On edge-disjoint empty triangles of point sets

Javier Cano ${ }^{1}$, L. F. Barba ${ }^{1}$, Toshinori Sakai ${ }^{2}$, Jorge Urrutia ${ }^{3}$
${ }^{1}$ Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México \{j_cano,l.barba\}@uxmcc2.iimas.unam.mx
${ }^{2}$ Research Institute of Educational Development, Tokai University, Japan sakai@tokai-u.jp
${ }^{3}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México urrutia@matem.unam.mx

Abstract

Let P be a set of points in the plane in general position. Any three points $x, y, x \in P$ determine a triangle $\Delta(x, y, z)$ of the plane. We say that $\Delta(x, y, z)$ is empty if its interior contains no element of P. In this paper we study the following problems: What is the size of the largest family of edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empty triangles of P ? What is the largest number of edge-disjoint triangles of P containing a point q of the plane in their interior?

Introduction

Let P be a set of n points on the plane in general position. A geometric graph on P is a graph G whose vertices are the elements of P, two of which are adjacent if they are joined by a straight line segment. We say that G is plane if it has no edges that cross each other. A triangle of G consists of three points $x, y, z \in P$ such that $x y, y z$, and $z x$ are edges of G; we will denote it as $\Delta(x, y, z)$. If in addition $\Delta(x, y, z)$ contains no elements of P in its interior, we say that it is empty.

In a similar way, we say that, if $x, y, z \in P$, then $\Delta(x, y, z)$ is a triangle of P, and that $x y, y z$, and $z x$ are the edges of $\Delta(x, y, z)$. If $\Delta(x, y, z)$ is empty, it is called a 3-hole of P. A 3-hole of P can be thought of as an empty triangle of the complete geometric graph \mathcal{K}_{P} on P. We remark that $\Delta(x, y, z)$ will denote a triangle of a geometric graph, and also a triangle of a point set.

A well-known result in graph theory says that, for $n=6 k+1$ or $n=6 k+3$, the edges of the complete graph K_{n} on n vertices can be decomposed into a set of $\binom{n}{2} / 3$ edge-disjoint triangles. These decompositions are known as Steiner triple systems [18]; see also Kirkman's schoolgirl problem [12, 17]. In this paper, we address some variants of that problem, but for geometric graphs.

Given a point set P, let $\delta(P)$ be the size of the largest set of edge-disjoint empty triangles of P. It is clear that, if P is in convex position and it has $n=6 k+1$ or $n=6 k+3$ elements, then $\delta(P)=\binom{n}{2} / 3$. On the other hand, we prove that, for some point sets, namely Horton point sets, $\delta(P)$ is $O(n \log n)$.

We then study the problem of covering the empty triangles of point sets with as few triangulations of P as possible. For point sets in convex position, we prove that we need essentially $\binom{n}{3} / 4$ triangulations; our bound is tight. We also show that there are point

[^0]sets P for which $O(n \log n)$ triangulations are sufficient to cover all the empty triangles of P for a given point set P.

Finally, we consider the problem of finding a point contained in the interior of many edge-disjoint triangles of P. We prove that for any point set there is a point contained in at least $n^{2} / 12$ edge-disjoint triangles. Furthermore, any point in the plane is contained in at most $n^{2} / 9$ edge-disjoint triangles of P, and this bound is sharp. In particular, we show that this bound is attained when P is the set of vertices of a regular polygon.

Preliminary work

The study of counting and finding k-holes in point sets has been an active area of research since Erdôs and Szekeres $[6,7]$ asked about the existence of k-holes in planar point sets. It is known that any point set with at least ten points contains 5 -holes; e.g. see $[\mathbf{9}]$. Horton [10] proved that for $k \geq 7$ there are point sets containing no k-holes. The question of the existence of 6 -holes remained open for many years, but recently Nicolás [14] proved that any point set with sufficiently many points contains a 6 -hole. A second proof of this result was subsequently given by Gerken [8].

The study of properties of the set of triangles generated by point sets on the plane has been of interest for many years. Let $f_{k}(n)$ be the minimum number of k-holes that a point set has. Clearly a point set has a minimum of $f_{3}(n)$ empty triangles. Katchalski and Meir [11] proved that $\binom{n}{2} \leq f_{3}(n) \leq k n^{2}$ for some $k<200$; see also Purdy [16]. Their lower bounds were improved by Dehnhardt [4] to $n^{2}-5 n+10 \leq f_{3}(n)$. He also proved that $\binom{n-3}{2}+6 \leq f_{4}(n)$. Point sets with few k-holes for $3 \leq k \leq 6$ were obtained by Bárány and Valtr [2]. The interested reader can read [13] for a more accurate picture of the developments in this area of research.

Chromatic variants of the Erdôs-Szekeres problem have recently been studied by Devillers, Hurtado, Károly, and Seara [5]. They proved among other results that any bichromatic point set contains at least $\frac{n}{4}-2$ compatible monochromatic empty triangles. Aichholzer et al. [1] proved that every bi-chromatic point set contains $\Omega\left(n^{5 / 4}\right)$ empty monochromatic triangles; this bound was improved by Pach and Tóth [15] to $\Omega\left(n^{4 / 3}\right)$. Due to lack of space, we will omit the proofs of all of our results.

1 Sets of edge-disjoint empty triangles in point sets

Let P be a set of n points on the plane, and $\delta(P)$ the size of the largest set of edge-disjoint empty triangles of the complete graph $\mathcal{K}(P)$ on P. For any integer $k \geq 1$, let H_{k} denote the Horton set with 2^{k} points; see [10]. We will prove:

Theorem 1.1. Let $n=2^{k}$, and let H_{k} be the Horton set with $n=2^{k}$ elements. Then $\delta\left(H_{k}\right)$ is $O(n \log n)$.

Conjecture 1.2. Every point set P in general position with n elements contains a set with at least $O(n \log n)$ edge-disjoint empty triangles.

2 Covering the triangles of point sets with triangulations

An empty triangle t of a point set P is covered by a triangulation T of P if one of the faces of T is t. In this section we consider the following problem:

Problem 2.1. How many triangulations of a point set are needed so that each empty triangle of P is covered by at least one triangulation?

We start by studying Problem 2.1 for point sets in convex position, and then for point sets in general position. We will prove first:

Theorem 2.2. The set of triangles of any convex polygon can be covered with
(1) $\frac{1}{4}\left[\binom{n}{3}+\frac{n(n-2)}{2}\right]$ triangulations for n even, and
(2) $\frac{1}{4}\left[\binom{n}{3}+\frac{n(n-1)}{2}\right]$ triangulations for n odd.

This bound is tight.
Thus the number of triangulations needed to cover all the triangles of P is asymptotically $\binom{n}{3} / 4$. The next result follows trivially:

Corollary 2.3. Let P be a set of n points in convex position, and p any point in the interior of $C H(P)$. Then p belongs to the interior of at most $\frac{1}{4}\binom{n}{3}+O\left(n^{2}\right)$ triangles of P.

Next we prove:
Theorem 2.4. $\Theta(n \log n)$ triangulations of H_{k} are necessary and sufficient to cover the set of empty triangles of H_{k}.

Conjecture 2.5. At least $\Omega(n \log n)$ triangulations are needed to cover all the empty triangles of any point set with n points.

3 A point in many edge-disjoint triangles

The problem of finding a point contained in many triangles of a point set was solved by Boros and Füredi [3]. They proved:

Theorem 3.1. For any set P of n points in general position, there is a point in the interior of the convex hull of P contained in $\frac{2}{9}\binom{n}{3}+O\left(n^{2}\right)$ triangles of P. The bound is tight.

We consider the following problem:
Problem 3.2. Let P be a set of points on the plane in general position, and $q \notin P a$ point of the plane. What is the largest number of edge-disjoint triangles of P such that q belongs to the interior of all of them?

We will prove:
Theorem 3.3. In any point set in general position there is a point q for which the inequalities $\frac{1}{12} n^{2} \leq \tau(q) \leq \frac{1}{9} n^{2}$ hold. Moreover, $\tau(q) \leq \frac{1}{9} n^{2}$ for every q.

3.1 Regular polygons

By Theorem 3.3, any point in the interior of the convex hull of a point set is contained in at most $n^{2} / 9$ edge-disjoint triangles of P. We now show that the upper bound in Theorem 3.3 is achieved when P is the set of vertices of a regular polygon. Proving this result proved to be a nice challenging problem. In what follows, we will assume that $n=9 m$ with $m \geq 1$. We will prove:

Theorem 3.4. Let P be the set of vertices of a regular polygon with $n=9 m$ vertices, and let c be its center. If m is odd, then $|\tau(c)| \geq \frac{1}{9} n^{2}$, and if m is even, then $|\tau(c)| \geq \frac{1}{9} n^{2}-n$.

We conclude our paper by proving:
Theorem 3.5. There are point sets P such that every $q \notin P$ is contained in at most a linear number of empty edge-disjoint triangles of P. This bound is tight.

We conclude with the following:
Conjecture 3.6. Let P be a set of n points in general position on the plane. Then there is a point q on the plane which is contained in at least $\log n$ edge-disjoint triangles of P.

References

[1] O. Aichholzer, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, and J. Urrutia. Empty monochromatic triangles. Computational Geometry, Theory and Applications, 42:934-938, 2009.
[2] I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica, 41(2):243-266, 2004.
[3] E. Boros and Z. Füredi. The number of triangles covering the center of an n-set. Geom. Dedicata, 17:69-77, 1984.
[4] K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. Dissertation, TU Braunschweig, 1987.
[5] O. Devillers, F. Hurtado, G. Károlyi, and C. Seara. Chromatic variants of the Erdős-Szekeres Theorem. Computational Geometry, Theory and Applications, 26(3):193-208, 2003.
[6] P. Erdős. Some more problems on elementary geometry. Austral. Math. Soc. Gaz., 5:52-54, 1978.
[7] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463-470, 1935.
[8] T. Gerken. Empty convex hexagons in planar point sets. Discrete \& Computational Geometry, 39(1-3):239-272, 2008.
[9] H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elem. Math., 33:116-118, 1978.
[10] J. D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482-484, 1983.
[11] M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta. Math. Hungar., 51:323-328, 1988.
[12] T. Kirkman. On a problem in combinatorics. Cambridge Dublin Math. J., 2:191-204, 1847.
[13] W. Morris and V. Soltan. The Erdős-Szekeres problem on points in convex position - a survey. Bulletin (new series) of the American Mathematical Society, 37(4):437-458, 2000.
[14] C. M. Nicolás. The empty hexagon theorem. Discrete \& Computational Geometry, 38:389-397, 2007.
[15] J. Pach and G. Tóth. Monochromatic empty triangles in two-colored point sets. In Geometry, Games, Graphs and Education: the Joe Malkevitch Festschrift, pages 195-198, COMAP, Bedford, MA, 2008.
[16] G. Purdy. The minimum number of empty triangles. AMS Abstracts, 3:318, 1982.
[17] D. Ray-Chaudhuri and R. Wilson. Solution to Kirkman's schoolgirl problem. Proc. Sym. Pure Math., Amer. Math. Soc., 19:187-204, 1971.
[18] H. J. Ryser. In Combinatorial Mathematics, pages 99-102, Buffalo, NY, Math. Assoc. Amer., 1963.

[^0]: ${ }^{1}$ Partially supported by project SEP-CONACYT of Mexico, Proyecto 80268.
 ${ }^{3}$ Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (Mexico).

