On edge-disjoint empty triangles of point sets

Javier Cano¹, L. F. Barba¹, Toshinori Sakai², Jorge Urrutia³

² Research Institute of Educational Development, Tokai University, Japan sakai@tokai-u.jp

³ Instituto de Matemáticas, Universidad Nacional Autónoma de México urrutia@matem.unam.mx

Abstract. Let P be a set of points in the plane in general position. Any three points $x, y, x \in P$ determine a triangle $\Delta(x, y, z)$ of the plane. We say that $\Delta(x, y, z)$ is empty if its interior contains no element of P. In this paper we study the following problems: What is the size of the largest family of edge-disjoint triangles of a point set? How many triangulations of P are needed to cover all the empty triangles of P? What is the largest number of edge-disjoint triangles of P containing a point q of the plane in their interior?

Introduction

Let P be a set of n points on the plane in general position. A geometric graph on P is a graph G whose vertices are the elements of P, two of which are adjacent if they are joined by a straight line segment. We say that G is plane if it has no edges that cross each other. A triangle of G consists of three points $x, y, z \in P$ such that xy, yz, and zx are edges of G; we will denote it as $\Delta(x, y, z)$. If in addition $\Delta(x, y, z)$ contains no elements of P in its interior, we say that it is empty.

In a similar way, we say that, if $x, y, z \in P$, then $\Delta(x, y, z)$ is a *triangle* of P, and that xy, yz, and zx are the *edges* of $\Delta(x, y, z)$. If $\Delta(x, y, z)$ is empty, it is called a 3-hole of P. A 3-hole of P can be thought of as an empty triangle of the complete geometric graph \mathcal{K}_P on P. We remark that $\Delta(x, y, z)$ will denote a triangle of a geometric graph, and also a triangle of a point set.

A well-known result in graph theory says that, for n = 6k + 1 or n = 6k + 3, the edges of the complete graph K_n on n vertices can be decomposed into a set of $\binom{n}{2}/3$ edge-disjoint triangles. These decompositions are known as *Steiner triple systems* [18]; see also Kirkman's schoolgirl problem [12, 17]. In this paper, we address some variants of that problem, but for geometric graphs.

Given a point set P, let $\delta(P)$ be the size of the largest set of edge-disjoint empty triangles of P. It is clear that, if P is in convex position and it has n = 6k + 1 or n = 6k + 3 elements, then $\delta(P) = \binom{n}{2}/3$. On the other hand, we prove that, for some point sets, namely Horton point sets, $\delta(P)$ is $O(n \log n)$.

We then study the problem of covering the empty triangles of point sets with as few triangulations of P as possible. For point sets in convex position, we prove that we need essentially $\binom{n}{3}/4$ triangulations; our bound is tight. We also show that there are point

¹ Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México {j_cano,l.barba}@uxmcc2.iimas.unam.mx

¹Partially supported by project SEP-CONACYT of Mexico, Proyecto 80268.

³Partially supported by projects MTM2006-03909 (Spain) and SEP-CONACYT 80268 (Mexico).

sets P for which $O(n \log n)$ triangulations are sufficient to cover all the empty triangles of P for a given point set P.

Finally, we consider the problem of finding a point contained in the interior of many edge-disjoint triangles of P. We prove that for any point set there is a point contained in at least $n^2/12$ edge-disjoint triangles. Furthermore, any point in the plane is contained in at most $n^2/9$ edge-disjoint triangles of P, and this bound is sharp. In particular, we show that this bound is attained when P is the set of vertices of a regular polygon.

Preliminary work

The study of counting and finding k-holes in point sets has been an active area of research since Erdős and Szekeres [6, 7] asked about the existence of k-holes in planar point sets. It is known that any point set with at least ten points contains 5-holes; e.g. see [9]. Horton [10] proved that for $k \geq 7$ there are point sets containing no k-holes. The question of the existence of 6-holes remained open for many years, but recently Nicolás [14] proved that any point set with sufficiently many points contains a 6-hole. A second proof of this result was subsequently given by Gerken [8].

The study of properties of the set of triangles generated by point sets on the plane has been of interest for many years. Let $f_k(n)$ be the minimum number of k-holes that a point set has. Clearly a point set has a minimum of $f_3(n)$ empty triangles. Katchalski and Meir [11] proved that $\binom{n}{2} \leq f_3(n) \leq kn^2$ for some k < 200; see also Purdy [16]. Their lower bounds were improved by Dehnhardt [4] to $n^2 - 5n + 10 \leq f_3(n)$. He also proved that $\binom{n-3}{2} + 6 \leq f_4(n)$. Point sets with few k-holes for $3 \leq k \leq 6$ were obtained by Bárány and Valtr [2]. The interested reader can read [13] for a more accurate picture of the developments in this area of research.

Chromatic variants of the Erdős-Szekeres problem have recently been studied by Devillers, Hurtado, Károly, and Seara [5]. They proved among other results that any bichromatic point set contains at least $\frac{n}{4} - 2$ compatible monochromatic empty triangles. Aichholzer *et al.* [1] proved that every bi-chromatic point set contains $\Omega(n^{5/4})$ empty monochromatic triangles; this bound was improved by Pach and Tóth [15] to $\Omega(n^{4/3})$. Due to lack of space, we will omit the proofs of all of our results.

1 Sets of edge-disjoint empty triangles in point sets

Let P be a set of n points on the plane, and $\delta(P)$ the size of the largest set of edge-disjoint empty triangles of the complete graph $\mathcal{K}(P)$ on P. For any integer $k \geq 1$, let H_k denote the Horton set with 2^k points; see [10]. We will prove:

Theorem 1.1. Let $n = 2^k$, and let H_k be the Horton set with $n = 2^k$ elements. Then $\delta(H_k)$ is $O(n \log n)$.

Conjecture 1.2. Every point set P in general position with n elements contains a set with at least $O(n \log n)$ edge-disjoint empty triangles.

2 Covering the triangles of point sets with triangulations

An empty triangle t of a point set P is *covered* by a triangulation T of P if one of the faces of T is t. In this section we consider the following problem:

Problem 2.1. How many triangulations of a point set are needed so that each empty triangle of P is covered by at least one triangulation?

We start by studying Problem 2.1 for point sets in convex position, and then for point sets in general position. We will prove first:

Theorem 2.2. The set of triangles of any convex polygon can be covered with

(1) $\frac{1}{4} \left[\binom{n}{3} + \frac{n(n-2)}{2} \right]$ triangulations for *n* even, and (2) $\frac{1}{4} \left[\binom{n}{3} + \frac{n(n-1)}{2} \right]$ triangulations for *n* odd.

This bound is tight.

Thus the number of triangulations needed to cover all the triangles of P is asymptotically $\binom{n}{3}/4$. The next result follows trivially:

Corollary 2.3. Let P be a set of n points in convex position, and p any point in the interior of CH(P). Then p belongs to the interior of at most $\frac{1}{4}\binom{n}{3} + O(n^2)$ triangles of P.

Next we prove:

Theorem 2.4. $\Theta(n \log n)$ triangulations of H_k are necessary and sufficient to cover the set of empty triangles of H_k .

Conjecture 2.5. At least $\Omega(n \log n)$ triangulations are needed to cover all the empty triangles of any point set with n points.

3 A point in many edge-disjoint triangles

The problem of finding a point contained in many triangles of a point set was solved by Boros and Füredi [3]. They proved:

Theorem 3.1. For any set P of n points in general position, there is a point in the interior of the convex hull of P contained in $\frac{2}{9}\binom{n}{3} + O(n^2)$ triangles of P. The bound is tight.

We consider the following problem:

Problem 3.2. Let P be a set of points on the plane in general position, and $q \notin P$ a point of the plane. What is the largest number of edge-disjoint triangles of P such that q belongs to the interior of all of them?

We will prove:

Theorem 3.3. In any point set in general position there is a point q for which the inequalities $\frac{1}{12}n^2 \leq \tau(q) \leq \frac{1}{9}n^2$ hold. Moreover, $\tau(q) \leq \frac{1}{9}n^2$ for every q.

3.1 Regular polygons

By Theorem 3.3, any point in the interior of the convex hull of a point set is contained in at most $n^2/9$ edge-disjoint triangles of P. We now show that the upper bound in Theorem 3.3 is achieved when P is the set of vertices of a regular polygon. Proving this result proved to be a nice challenging problem. In what follows, we will assume that n = 9m with $m \ge 1$. We will prove: **Theorem 3.4.** Let P be the set of vertices of a regular polygon with n = 9m vertices, and let c be its center. If m is odd, then $|\tau(c)| \ge \frac{1}{9}n^2$, and if m is even, then $|\tau(c)| \ge \frac{1}{9}n^2 - n$.

We conclude our paper by proving:

Theorem 3.5. There are point sets P such that every $q \notin P$ is contained in at most a linear number of empty edge-disjoint triangles of P. This bound is tight.

We conclude with the following:

Conjecture 3.6. Let P be a set of n points in general position on the plane. Then there is a point q on the plane which is contained in at least $\log n$ edge-disjoint triangles of P.

References

- O. Aichholzer, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, and J. Urrutia. Empty monochromatic triangles. *Computational Geometry, Theory and Applications*, 42:934–938, 2009.
- [2] I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons. Studia Scientiarum Mathematicarum Hungarica, 41(2):243-266, 2004.
- [3] E. Boros and Z. Füredi. The number of triangles covering the center of an n-set. Geom. Dedicata, 17:69-77, 1984.
- [4] K. Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen. Dissertation, TU Braunschweig, 1987.
- [5] O. Devillers, F. Hurtado, G. Károlyi, and C. Seara. Chromatic variants of the Erdős–Szekeres Theorem. Computational Geometry, Theory and Applications, 26(3):193–208, 2003.
- [6] P. Erdős. Some more problems on elementary geometry. Austral. Math. Soc. Gaz., 5:52–54, 1978.
- [7] P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2:463–470, 1935.
- [8] T. Gerken. Empty convex hexagons in planar point sets. Discrete & Computational Geometry, 39(1-3):239-272, 2008.
- [9] H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elem. Math., 33:116–118, 1978.
- [10] J. D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482–484, 1983.
- [11] M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta. Math. Hungar., 51:323–328, 1988.
- [12] T. Kirkman. On a problem in combinatorics. Cambridge Dublin Math. J., 2:191–204, 1847.
- [13] W. Morris and V. Soltan. The Erdős–Szekeres problem on points in convex position a survey. Bulletin (new series) of the American Mathematical Society, 37(4):437–458, 2000.
- [14] C. M. Nicolás. The empty hexagon theorem. Discrete & Computational Geometry, 38:389–397, 2007.
- [15] J. Pach and G. Tóth. Monochromatic empty triangles in two-colored point sets. In Geometry, Games, Graphs and Education: the Joe Malkevitch Festschrift, pages 195–198, COMAP, Bedford, MA, 2008.
- [16] G. Purdy. The minimum number of empty triangles. AMS Abstracts, 3:318, 1982.
- [17] D. Ray-Chaudhuri and R. Wilson. Solution to Kirkman's schoolgirl problem. Proc. Sym. Pure Math., Amer. Math. Soc., 19:187–204, 1971.
- [18] H. J. Ryser. In Combinatorial Mathematics, pages 99–102, Buffalo, NY, Math. Assoc. Amer., 1963.