T | |F ∗
t | > 4

√
n − 1} and T2 = T − T1. Since

|T1| <
|F ∗|

4
√

n − 1
≤ |F|

4
√

n − 1
≤ n − 1

4
√

n − 1
= O(n

3

4 ), (10)

and since Bt ∩ Bt′ = ∅ for 1 ≤ t < t′ ≤ s, it follows from Lemmas 7 and 8 that

|Dj ∩ B| ≥
∑

t∈T1

|Bt| +
∑

t∈T2

|Bt|

≥
∑

t∈T1

(|F ∗
t | − 1) +

∑

t∈T2

|F ∗
t |

=
∑

t∈T

|F ∗
t | − |T1|

= |F ∗| − |T1|
= n + o(n) (by Lemma 5 and (10)).

From this together with (4), Lemma 2 follows. This completes the proof of Lemma 2.

Now the conclusion of Theorem 5 follows in Case 2 as well from (2), (3) and Lemma 2.

4. Proofs of Theorems 3 and 4

Concerning Theorem 5, note that the same conclusion holds even if we construct the red
point set by taking n red points at regular intervals, on each arc pip

′
i, 1 ≤ i ≤ k, of the

unit circle in which the regular k-gon P0 is inscribed (recall the construction of R(k, ε, n)
stated in Section 3.1). The point set we obtain in this way is in convex position, and hence
Theorem 3 holds.

We can construct another red point set with the desired property by placing n red
points at regular intervals, around consecutive k vertices of a regular k′-gon, k′ > k, as
shown in Fig. 13 (all the points lie on a circle). Let Rk′(k, ε, n) denote a point set obtained
in this way. We now prove Theorem 4. First choose n, and k sufficiently large with respect
to n, and K sufficiently large with respect to kn, and construct R(K, ε, kn) for ε sufficiently
small. To obtain the final point set, we replace each point set {ri,1, ri,2, . . . , ri,kn} by a copy
of Rk′(k, ε′, n) as shown in Fig. 14, where k′ is a sufficiently large number with respect
to K, so that Lemma 1 can be applied. Denote by R∗ the red point set we obtain in this
way. Then we have |R∗| = Kkn and if we let m = kn and M = Kkn(= Km),

β(R∗) = K(m + o(m)) + (M + o(M)) = 2M + o(M)

as n → ∞, k
n
→ ∞ and K

kn
→ ∞ (though not all pairs of adjacent points of Rk′(k, ε′, n)

are at regular intervals), and hence Theorem 4 holds.
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n red points

n red points n red points

n red points

Fig. 13. Red point set R′ with |R′| = kn.

kn red points

kn red pointskn red points

kn red points

Fig. 14. Red point set R∗ with |R∗| = Kkn.

References

1. Czyzowicz, J., Kranakis, E., Urrutia, J.: Dissections, cuts and triangulations. in proceedings
of 11th Canadian Conference on Computational Geometry, CCCG-99, 154-157, Vancouver
Aug. 15-18 (1999)
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