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Abstract1

Let P be a set of points in the plane in general position. Any three2

points x, y, z ∈ P determine a triangle ∆(x, y, z) of the plane. We3

say that ∆(x, y, z) is empty if its interior contains no element of P .4

In this paper we study the following problems: What is the size of5

the largest family of edge-disjoint triangles of a point set? How many6

triangulations of P are needed to cover all the empty triangles of P?7

We also study the following problem: What is the largest number of8

edge-disjoint triangles of P containing a point q of the plane in their9

interior? We establish upper and lower bounds for these problems.10

1 Introduction11

Let P be a set of n points in the plane in general position. A geometric12

graph on P is a graph G whose vertices are the elements of P , two of which13

are adjacent if they are joined by a straight line segment. We say that G14

is plane if it has no edges that cross each other. A triangle of G consists15

of three points x, y, z ∈ P such that xy, yz, and zx are edges of G; we will16

denote it as ∆(x, y, z). If in addition ∆(x, y, z) contains no elements of P in17

its interior, we say that it is empty.18
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In a similar way, we say that if x, y, z ∈ P , then ∆(x, y, z) is a triangle19

of P , and that xy, yz, and zx are the edges of ∆(x, y, z). If ∆(x, y, z) is20

empty, it is called a 3-hole of P . A 3-hole of P can be thought of as an21

empty triangle of the complete geometric graph KP on P . We remark that22

∆(x, y, z) will denote a triangle of a geometric graph, and also a triangle of23

a point set.24

A well-known result in graph theory says that for n = 6k + 1, or n =25

6k+3, the edges of the complete graph Kn on n vertices can be decomposed26

into a set of
(
n
2

)
/3 edge-disjoint triangles. These decompositions are known27

as Steiner triple systems [23]; see also Kirkman’s schoolgirl problem [17, 22].28

In this paper, we address some variants of that problem, but for geometric29

graphs.30

Given a point set P , let δ(P ) be the size of the largest set of edge-disjoint31

empty triangles of P . It is easy to see that for point sets in convex position32

with n = 6k + 1 or n = 6k + 3 elements, δ(P ) =
(
n
2

)
/3. Indeed any triangle33

of P is empty, and the problem is the same as that of decomposing the edges34

of the complete geometric graph K(P ) on P into edge-disjoint triangles. On35

the other hand, we prove that for some point sets, namely Horton point sets,36

δ(P ) is O(n log n).37

We then study the problem of covering the empty triangles of point sets38

with as few triangulations of P as possible. For point sets in convex position,39

we prove that we need essentially
(
n
3

)
/4 triangulations; our bound is tight.40

We also show that there are point sets P for which O(n log n) triangulations41

are sufficient to cover all the empty triangles of P for a given point set P .42

Finally, we consider the problem of finding a point q not in P contained in43

the interior of many edge-disjoint triangles of P . We prove that for any point44

set, there is a point q /∈ P contained in at least n2/12 edge-disjoint triangles.45

Furthermore, any point in the plane, not in P , is contained in at most n2/946

edge-disjoint triangles of P , and this bound is sharp. In particular, we show47

that this bound is attained when P is the set of vertices of a regular polygon.48

1.1 Preliminary work49

The study of counting and finding k-holes in point sets has been an active50

area of research since Erdős and Szekeres [11, 12] asked about the existence51

of k-holes in planar point sets. It is known that any point set with at least52

ten points contains 5-holes; e.g. see [14]. Horton [15] proved that for k ≥ 753

there are point sets containing no k-holes. The question of the existence54

of 6-holes remained open for many years, but recently Nicolás [19] proved55

that any point set with sufficiently many points contains a 6-hole. A second56
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proof of this result was subsequently given by Gerken [13].57

The study of properties of the set of triangles generated by point sets on58

the plane has been of interest for many years. Let fk(n) be the minimum59

number of k-holes that a point set has. Clearly a point set has a minimum of60

f3(n) empty triangles. Katchalski and Meir [16] proved that
(
n
2

)
≤ f3(n) ≤61

cn2 for some c < 200; see also Purdy [21]. Their lower bounds were improved62

by Dehnhardt [9] to n2 − 5n+ 10 ≤ f3(n). He also proved that
(
n−3
2

)
+ 6 ≤63

f4(n). Point sets with few k-holes for 3 ≤ k ≤ 6 were obtained by Bárány64

and Valtr [2]. The interested reader can read [18] for a more accurate picture65

of the developments in this area of research.66

Chromatic variants of the Erdős-Szekeres problem have recently been67

studied by Devillers, Hurtado, Károly, and Seara [10]. They proved among68

other results that any bi-chromatic point set contains at least n
4 − 2 com-69

patible monochromatic empty triangles. Aichholzer et al. [1] proved that70

any bi-chromatic point set always contains Ω(n5/4) empty monochromatic71

triangles; this bound was improved by Pach and Tóth [20] to Ω(n4/3).72

2 Sets of edge-disjoint empty triangles in point73

sets74

Let P be a set of points in the plane, and δ(P ) the size of the largest set75

of edge-disjoint empty triangles of the complete graph K(P ) on P . In this76

section we study the following problem:77

Problem 1. How small can δ(P ) be?78

We show that if P is a Horton set, then δ(P ) is O(n log n). On the other79

hand, it follows directly from Theorem 7 that if P is the set of vertices of a80

regular polygon then δ(P ) is at least n2

9 − n.81

82

For any integer k ≥ 1, Horton [15] recursively constructed a family of83

point sets Hk of size 2k as follows:84

(a) H1 = {(0, 0), (1, 0)}.85

(b) Hk consists of two subsets of points H−k−1 and H+
k−1 obtained from86

Hk−1 as follows: If p = (i, j) ∈ Hk−1, then p′ = (2i, j) ∈ H−k−1 and87

p′′ = (2i + 1, j + dk) ∈ H+
k−1. The value dk is chosen large enough88

such that any line ` passing through two points of H+
k−1 leaves all the89

points of H−k−1 below it; see Figure 1.90
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H+
k−1

H−
k−1

Figure 1: H4. The edges of H+
3 (resp. H−3 ) visible from below (resp. above),

are shown.

We say that a line segment pq joining two elements p and q of Hk is91

visible from below (resp. above) if there is no point of Hk below it (resp.92

above it); that is there is no element r of Hk such that the vertical line93

through r intersects pq above r (resp. below r). Let B(Hk) be the set of line94

segments of Hk visible from below. The following result which we will use95

later was proved by Bárány and Valtr in [2]; see also [3]:96

Lemma 1. |B(Hk)| = 2k+1 − (k + 2).97

The following result is proved in [3] by using this lemma:98

Theorem 1. For every n = 2k, k ≥ 1, there is a point set (namely Hk)99

such that there is a geometric graph on Hk with
(
n
2

)
−O(n log n) edges with100

no empty triangles.101

In other words, it is always possible to remove O(n log n) edges from102

the complete graph KHk
in such a way that the remaining graph contains103

no empty triangles. The main idea is that by removing from KHk
all the104

edges of H+
k−1 (respectively H−k−1) visible from below (respectively above),105

no empty triangle remains with vertices in both H+
k−1, and H−k−1.106

Observe now that if a geometric graph has k edge-disjoint empty trian-107

gles, then we need to take at least k edges away from G for the graph that108

remains to contain no empty triangles. It follows now that the complete109

graph KHk
has at most O(n log n) edge-disjoint empty triangles. Thus we110

have proved:111

Theorem 2. There is a point set, namely Hk, such that any set of edge-112

disjoint empty triangles of Hk contains at most O(n log n) elements.113
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Clearly for any point set P , the size of the largest set of edge-disjoint114

triangles of P is at least linear. We conjecture:115

Conjecture 1. Any point set P in general position always contains a set116

with at least O(n log n) edge-disjoint empty triangles.117

3 Covering the triangles of point sets with trian-118

gulations119

An empty triangle t of a point set P is covered by a triangulation T of P if120

one of the faces of T is t. In this section we consider the following problem:121

Problem 2. How many triangulations of a point set are needed such that122

each empty triangle of P is covered by at least one triangulation?123

This problem, which is interesting on its own right, will help us in finding124

point sets for which δ(P ) is large. We start by studying Problem 2 for point125

sets in convex position, and then for point sets in general position.126

3.1 Points in convex position127

All point sets P considered in this subsection will be assumed to be in con-128

vex position, and their elements labeled {p0, . . . , pn−1} in counter-clockwise129

order around the boundary of CH(P ). Since any triangulation of a point130

set of n points in convex position corresponds to a triangulation of a regular131

polygon with n vertices, solving Problem 2 for point sets in convex position132

is equivalent to solving it for point sets whose elements are the vertices of133

a regular polygon. Suppose then that P is the set of vertices of a regular134

polygon, and that c is the center of such a polygon.135

A triangle is called an acute triangle if all of its angles are smaller than π
2 .136

We recall the following result in elementary geometry given without proof.137

Observation 1. A triangle with vertices in P is acute if and only if it138

contains c in its interior.139

The following result is relatively well known:140

Lemma 2. Let P be the set of vertices of a regular n-gon Q, and c the141

center of Q. Then:142

• If n is even, c is contained in the interior of 1
4

[(
n
3

)
− n(n−2)

2

]
acute143

triangles of P .144

5



a) b)

Figure 2: a) Constructing t4(i, j, k), and b) pairing triangles sharing an edge
which contains c in the middle.

• If n is odd, c is contained in
[(
n
3

)
− n(n−1)(n−3)

8

]
= 1

4

[(
n
3

)
+ n(n−1)

2

]
145

acute triangles of P .146

Let f(n) = 1
4

[(
n
3

)
+ n(n−2)

2

]
for n even, and f(n) = 1

4

[(
n
3

)
+ n(n−1)

2

]
for147

n odd. We now prove:148

Theorem 3. f(n) triangulations are always sufficient, and always neces-149

sary, to cover all the triangles of a regular polygon.150

Proof. Suppose first that n is even. For each vertex pi of P , let α(pi) = pi+n
2

151

be the antipodal vertex of pi in P , where addition is taken mod n. Suppose152

that ∆(pi, pj , pk) is an acute triangle of P (i.e. it contains c in its interior),153

i < j < k. Let t4(i, j, k) be the following set of four triangles:154

t4(i, j, k) = {∆(pi, pj , pk),∆(α(pi), pj , pk),∆(pi, α(pj), pk),∆(pi, pj , α(pk))};

see Figure 2 a).155

It is easy to see that all the triangles of P except those that have a right156

angle are in157 ⋃
t4(i, j, k),

where i, j, k range over all triples such that ∆(pi, pj , pk) contains c in its158

interior.159

On the other hand, it is easy to see that if a triangle t of P contains c in160

the middle of one of its edges (clearly t is a right triangle), this edge joins161

two antipodal vertices of P ; see Figure 2 b). Thus we have exactly162

n

2
× (n− 2)
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such triangles. It is easy to find163

n(n− 2)

4

triangulations of P such that each of them cover two of these triangles.164

Since each triangulation of P contains exactly one acute triangle of P or165

two triangles sharing an edge that contains c at its middle point, it follows166

that167

1

4

[(
n

3

)
− n(n− 2)

2

]
+
n(n− 2)

4
=

1

4

[(
n

3

)
+
n(n− 2)

2

]
triangulations are necessary and sufficient to cover all the triangles of P . To168

show that this number of triangulations are needed, we point out that any169

two acute triangles of P cannot belong to the same triangulation (note that170

they intersect at c). Moreover these triangulations are different from those171

containing right triangles. Our result follows.172

A similar argument follows for n odd, except that some extra care has to173

be paid to the way in which we group the non-acute triangles of P around174

the acute triangles of P .175

Thus the number of triangulations needed to cover all the triangles of P176

is asymptotically
(
n
3

)
/4. The next result follows trivially:177

Corollary 1. Let P be a set of n points in convex position, and p any178

point in the interior of CH(P ). Then p belongs to the interior of at most179

(n3)
4 +O(n2) triangles of P .180

3.2 Covering the empty triangles on the Horton set181

We will now show that all the empty triangles in Hk can be covered with182

O(n log n) triangulations. The bound is tight.183

Consider an edge e of Hk that is visible from below, and a vertical line184

` that intersects e at a point q in the interior of e. The depth of e is the185

number of edges of Hk, visible from below, intersected by ` below q. It is186

not hard to see that the maximal depth of an edge of Hk visible from below187

is at most log n − 1, and that this bound is tight; see Figure 3. Moreover,188

it is easy to see that the union of all edges of Hk with the same depth is an189

x-monotone path. Now we can prove:190

Theorem 4. Θ(n log n) triangulations of Hk are necessary and sufficient191

to cover the set of empty triangles of Hk.192
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Depth = 3 Depth = 2 Depth = 1

Depth = 0

Figure 3: The depth of an edge.

Proof. Consider the sets H+
k−1 and H−k−1. We will show how to cover all193

the empty triangles of Hk with two vertices in H+
k−1 and one in H−k−1 with194

O(n log n) triangulations. Label the elements of H−k−1 from left to right as195

p0, . . . , pn
2
−1.196

For each 0 ≤ d ≤ k − 1, proceed as follows: For every pj ∈ H−k−1 join197

pj to the endpoints of all the edges of H+
k−1 of depth d. This gives us a198

set ID+
d,j of interior-disjoint empty triangles. It is not hard to see that if199

(d, j) 6= (d′, j′), then ID+
d,j ∩ ID

+
d′,j′ = ∅.200

It is easy to see that the union of these sets covers all the empty triangles201

with two vertices in H+
k−1 and one in H−k−1. In a similar way, cover all the202

triangles with two vertices in H−k−1, and one in H+
k−1 with a family of sets203

ID−d,j .204

Let `1 be the straight line connecting the leftmost point in H+
k−1 to the205

rightmost point in H−k−1, and `2 the straight line that connects the rightmost206

point in H+
k−1 with the leftmost point of H−k−1. Let q be a point slightly207

above the intersection point of `1 with `2.208

It is clear that for each ID+
d,j there is exactly one empty triangle that209

contains q in its interior. This implies that q is contained in Ω(n log n)210

empty triangles and thus Ω(n log n) triangulations are necessary to cover all211

the empty triangles in Hk.212

Now we show that O(n log n) of Hk triangulations are sufficient. Con-213

sider each set ID+
d,j and ID−d,j , and complete it to a triangulation. This214

gives us O(n log n) triangulations that cover all the triangles with vertices215

in both H+
k−1 and H−k−1.216

Take a set of triangulations T +
k−1 = {T+

1 , . . . , T
+
m} of H+

k−1 that covers all217
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of its empty triangles. Since H+
k−1 and H−k−1 are isomorphic, we can find a218

set of triangulations T −k−1 = {T−1 , . . . , T−m} of H−k−1 that covers all the empty219

triangles of H−k−1 such that T+
i is isomorphic to T−i . For each i, we can find220

a triangulation Ti of Hk that contains T+
i and T−i as induced subgraphs.221

Thus if T (n) is the number of triangulations required to cover the empty222

triangles of Hk, the following recurrence holds for n = 2k:223

T (n) = T
(n

2

)
+O(n log n).

This solves to T (n) = O(n log n), and our result follows.224

We conclude this section with the following conjecture:225

Conjecture 2. At least Ω(n log n) triangulations are needed to cover all the226

empty triangles of any point set with n points.227

4 A point in many edge-disjoint triangles228

The problem of finding a point contained in many triangles of a point set229

was solved by Boros and Füredi [4], see also Bukh [6]. They proved:230

Theorem 5. For any set P of n points in general position, there is a point231

in the interior of the convex hull of P contained in 2
9

(
n
3

)
+ O(n2) triangles232

of P . The bound is tight.233

We now study a variant to this problem, in which we are interested in234

finding a point in many edge-disjoint triangles. We consider the following:235

Problem 3. Let P be a set of points in the plane in general position, and236

q 6∈ P a point of the plane. What is the largest number of edge-disjoint237

triangles of P such that q belongs to the interior of all of them?238

We start by giving some preliminary results, and then we study Prob-239

lem 3 for point sets in general position, and sets of vertices of regular poly-240

gons.241

Given a point set P , and a point q not in P , let T (P, q) (or T (q) for242

short) be the set of triangles of P that contain q. We define the graph243

G(P, q) whose vertex set is T (q) in which two triangles are adjacent if they244

share an edge; see Figure 4. We may assume that q does not belong to any245

line passing through two elements of P . We now prove:246

Lemma 3. The degree of every vertex of G(P, q) is exactly n− 3.247
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∆(p1, p3, p4) ∆(p1, p2, p4)

∆(p0, p1, p3) ∆(p0, p1, p2)

p0

p1

p2

p3

p4

q

Figure 4: G(P, q).

Proof. Let ∆(x, y, z) be a triangle that contains q in its interior. Let p248

be any point in P \ {x, y, z}. Then exactly one of the triangles ∆(x, y, p),249

∆(x, p, z), or ∆(p, y, z) contains q; see Figure 5. That is, exactly one of250

∆(x, y, p), ∆(x, p, z), or ∆(p, y, z) belongs to T (q). Our result follows.251

q

x

y

z

p

Figure 5:

Observe now that finding sets of edge-disjoint triangles that contain q is252

equivalent to finding independent sets in G(P, q). Let τ(P, q) (or τ(q) for253

short) be the largest number of edge-disjoint triangles on P containing q.254

We now prove:255

Lemma 4.
|T (q)|
n− 2

≤ τ(q) ≤ 3|T (q)|
n

.

Proof. It follows from Lemma 3 that the size of the largest independent set256

of G(P, q) is at least |T (q)|n−2 . To prove our upper bound, it is sufficient to257
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observe that if a vertex of G(P, q) is not in an independent set I of G(P, q),258

then it is adjacent to at most three vertices in it, one per each of its edges.259

Hence by counting the number of edges connecting a vertex in I to another260

in T (q) \ I, we obtain that:261

(n− 3)|I| ≤ 3|T (q) \ I|.

Our result follows.262

From Theorem 5 and Lemma 4 it is easy to see that in any set of n263

points in general position on the plane there is a point q such that264

n2

27
+O(n) ≈

2
9

(
n
3

)
+O(n2)

n− 2
≤ τ(q) ≤

3 · 29
(
n
3

)
+O(n2)

n
≈ n2

9
+O(n).

Thus we have:265

Corollary 2. For any point set in general position on the plane there is a266

point q such that τ(q) ≤ n2

9 +O(n).267

We now prove an even stronger result. We now prove:268

Proposition 1. Let P a set of n points in general position on the plane.269

Then for any point q /∈ P of the plane τ(q) ≤ n2/9.270

Proof. Let q /∈ P be any point of the plane. If q is on a straight line passing271

through two elements of P , then by slightly moving it, q could be moved272

to a position in which it is contained in more edge-disjoint triangles. Thus273

assume that q is not on any straight line through two elements of P .274

First we show the following lemma:275

Lemma 5. There exist three straight lines passing through q such that they276

partition P into six subsets P0, P1, . . . , P5 in counter-clockwise order around277

q, with |P0| = |P2| = |P4| (we allow the possibility that Pi = ∅ for some i).278

Proof. Let l0 be a straight line passing through q such that one of the half-279

planes bounded by l0, say the one on top of it, contains an even number280

of elements of P . Take other straight lines l1 and l2 passing through q,281

and define the subsets Pi of P , 0 ≤ i ≤ 5, as shown in Figure 6 a), where282

|P0 ∪ P1 ∪ P2| is even. Let l∗ be a straight line passing through q, equi-283

partitioning the elements of P0 ∪ P1 ∪ P2.284

Choose l1 and l2 such that initially |P0| = |P2| = |P3| = |P5| = 0. From285

their initial positions, rotate l1 counter-clockwise and l2 clockwise around q286
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l*

qP2

P1
P0

P4

P5P3

l*

q
P2

P1

P0

P4

P5P3

a) b)

l1
l0

l2

l1

l0

l2

Figure 6: Partitions of P .

in such a way that P0 and P2 always contain the same number of elements,287

and until they both reach the position of l∗ at the same time, and the288

boundary of P4 always contains no more than one element of P .289

Initially |P4| ≥ 0 = |P0|. On the other hand, we have |P4| = 0 ≤ |P0|290

when l1 and l2 reach the position of l∗. Hence at some point while rotating291

l1 and l2, we have that |P0| = |P2| = |P4|; see Figure 6 b).292

Let P0, P1, . . . , P5 be as in Lemma 5. Write |Pi| = ni for 0 ≤ i ≤ 5 (we293

have n0 = n2 = n4). We henceforth read indices modulo 6. Let T be a set294

of edge-disjoint triangles with vertices in P , containing q in its interior. For295

integers i, j, k, let Tijk denote the set of elements of T such that it has one296

vertex in Pi, another in Pj and the other in Pk, and let tijk = |Tijk|; see297

Figure 7.298

P0

P1

P2
P3

P4

P5q

P0

P1

P2

P3

P4

P5q

P0

P1

P2
P3

P4

P5q

P0

P1

P2
P3

P4

P5q

a) b) c) d)

Figure 7: Triangles in the Tijk’s.
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Then299

T =
[
∪5i=0Tii(i+3)

]
∪
[
∪5i=0Ti(i+1)(i+3)

]
∪
[
∪5i=0Ti(i+1)(i+4)

]
∪
[
∪5i=0Ti(i+2)(i+4)

]
=
[
∪5i=0Tii(i+3)

]
∪
[
∪5i=0Ti(i+2)(i+5)

]
∪
[
∪5i=0Ti(i+2)(i+3)

]
∪
[
∪5i=0Ti(i+2)(i+4)

]
.

For integers i, j, let Eij denote the set of all segments connecting an element300

of Pi and another of Pj . Then for each integer i, |Ei(i+2)| = nini+2 and301

Ti(i+2)(i+3) ∪ Ti(i+2)(i+4) ∪ Ti(i+2)(i+5) is the set of elements of T which has a302

side belonging to Ei(i+2). Hence we have303

f(i) ≡ ti(i+2)(i+3) + ti(i+2)(i+4) + ti(i+2)(i+5) ≤ nini+2 (1)

for each i. Similarly, by considering the cardinality of Ei(i+3), we obtain304

g(i) ≡ 2tii(i+3) + ti(i+1)(i+3) + ti(i+2)(i+3)

+2ti(i+3)(i+3) + ti(i+3)(i+4) + ti(i+3)(i+5) ≤ nini+3 (2)

for each i. By (1) and (2), we have305

5∑
i=0

f(i) + 2
2∑
i=0

g(i) ≤
5∑
i=0

nini+2 + 2
2∑
i=0

nini+3. (3)

Since g(i) = (ti(i+2)(i+3) + tj(j+2)(j+3)) + (tj′(j′+2)(j′+5) + tj′′(j′′+2)(j′′+5)) +306

2(tii(i+3) + tjj(j+3)), where j = i+ 3, j′ = i+ 1, j′′ = j′ + 3,307

5∑
i=0

f(i) + 2

2∑
i=0

g(i) =

5∑
i=0

(ti(i+2)(i+3) + ti(i+2)(i+4) + ti(i+2)(i+5))

+2

5∑
i=0

(ti(i+2)(i+3) + ti(i+2)(i+5)) + 4

5∑
i=0

tii(i+3)

= 3|T |+
5∑
i=0

tii(i+3) ≥ 3|T |. (4)

On the other hand, if we denote the right-hand side of (3) by S,308

S = (n0n2 + n2n4 + n4n0) + (n1n3 + n3n5 + n5n1)

+2(n0n3 + n2n5 + n4n1)

=
l2

3
+

2lm

3
+ (n1n3 + n3n5 + n5n1), (5)
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where l = n0+n2+n4 (recall that n0 = n2 = n4) and m = n1+n3+n5. Since309

n1n3 +n3n5 +n5n1 = [m2− (n21 +n23 +n25)]/2 and since n21 +n23 +n25 ≥ m2/3310

with equality if and only if n1 = n3 = n5, we have n1n3 + n3n5 + n5n1 ≤311

m2/3. From this and (5), it follows that312

S ≤ l2

3
+

2lm

3
+
m2

3
=

(l +m)2

3
=
n2

3
. (6)

Now combining (3), (4) and (6), we obtain |T | ≤ n2/9, as desired.313

To achieve the equality, it is necessary that n0 = n2 = n4 and n1 = n3 =314

n5 for some partition (Figure 8).315

x

n/3 points

n/3 pointsn/3 points

a)

5 points

5 points 5 points

4 points

4 points 4 points

q

b)

Figure 8: A vertex set of a regular 27-gon.

316

317

We now prove:318

Proposition 2. Let n be a positive integer and P a set of n points in general319

position on the plane. Then there exists a point q on the plane such that320

τ(q) ≥ n2

12 .321

Proof. We use the following lemma which was proved by Ceder [7] (see also322

[5]), and applied by Bukh [6] to obtain a lower bound of maxq |T (q)| for323

given P :324

Lemma 6. There exist three straight lines such that they intersect at a point325

q and partition the plane into 6 open regions each of which contains at least326

n/6− 1 elements of P .327
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Let q be as in Lemma 6. We may assume that q is not on any straight328

line passing through two elements of P . Let m = dn/6e − 1 and denote by329

D0, D1, . . . , D5 the six regions in counter-clockwise order around q. For each330

0 ≤ i ≤ 5, let Pi be a subset of P ∩Di with |Pi| = m; see Figure 9.331

ti

si

q

P0

P1

P2

P3

P4

P5

p

p'

e

Figure 9: Matching Mi (bold lines) and triangles using edges of Mi.

Now consider the geometric complete bipartite graph with vertex set332

P0 ∪ P3 and edge set E = {pp′ | p ∈ P0, p
′ ∈ P3}. As a consequence of a333

well-known result in graph theory, E can be decomposed into m subsets Mi,334

0 ≤ i ≤ m − 1, such that each Mi is a perfect matching, i.e., consisting of335

m independent edges. Let P1 = {s1, s2, . . . , sm} and P4 = {t1, t2, . . . , tm}.336

For each i and each element e = pp′ ∈Mi, where p ∈ P0 and p′ ∈ P3, let ui337

denote either si or ti according to whether pp′∩D1 = ∅ or pp′∩D4 = ∅. Then338

4(p, p′, ui) contains q in its interior. Observe that all of the m triangles339

in Ti = {4(p, p′, ui) | e = pp′ ∈ Mi} are edge-disjoint, and all of the m2
340

triangles in T03 = ∪mi=0Ti are edge-disjoint as well.341

Define the sets T14 and T25 of triangles similarly (the elements of T14 are342

triangles with one vertex in P1, another in P4 and the other in P2∪P5, while343

the elements of T25 are triangles with one vertex in P2, another in P5 and344

the other in P3∪P0). It can be observed that all of the 3m2 = n2/12−O(n)345

triangles in T03 ∪ T14 ∪ T25 are edge-disjoint.346

Thus by using Corollary 2, Proposition 1, and Proposition 2 we have:347

Theorem 6. In any point set in general position, there is a point q such348

that n2

12 ≤ τ(q) ≤ n2

9 . Moreover, for any q, τ(q) ≤ n2

9 .349
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4.1 Regular Polygons350

By Theorem 6, any point in the interior of the convex hull of a point set351

is contained in at most n2/9 edge-disjoint triangles of P . It is also easy to352

construct point sets for which that bound is tight; see Figure 8 a). In fact,353

the point sets in that figure can be chosen in convex position.354

We now show that the bound in Theorem 6 is also achieved when P is355

the set of vertices of a regular polygon. We found proving this result to be356

a challenging problem. In what follows, we will assume that n = 9m, m ≥ 1.357

358

Let (ai, bi, ci) be an ordered set of integers. We call (ai, bi, ci) a triangular359

triple if it satisfies the following conditions:360

a) ai, bi, and ci are all different,361

b) ai + bi + ci = n− 3, and362

c) 1 ≤ ai, bi, ci ≤ n−3
2 .363

Observe that for any vertex pr of P , a triangular triple (ai, bi, ci), defines364

a triangle ∆(pr, pr+ai+1, pr+ai+bi+2) of P . Moreover, condition c) above365

ensures that ∆(pr, pr+ai+1, pr+ai+bi+2) is acute, and hence it contains the366

center c of P . Note that since ai + bi + ci = n − 3, pr = pr+ai+bi+ci+3,367

addition taken mod n. Thus the edges of ∆(pr, pr+ai+1, pr+ai+bi+2) skip ai,368

bi, and ci vertices of P respectively; see Figure 10 a).369

Let S(ai, bi, ci) = {∆(pr, pr+ai+1, pr+ai+bi+2) : pr ∈ P}. The set S(ai, bi, ci)370

can be seen as the set of triangles obtained by rotating ∆(p0, p0+ai+1, p0+ai+bi+2)371

around the center of P ; see Figure 10 b). The next observation will be useful:372

Observation 2. Let (ai, bi, ci) and (aj , bj , cj) be triangular triples of P373

such that {ai, bi, ci} ∩ {aj , bj , cj} = ∅, i 6= j. Then all of the triangles374

in S(ai, bi, ci) ∪ S(aj , bj , cj) are edge-disjoint.375

Consider a set C = {(a0, b0, c0), . . . , (ak−1, bk−1, ck−1)} of ordered trian-376

gular triples. We say that C is a generating set of triangular triples if the377

following condition holds:378

{ai, bi, ci} ∩ {aj , bj , cj} = ∅, i 6= j.

Note that |S(ai, bi, ci)| = n, and thus379 ⋃
(ai,bi,ci)∈C

S(ai, bi, ci)

contains nk edge disjoint triangles containing the center P . Our task is now380

that of finding a generating set of as many triangular triples as possible.381
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p1p0

p2

p3

p4

p5

p6

p7

p8

p1p0

p2

p3

p4

p5

p6

p7

p8

c c

b)a)

Figure 10: a) The triple (1, 2, 3), and p0 determine ∆(p0, p2, p5). b) S(1, 2, 3)
is obtained by rotating ∆(p0, p2, p5), obtaining a set of 9 edge-disjoint tri-
angles.

Theorem 7. Let P be the set of vertices of a regular polygon with n = 9m382

vertices, and let c be its center. Then if m is odd, then |τ(c)| ≥ n2

9 , and if383

m is even, then |τ(c)| ≥ n2

9 − n.384

Proof. The proof when m is odd proceeds by constructing a generating set385

C with n
9 triangular triples. Let k = 9m−3

6 and k′ = k + 2m − 1. Given386

i ∈ {0, 1, . . . ,m − 1} we define the i-th ordered triple (ai, bi, ci) as follows387

(see Figure 11):388

ai = k + i,

bi =

{
k′ − 2i− 1 if i < m−1

2 ,
k′ − 2i+m− 1 if i ≥ m−1

2 ,

ci =

{
k′ + i+ 1 + m+1

2 if i < m−1
2 ,

k′ + i+ 1− m−1
2 if i ≥ m−1

2 .

We now prove that the triples (ai, bi, ci) are triangular; that is,s ai+ bi+389

ci = n− 3. Since bi + ci = 2k′ − i+ m+1
2 for all i,390

ai + bi + ci = k + 2k′ +
m+ 1

2
= 9m− 3.

It is easy to see that391

k ≤ ai ≤ k +m− 1,
k +m = k′ −m+ 1 ≤ bi ≤ k′,

k′ + 1 ≤ ci.
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(4, 8, 12)
(5, 9, 10)
(6, 7, 11)

(10, 22, 28)
(11, 20, 29)
(12, 18, 30)
(13, 23, 24)
(14, 21, 25)
(15, 19, 26)
(16, 17, 27)

(13, 29, 36)
(14, 27, 37)
(15, 25, 38)
(16, 23, 39)
(17, 30, 31)
(18, 28, 32)
(19, 26, 33)
(20, 24, 34)
(21, 22, 35)

(16, 36, 44)
(17, 34, 45)
(18, 32, 46)
(19, 30, 47)
(20, 28, 48)
(21, 37, 38)
(22, 35, 39)
(23, 33, 40)
(24, 31, 41)
(25, 29, 42)
(26, 27, 43)

( 7, 15, 20)
( 8, 13, 21)
( 9, 16, 17)
(10, 14, 18)
(11, 12, 19)

Figure 11: Triangular triples for n = 27, 45, 63, 81 and 99.

cc

a) b)

Figure 12: a) Triangular triples (ai, bi, ci) for n = 9 · 3 = 27 and b) triples
(a′i, b

′
i, c
′
i) = (ai − 3, bi − 3, ci − 3) for n = 9 · 2 = 18.

Therefore ai < bj < ck for every i, j, k. Also, by construction it can be392

verified that ai 6= aj , bi 6= bj , and ci 6= cj for every i 6= j.393

Thus the set
⋃

(ai,bi,ci)∈C
{ai, bi, ci} contains no repeated elements.

Finally, note that the maximum value that can be reached by ci occurs394

when i = m−3
2 , and thus:395

ci ≤ k′ + 1 +
m− 3

2
+
m+ 1

2
= k′ +m =

9m− 3

2
.

Therefore C is a generating set of triangular triples. Thus c is contained396

in at least n2

9 edge-disjoint triangles.397
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The proof whenm is even proceeds by also constructing a set ofm triples.398

We use the set of triples just constructed for m+ 1 and modify it as follows:399

Suppose that the set of m+ 1 triples is {(a0, b0, c0), . . . , (am, bm, cm)}.400

Let a′i = ai − 3, b′i = bi − 3 and c′i = ci − 3 and consider C ′ =401

{(a′i, b′i, c′i) | 0 ≤ i ≤ m}. C ′ induces a set of triangles in P . Never-402

theless 2n triangles do not contain the point c in their interior; see Fig-403

ure 12. Therefore this construction guarantees that c is contained in at least404

(m+ 1)n− 2n = n2

9 − n edge-disjoint triangles.405

5 A point in many edge-disjoint empty triangles406

We conclude our paper by briefly studying the problem of the existence of407

a point contained in many edge-disjoint empty triangles of a point set. We408

point out that if we are interested only in empty triangles containing a point,409

it is easy to see that for any point set P , there is always a point q contained410

in a linear number of (not necessarily edge-disjoint) empty triangles. This411

follows directly from the following facts:412

1. Any point set P with n elements always determines at least a quadratic413

number of empty triangles [2, 16].414

2. We can always choose 2n − c − 2 points in the plane such that any415

empty triangle of P contains one of them, where c is the number of416

vertices of the convex hull of P ; see [8, 16].417

We now prove:418

Theorem 8. There are point sets P such that every q /∈ P is contained in419

at most a linear number of empty edge-disjoint triangles of P .420

Proof. Let Hk, H
+
k−1 and H−k−1 be as defined in Section 2. Consider any421

set T+
k (respectively T−k ) of empty edge-disjoint triangles such that each of422

them has two vertices in H+
k−1 (respectively H−k−1) and the other in H−k−1423

(respectively H+
k−1). Let t ∈ T+

k . Then the edge of t with both endpoints424

in H+
k−1 is an edge of H+

k−1 visible from below. Since the triangles in T+
k425

are edge-disjoint, the number of elements of T+
k is at most the number of426

edges of H+
k−1 visible from below, which is a linear function in n. Thus427

|T+
k | ∈ O(n). Similarly we can prove that |T−k | ∈ O(n).428

Consider a point q ∈ CH(Hk) \ CH(H+
k−1) ∪ CH(H−k−1). Clearly any429

empty triangle containing q belongs to some T+
k ∪ T

−
k , and thus it belongs430

to at most a linear number of edge-disjoint triangles of Hk.431
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Suppose next that q ∈ CH(H+
k−1) ∪ CH(H−k−1). Suppose without loss432

of generality that q ∈ CH(H+
k−1), and that q belongs to a set S of edge-433

disjoint triangles of Hk. S may contain some triangles with vertices in both434

of H+
k−1 and H−k−1. There are at most a linear number of such triangles.435

The remaining elements in S have all of their vertices in H+
k−1. Thus the436

number of edge-disjoint triangles containing q satisfy437

T (n) ≤ T
(n

2

)
+ Θ(n),

and thus q belongs to at most a linear number of edge-disjoint triangles.438

The first part of our result follows. To show that our bound is tight,439

let q be as in the proof of Theorem 4. It is easy to see that q belongs to440

a linear number of triangles with vertices in both of H+
k and H−k , and our441

result follows.442

We conclude with the following:443

Conjecture 3. Let P be a set of n points in general position on the plane.444

Then there is always a point q /∈ P on the plane such that it is contained in445

at least log n edge-disjoint triangles of P .446
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[20] J. Pach and G. Tóth. Monochromatic empty triangles in two-colored492

point sets. In Geometry, Games, Graphs and Education: the Joe Malke-493

vitch Festschrift, pages 195–198, COMAP, Bedford, MA., 2008.494

[21] G. Purdy. The minimum number of empty triangles. AMS Abstracts,495

3:318, 1982.496

[22] D. Ray-Chaudhuri and R. Wilson. Solution to Kirkman’s schoolgirl497

problem. Proc. Sym. Pure Math. 19, Amer. Math. Soc., 19:187–204,498

1971.499

[23] H. J. Ryser. In Combinatorial Mathematics, pages 99–102, Buffalo, NY:500

Math. Assoc. Amer., 1963.501

22


