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Abstract

A geometric network is a distributed network where each proces-
sor is identified by two numbers, representing the coordinates of the
point in the plane where the processor is located. The edges of the
network correspond to straight line segments such that no two of them
intersect. In this paper we introduce the study of distributed comput-
ing in asynchronous, failure-free geometric networks. We study several
fundamental computational geometry problems from the distributed
computing point of view, such as finding convex hulls of geometric
networks and identification of the external face. In particular, we ob-
tain a O(n log2 n) message complexity algorithm to find the convex hull
of a geometric network of n processors, and a O(n log n) algorithm to
identify the external face of a geometric network. We present a match-
ing lower bound for the external face problem. We also prove that the
message complexity of leader election in a geometric ring is Ω(n log n).

1 Introduction

A geometric network is a network in which its nodes are represented by
points on the plane, and its edges by line segments joining pairs of nodes.
In recent years there has been a lot of attention paid the study of algorithmic
problems on geometric networks, this due to the fact that in many real life
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applications, the nodes of a network are located at some fixed position on
the plane (e.g. the servers at the Universidad Nacional Autónoma de México
are located in Mexico City!), or their position can be traced continuously
using devices such as GPS. Geometric networks are thus, ideal to model
networks in which their nodes are aware of their position, e.g. various kinds
of wireless networks, including cellular network, ad-hoc networks, sensor
networks, etc..

It turns out that if the nodes of a planar geometric network are aware of
their positions on the plane, many problems such as routing can be solved
with local algorithms, that is an agent wanting to traverse from a node u to
a node v of a planar geometric network, can do so by remembering only the
positions of u and v, a constant number of locations of some nodes of the
network, and local information stored at the nodes of a network concerning
only the neighbors of a node; Our agent is not allowed to leave any markers
(as is the case in labyrinths traversal methods), see [2, 7]. Global knowledge
of the network such as the topology of the network, the number of nodes, or
any other type of global information such as that implicitly stored in routing
tables, etc. is not necessary for these algorithms to work.

This fact together with the development of local planarization algorithms
for unit distance networks (a network in which two nodes are adjacent if their
distance is at most one) introduced in [2] lead to the development of numer-
ous algorithms in wireless networks in which, numerous problems are solved
with local algorithms. Algorithms of this nature have been developed for
example for cellular networks, sensor networks, ad-hoc networks, etc. No-
table examples are routing [7, 2, 11], connected dominating sets [5], approx-
imations of minimum weight spannig trees [10, 4], Voronoi diagrams [8, 9],
spanners [6], etc.. A good overview can also be obtained in [14, 15] and [17].
It is also interesting to note that, some of the best network topology maps
used by Internet Service Providers and Internet Backbone Networks, such
as TEN-34, EuropaNET, Eunet, Qwest Nationwide Network, etc., can be
modeled as planar or almost planar graphs; see [1].

In this paper we continue with our study of various algorithmic aspects
of geometric networks, and in this paper we are concerned with the study
of classical problems in distributed computing such as leader election on
geometric networks. We also study classical problems in computational
geometry such as convex hulls, but from the point of view of distributed
algorithms.

From the point of view of distributed computing, we study the impact
that geometric information has on the classical problem of leader election.
It is well known that the knowledge that processors have about the network
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can dramatically affect the complexity of a problem; for example, knowledge
about its topology (e.g. ring, hypercube), sense of orientation, the number
of processors, etc. Detailed treatments and references can be found in text-
books such as [12, 16]. In the asynchronous, failure-free setting, it is known
that Θ(m + n log n) messages are necessary and sufficient to elect a leader
in an arbitrary network of n processors and m edges. The same result holds
for rings. In this paper investigate the impact of geometric information on
the complexity of the leader election problem. We also obtain distributed
algorithms to calculate the convex hull of a geometric network, as well as for
the identification of internal and external faces of a geometric network. We
concentrate on the message complexity of asynchronous, failure-free, uni-
form (processors do not know the size of the network) algorithms. From
now on we will assume that the nodes of all of our networks are aware of
their coordinates that represent their position in the plane, and that no two
processors are at the same location. We further assume that the networks
are planar. As mentioned before, for many networks, such as unit distance
ad-hoc and wireless networks, the existence of local algorithms to extract
planar subnetworks of them render our algorithms useful for these types of
networks.

Results

In Section 3 we prove a lower bound of Ω(n log n) on the message complexity
of leader election in geometric rings. Since there are O(n log n) algorithms
for rings (not geometrical), this bound is tight, and the geometric informa-
tion does not help to reduce the message complexity of this problem.

In Section 4, we present a lower bound of Ω(n log n) on the message
complexity of the external face problem in geometric rings. Then we show
that the external face problem can be solved in O(n log n) messages in a
general geometric network. We prove this by showing that if there is already
a leader in a geometric network, it takes O(n) messages to solve the external
face problem.

Both of our lower bounds hold even if the network lies on a grid; that is,
the positions of the processors in the plane are integers and each line segment
joining two processors is horizontal or vertical. It will follow from our proof
that our result holds even for rings located on grids of area O(n log n).

We remark that our lower bound for leader election holds even if the
processors know the external face of the ring. Therefore, although both
problems have message complexity of Θ(n log n), in a sense, leader election
is strictly harder than external face; if there is a leader, O(n) messages are
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needed to find the external face, but if the external face is known, Ω(n log n)
messages are needed to elect a leader.

Finally, in Section 5, for the convex hull problem in geometric networks,
we give a O(n log2 n) message algorithm which sends only a constant number
of identifiers in each message. It is easy to see that once the convex hull has
been solved, it takes only O(n) messages to elect a leader, and hence also to
find the external face.

Summarizing, we prove that geometric leader election is strictly harder
than external face and that convex hull is at least as hard as geometric
leader election.

In Section 6 we discuss some issues related to the geometric model and
some open questions.

2 Preliminaries

A geometric network is a distributed network whose vertex set is a set of
points S on the plane in general position. Each vertex p ∈ S knows its posi-
tion determined by an ordered pair (px, py) of numbers called the identifiers
of p. No two processors have the same identifiers. The communication links
(edges) are straight lines, and no two lines intersect, other than perhaps at
their end points. Thus, the network is planar, and the number of edges is
linear in n.

Within this paper, a ring will refer to a geometric network in which all
of its nodes have degree two. The convex hull Conv(S) of a point sets S is
the smallest convex set containing the elements of S, and the convex hull
Conv(G) of a geometric network G is the convex hull of its set of vertices.

The vertices and edges of a geometric network G divide the plane into set
of connected regions called the faces of G. One of these faces is unbounded,
and will be called the external face of G.

We consider standard asynchronous, failure-free networks where the mes-
sages take a finite but arbitrary time to traverse an edge [12, 16].

The message complexity of a distributed algorithm is the worst-case num-
ber of messages sent by the algorithm. For the upper bounds we assume that
each message contains a constant number of processor identifiers, otherwise
any distributed problem could be solved by first electing a leader, which in
turn would gather the topology of the network and solve the problem lo-
cally. In our algorithms, each message will have two parts; a constant-length
list of processor identifiers, followed by O(log n) bits. The lower bounds we
present hold even if the messages are of unbounded size.
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We will use the partial order “≺” defined on the processors of our net-
works as follows. Given two processors, p and q,

p ≺ q if py < qy or else if py = qy and px < qx.

Notice that under ≺ any two processors are comparable, and thus there
is a unique largest processor with respect to ≺.

3 Leader Election In Geometric Networks

We start by considering the case of a geometric convex ring. Then we deal
with arbitrary rings. A ring is called convex if its processors are located at
the vertices of a convex polygon. We now show that in convex rings, electing
a leader can be done using at most 2n messages.

Consider the order ≺ defined above on the processors of a convex ring
C. Let p be a processor of C, and let q and r be its neighbors. Since the
ring is convex, p is the maximal processor with respect to ≺ if and only if
q ≺ p, and r ≺ p. Our election algorithm proceeds as follows: A processor
either wakes up spontaneously, or upon receiving a message from any of
its neighbors. When a processor p wakes up, it sends a message to its two
neighbors, say q, r, asking them for their identifiers. Once p obtains this
information, it elects itself as leader iff q ≺ p and r ≺ p. It is easy to see
that the total number of messages used by this algorithm is 2n.

At this point, it is a natural question to ask if the additional informa-
tion provided in geometric rings can be used to elect a leader in better than
O(n log n) messages. As mentioned in the introduction, a leader can be
elected in a ring, and hence also in a geometric ring with, O(n log n) mes-
sages. We now show that any asynchronous algorithm to elect a leader in
geometric rings has an execution where Ω(n log n) messages are sent. The
argument incorporates geometry into the classical proof of Burns [3] (see
also [12]). Thus, as in [3], we assume uniform algorithms that have to work
for any ring size n. For the proof, we require that at the end of a leader
election algorithm every processor knows the id (x, y) of the processor p
with largest (w.r.t. ≺) id, so that p is considered the leader. Notice that
this lower bound also implies that Ω(n log n) messages are needed to elect
any leader, with the requirement that only a single processor needs to know
the leader; if there exists an algorithm sending fewer messages, once this
algorithm terminates, the leader can send a message around the ring to find
out the coordinates of the largest processor, and then send another message
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around the ring to distribute this information; this adds no more than 2n
messages to the message complexity of the original algorithm.

Consider any leader election algorithm A. The idea of Burns’ proof is to
consider executions of A that send many messages without communicating
with part of the ring. Take a segment (roughly half) of a ring, containing
k processors, with endpoints p, q, with open edges e1, e2 connecting the
segment to the rest of the ring. Prove, by induction, that there is an open
execution for the segment in which Θ(k log k) messages are sent, but no
message is delivered along e1, e2. Then, consider an execution that consists
of the open executions for each half of the ring, and show how to force an
additional linear number of messages to be sent, in an open execution.

Let C be a geometric ring. We say that C is an orthogonal ring if
the edges of C are horizontal or vertical line segments, and its processors
have integer coordinates. Given an orthogonal ring C, let R(C) be the
smallest orthogonal rectangle containing it, and let n(C), h(C), and w(C)
respectively be the number of processors in C, the height, and the width of
R(C). We also call h(C), and w(C) the height and width of C

In order to make this argument work, for each point (i, j) on the plane
with integer coordinates, we construct recursively a family of orthogonal
rings Fk(i, j), k ≥ 0, which satisfy the following conditions:

1. For every pair of integers (i, j), all the elements of Fk(i, j) have the
same width and height, denoted by wk and hk respectively. Moreover,
if C ∈ Fk(i, j) and C ′ ∈ Fk(k, l) then n(C) = n(C ′) = nk.

2. For each pair of elements C and C ′ of Fk(i, j), R(C) = R(C ′).

3. Each orthogonal ring C in Fk(i, j) has exactly one edge in the bottom
and top sides of R(C), called the top and bottom edges of C. These
are the potential open edges (in Burns’ proof) of the ring.

4. nk, wk, and hk satisfy the following equations:

• nk = 2nk−1 + 8, with n0 = 4.

• hk = hk + 4 with h0 = 1.

• wk = 2wk−1 + 3 with w0 = 1.

For every pair of integers (i, j), let C0(i, j) be the unit square, with four
processors in its corners, and let the top and bottom edges of C0(i, j) be the
top and bottom sides of C0(i, j) respectively. Let F0(i, j) = {C0(i, j)}.
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Having constructed Fk−1(i, j) for every (i, j), we now show how to con-
struct Fk(i, j); i, j ∈ I.

Consider the family of rings Fk(i, j+ 2) and Fk(i+wk−1 + 3, j+ 2), and
let C1 ∈ Fk(i, j + 2) and C2 ∈ Fk(i+ wk−1 + 3, j + 2).

Using C1 and C2 we obtain four elements in Fk(i, j) called C1,2(top, top),
C1,2(top, bottom), C1,2(bottom, top), and C1,2(bottom, bottom) as follows:

First remove the top and bottom edges of C1 and C2 respectively, and
join the endpoints of these edges by two non-intersecting paths of length
5 as shown in Figure 1(a). C1 and C2 are not drawn, only their boxes,
represented by dotted squares. Let C1,2(top, bottom) be the resulting ring.
The edges e1 and e2 are the top and bottom edges of C1,2(top, bottom).

To obtain C1,2(top, top) we now remove the top edges of C1, and C2 and
join their end-vertices by two non-intersecting paths, one of length 3, and
the second of length 7 as shown in Figure 1(b).1

C1,2(bottom, bottom) and C1,2(bottom, top) are handled in a symmetric
way. Clearly nk, wk, and hk satisfy the equations in item 4 above. It also
follows that the solutions of these equations yield:

• nk = 3 · 2k+2 − 8.

• hk = 4k + 1.

• wk = 2k+2 − 3.

Thus the area occupied by an element of any Fk(i, j) is hk ·wk, which is
Θ(nk log nk).

We now prove:

Theorem 3.1 For any election algorithm A there is an element C ∈ Fk(i, j)
such that to elect a leader in C, algorithm A sends Ω(n log n) messages,
where n = nk = 3 · 2k+2 − 8.

To prove Theorem 3.1 we will need some preliminary results. Given a
ring C and an edge e in it, we call an execution of an election algorithm A on
C open on e if it is obtained by running A on C, but with the introduction
of an infinite delay on e; that is, any message sent along e will never reach
its destination. Notice that under these conditions, A may not terminate;
nevertheless at some point in time all activity on C − e will stop, either

1The actual shape of the paths connecting the top and/or bottom edges of C1 and C2

are irrelevant, other than to keep the sizes of the boxes enclosing the elements of Fk(i, j)
uniform, and that each element of Fk(i, j) has a unique top and bottom edge.
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Figure 1: Inductive construction for the leader election lower bound.

because a leader has been elected, or because A is waiting for the messages
sent along e to arrive at their destination.

We now prove the following result:

Lemma 3.2 Let A be a leader election algorithm. For every k ≥ 0 and
integers i, j there exists a ring C ∈ Fk(i, j) with an execution of A open either
at the top or the bottom edge of C such that A sends at least Θ(nk log(nk)
messages.

Proof: It is easy to check that our result holds for k = 0. Suppose
then that it holds for k − 1. By induction, there are rings C1 and C2 in
Fk−1(i, j + 2) and Fk−1(i + wk−1 + 3, j + 2) for which A has an open ex-
ecution on each of them (open at their bottom or top edge) that sends at
least Θ(nk−1 log(nk−1)) messages. Assume w.l.o.g. that these executions of
A, α1, α2, are open at the top edges of C1 and C2. We now show that there
is an execution of A open at the top or bottom edge of C1,2(top, top) that
sends at least Θ(nk log(nk)) messages.
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Figure 2: Inductive construction for the external face lower bound.

Consider first an execution of A on C1,2(top, top) consisting of α1 and
α2, thus, in which we introduce an infinite delay in all the edges along the
paths connecting C1 with C2. Notice that this will result in executions of A
on C1 and C2 in which their top edges are open, and thus in the worst case,
A will be forced to send at least f(k − 1) messages in each of them, where
f(k − 1) is Θ(nk−1 log(nk−1)).

Suppose now that we remove the delay on all the edges on the path of
C1,2(top, top) containing its top edge, and connecting C1 with C2. If this
forces A to send an extra

nk−1

2 messages, then the total number of messages
sent by A is 2f(k − 1) plus O(nk−1) which proves our result. Let Stop be
the set of vertices which send or receive a message.

In a similar way, suppose that we remove the delay assumption on the
edges on the path C1,2(top, top) containing its bottom edge. Define Sbottom
in a similar way to Stop, and assume again that A is not forced to send

nk−1

2
extra messages.

This implies that Stop and Sbottom do not intersect, and thus by simul-
taneously removing the delay on all the edges on the paths connecting C1

and C2, A could enter a deadlock failing to elect a leader!

Theorem 3.1 follows.
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4 The External Face Problem

In this section, we study the external face problem: each processor should
find out whether it is a vertex of the external face, and if so, which of the
faces containing it is the external one. We start by proving a Ω(n log n)
message complexity lower bound for geometric rings, and then present a
matching upper bound for general geometric networks.

The lower bound proof is analogous to the lower bound proof in the
previous section for leader election, except that instead of using the con-
struction shown in Figure 1, we use that shown in Figure 2. The idea is
that the rings C1 ∈ Fk−1(i, j+ 2) and C2 ∈ Fk−1(i+wk−1 + 3, j+ 2) used to
generate rings in Fk(i, j) cannot identify the external face of the obtained
rings before a message has passed along the (top or bottom) open edge.
If we connect the two rings as in Figure 1(a), then the internal face of C2

becomes part of the internal face of the new ring, while in Figure 2(a) it
becomes part of the external face. Thus we have:

Theorem 4.1 The message complexity of the external face problem in ge-
ometric rings is Ω(n log n).

We now proceed to the upper bound. Some terminology will be needed.
Observe first that each node v of a geometric network can sort his neighbors
in a circular list in the clockwise order according to the slope of the line
segments joining v to them.

We can now consider each edge as having two sides, the left, and the right
side with respect to v, see figure 3. Thus if a node v receives a message from
a neighbor u trough the left side of an edge e (respectively the right side
of e), v can then forward this message trough the right (respectively left)
side of the edge that precedes e (respectively succeeds e) in the clockwise
order among edges incident to v. By forwarding messages with the strategy
thus defined, we can achieve operations such as traversing all the nodes and
edges of a face of G.

Theorem 4.2 Once a leader has been elected, the external face problem can
be solved in geometric networks using O(n) messages. Thus the message
complexity of this problem is O(n log n).

Proof: We recall that in any distributed network, the leader can determine
a spanning tree T using O(E) messages (where E is the number of edges
in the network), and since the geometric network is planar, it has a linear
number of edges. Next, using T , the leader can determine the point p
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Figure 3: The left and right sides of an edge.

with the largest id with respect to the partial order “≺”, with at most 2n
messages; sending a wave down the tree to request this information and a
wave up the tree to collect it.

Notice that p is in the external face of the geometric network. The leader
notifies p that it has the largest id, and asks it to finish the determination of
the external face. Observe that p can determine which of the faces incident
to it is the external one simply by collecting the coordinates of its neighbors.
Using the forwarding strategy just described above, p can send a message
along one of its edges (and sides) on the external face, notifying the neighbor
at the other end of this edge that it is also in the external face, and which
of the faces incident at this vertex is the external one.

Each time a processor q is notified that it belongs to the external face,
it forwards the notifying message along the same face it received it. When
p gets the notifying message back, it informs all the processors that the
external face has been determined. This can all be done using a linear
number of messages.

5 The Convex Hull Problem

Let S be a set of points on the plane. Recall that the convex hull Conv(S)
of S is the smallest convex set containing all the elements of P , and that the
convex hull of a geometric network is the convex hull of its set of vertices.
In this section, we present a distributed algorithm to solve the convex hull
problem: each processor has to find out whether it is a vertex of the convex
hull, and if so, learn the identities of its neighbors in the convex hull, in both
the clockwise and counterclockwise direction.
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We first observe that using the results of the previous section, we can
reduce the problem of finding the convex hull of a geometric network to
that of finding the convex hull of its external face in O(n log n) messages.
Thus, in the rest of this section we concentrate in the problem of finding
convex hulls of geometric rings. Let C be a geometric ring with vertices
{v1, . . . , vn}. We prove that the convex hull of a geometric ring C can be
found using O(n log2 n) messages.

Our algorithm proceeds as follows:

1. In the first iteration, we elect a leader in C.

2. The leader then sends a message along C relabeling its vertices S =
{v1, . . . , vn} such that v1 is the leader.

3. In a recursive way, calculate the convex hulls of S1 = {v1, . . . , vbn
2
c}

and S2 = {vbn
2
c, . . . , vn}. Merge these hulls to obtain Conv(C).

We now proceed to show that merging the convex hulls of S1 and S2 can
be done in O(n log n) messages. This will prove our result.

It is important to observe that in what follows, instead of using all of
C, we use only the edges in the path obtained from C by deleting the edge
connecting v1 to vn. This is important since in the recursive iterations of
our algorithm, we are calculating the union of convex hulls of subpaths of
C. Thus, rather than considering C as a ring, we will consider it as the path
connecting v1 to vn. Several preliminary results will be needed. Let P1 and
P2 be the polygons determined by the convex hulls of S1 and S2, that is P1

and P2 contain only the edges of Conv(S1) and Conv(S2) respectively. The
following result, given without proof, is an easy consequence of the simplicity
of C; see Figure 4.

Lemma 5.1 P1 and P2 intersect in at most two points. If they intersect at
a single point, that point is vbn

2
c. Moreover if P1 and P2 do not intersect,

then Conv(S1) ⊂ Conv(S2) or Conv(S2) ⊂ Conv(S1).

This is important since it implies that to calculate the convex hull of
S1∪S2, all we need to do is to decide if Conv(S1) ⊂ Conv(S2) or Conv(S2) ⊂
Conv(S1), and if not find exactly two common supporting lines of P1 and
P2, that is two different lines tangent to both P1 and P2 such that each of
them leaves both of P1 and P2 on the same side of them, see Figure 4.

We now prove the next result, which we call The ray shooting lemma
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Figure 4: The boundaries of P1 and P2 intersect at most twice.

Lemma 5.2 (Ray-Shooting) Let vi ∈ {v1, . . . vn}, and let L be any straight
line through vi. Then using a linear number of messages vi can find the
points at which L intersects P1 and P2.

Proof: To prove this, notice that all vi has to do is to send a message along
C containing the equation of L. Each time a processor that corresponds
to a vertex of P1 (resp. P2) receives this message, it verifies whether L
intersects the line segments that join it to its neighbors in P1 (resp. P2).
If an intersection is detected, a message is sent back to vi informing it that
an intersection was detected, along with the coordinates of the intersection
point.

Observe that in Lemma 5.2, we can easily substitute a line segment or
a ray for L by sending the coordinates of the endpoints of a line segment or
the initial point and the direction of a ray along C, instead of the equation
of L.

The next result follows from Lemma 5.1:

Corollary 5.3 Let vi be any vertex of P1 (resp. P2), and L any line through
vi. Then we can determine whether L intersects P2 (resp. P1) using a linear
number of messages.

We now prove:

Lemma 5.4 We can detect if Conv(S1) ⊂ Conv(S2) or Conv(S2) ⊂ Conv(S1)
using a linear number of messages.
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Proof: We show how to detect if Conv(S2) ⊂ Conv(S1). Testing if
Conv(S1) ⊂ Conv(S2) is done in a symmetric way. Let i be the largest
index such that vi is a vertex of P1. Suppose that vj and vk are the vertices
adjacent to vi in P1. Two cases arise:

1. i < bn2 c

2. i = bn2 c

In the first case, all we have to verify is whether the path Π with vertices
{vbn

2
c, . . . , vn} connecting vbn

2
c to vn intersects either of the line segments

connecting vi to vj and vk. To accomplish this, we send a message along
Π containing the coordinates of vi, vj , and vk. Each time a vertex vr of Π
receives this message, it checks if the segment joining vr−1 to vr intersects
any of the straight line segments joining vi to vj and to vk, r > bn2 c. If
no intersection is found, then Conv(S2) ⊂ Conv(S1), otherwise Conv(S2) 6⊂
Conv(S1).

In the second case, we verify first whether vbn
2
c+1 belongs to the interior

of Conv(S1). This is easily checked by comparing the position of vbn
2
c+1

with respect to the angle formed by the vertices vj , vi, and vk. It vbn
2
c+1

does not belong to the interior of Conv(S1) then Conv(S2) 6⊂ Conv(S1).
If vbn

2
c+1 belongs to the interior of Conv(S1), then we proceed as in the

previous case, but with the path Π′ with vertex set {vbn
2
c+1, . . . , vn}.

Assume then that Conv(S2) 6⊂ Conv(S1), Conv(S1) 6⊂ Conv(S2), and
suppose further that P1 and P2 intersect in exactly two points. The case
when they intersect exactly in vbn

2
c can be solved in a similar way. We now

show how to obtain a line L that intersects Conv(S1) and Conv(S2) in two
intervals I1 and I2 respectively, such that I1 and I2 overlap (we allow the
case when I1 and I2 may intersect in exactly one point).

Two cases arise:

1. vbn
2
c belongs to the interior of Conv(S1) (or symmetrically to the in-

terior of Conv(S2)).

2. vbn
2
c is one of the points of intersection of P1 and P2.

We observe first that by using the same arguments as those in the proof
of Lemma 5.4, we can detect in linear time if we are in case 1 or 2 above.

Assume first that we are in case 1. Let i, k, j be as in the proof of
Lemma 5.4. As in that Lemma, by traversing the path Π from vbn

2
c to vn,
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let r be the first index such that vr belongs to the interior of Conv(S1) and
vr+1 lies in the exterior of Conv(S1). Let L be the line passing trough vr and
vr+1. Clearly L intersects Conv(S1) and Conv(S2) in two intervals I1 and
I2. Using Lemma 5.2, we can in linear time determine if I1 and I2 overlap,
or if I1 ⊂ I2, or I2 ⊂ I1. If I1 and I2 overlap, let L be the line determined
by I1. Assume w.l.o.g. that I1 ⊂ I2, see Figure 5. Let p be the points where
the segment joining vr to vr+1 intersects P1. Then the line trough p and
any vertex of P1 not in P2 is the line L we are seeking.

v
1

vnv
2

v
n/2

vr

p

Figure 5:

Suppose then that vbn
2
c is one of the points of intersection of P1 and P2.

Let vi and vj be the vertices of P1 adjacent to vbn
2
c+1. Again in linear time

we can select one of them, say vi such that the interior of the edge vi−vbn
2
c+1

does not intersect P2. Choose L to be the line trough vi and vbn
2
c+1. I1 will

be edge vi − vbn
2
c+1, and I2 the intersection of L with Conv(S2).

Assume next, w.l.o.g. that L is horizontal, and that the left endpoint of
I1 is to the left of I2, as in Figure 6.

Let P
′
1 and P

′
2 be the polygons determined by the boundary of the convex

sets obtained by intersecting Conv(S1) and Conv(S2) with the halfplane
above L, and let us relabel their vertices by {u1, . . . , ur} and {w1, . . . , ws}
respectively such that u1 and ur are the left and right endpoints of I1, and
w1 and ws are the left and right endpoints of I2. Let up and wt be vertices of
P
′
1 and P

′
2 such that the line segment joining them is an edge of the convex

hull of P
′
1 ∪ P

′
2. See Figure 6.

We now prove:

Lemma 5.5 up and wt can be found using at most O(n lnn) messages.
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Figure 6: Defining P
′
1 and P

′
2.

Proof: We show how to perform a binary search on {u1, . . . , ur} to find
up; wt can be found in a similar way. Take the mid-vertex vb r

2
c, and consider

ray R through vb r
2
c starting at vb r

2
c−1; see Figure 7. If R intersects P

′
2, then

ur ∈ {u1, . . . , vb r
2
c−1}, else ur ∈ {vb r

2
c, . . . , vr}. Iterating this procedure, we

can find ur in a logarithmic number of iterations. By Corollary 5.3, detecting
whether R intersects P

′
2 can be done using a linear number of messages. Our

result follows.

6
w  =wt

u
ru1

w
1

u
p

u
r/2

Figure 7: Finding up and wt.

In a similar way we can find, using O(n log n) messages, the missing edge
e of the convex hull of the union of the polygons P

′′
1 and P

′′
2 obtained by

intersecting P1 and P2 with the plane below L. If the lines generated by
the edges upwt, and e are supporting lines of P1 and P2, then these are the
edges we are seeking to calculate Conv(P1 ∪P2). It could happen, however,
that one of them, say upwt, is not an edge of Conv(P1 ∪ P2). This could
happen if wt is exactly ws. See Figure 7. The reader may easily verify that
performing a binary search on the chains u1, . . . , up, and ws−1, . . . , wm, we
can find the missing edge in Conv(P1 ∪ P2), where wm is the end-vertex of
e in Q

′
2; see Figure 8.
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The last result that we need to prove is how to calculate the relative order
of the processors in the convex hull of C. This order is used to perform the
search procedure described in Lemma 5.5.

We now show how to relabel the vertices on the convex hull of C as
{u1, . . . , um} such that ui is adjacent to ui+1 and ui−1, where addition is
mod m.

At the end of the execution of the steps described above, each vertex
vi ∈ C knows if it belongs to the convex hull of C, and if it does, it also
knows the identities, say vl(i) and vr(i), of its left and right neighbors in
the convex hull of C. To start the relabeling process the leader, v1, sends
a message along C to find m, the number vertices of Conv(C). Once v1
knows m, it initializes this relabeling by sending a message containing m
to be forwarded to v2, v3, etc. until it reaches the first vertex vi of C in
Conv(C). Now vi becomes u1. Notice that at this point, vi knows that its
left neighbor in Conv(C), vl(i) is u2, and vr(i) is um. Processor vi forwards
this information along C until it reaches either of vl(i) or vr(i). Suppose it
reaches vl(i) first. Now vl(i) knows that its left neighbor vl(l(i)) is u3. Then
vl(i) modifies the message to contain the information that vl(l(i)) is u3, and
vr(i) is um, and forwards it along C. This procedure continues until all the
vertices of Conv(C) have been relabeled. For the polygon shown in Figure 9,
the message starting at v1 will reach v2 first, and relabel it u1. It will then
reach u2, then u6, u3, u5, and finally u4. Clearly the relabeling procedure
uses a linear number of messages.

We have thus completed the proof of the following:
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Lemma 5.6 The convex hull of S1 and S2 can be merged in O(n log n)
messages.
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Figure 9: Realbeling the vertices of Conv(C).

Summarizing, we have:

Theorem 5.7 The message complexity of the convex hull in geometric net-
works is O(n log2 n) messages.

6 Discussion

The planarity restriction imposed on geometric networks is essential to our
work. Finding non-planar embeddings of distributed networks is trivial, e.g.
a processor with id x could simply assume that it is located at point (x, x2).
Finding planar embeddings of distributed networks, on the other hand, is a
more challenging problem.

For rings, we know that the problem of finding convex embeddings has
O(n log n) message complexity; first a leader is elected, then the leader sends
a message around the ring, renaming the processors with consecutive integers
1 to n. Then if a processor gets value i, it chooses (i, i2) as its coordinates. To
show that this algorithm is optimal, notice that once the embedding has been
obtained, we can elect a leader in O(n) messages. However since election
in a ring takes Θ(n log n) messages, it follows that our convex embedding
algorithm for rings is optimal.

Furthermore, geometric information does not help to reduce the message
complexity of problems that require Ω(n log n) messages in a geometric ring.
To prove this, suppose that some problem P can be solved with Θ(f(n))
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messages in a geometric ring. To solve P in a ring (not necessarily geomet-
ric), we can first find a planar embedding of the ring in O(n log n) messages,
then run the geometric algorithm, solving the problem with O(f(n)+n log n)
messages.

The question remains whether there is a distributed algorithm to find a
planar (not necessarily convex) embedding of a ring with smaller message
complexity, o(n log n).

We do not know if the convex hull algorithm outlined in the previous
section is optimal. However we venture the following conjecture:

Conjecture 6.1 The message complexity of the convex hull problem for
geometric networks is Ω(n log2 n). The same bound holds for geometric trees.
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