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Abstract Let P be a set of n points on the plane in general position, n ≥ 3.
The edge rotation graph ERG(P, k) of P is the graph whose vertices are the
plane geometric graphs on P with exactly k edges, two of which are adjacent if
one can be obtained from the other by an edge rotation. In this paper we study
some structural properties of ERG(P, k), such as its connectivity and diameter.
We show that if the vertices of ERG(P, k) are not triangulations of P , then it is
connected and has diameter O(n2). We also show that the chromatic number
of ERG(P, k) is O(n), and show how to compute an implicit coloring of its
vertices. We also study edge rotations in edge-labelled geometric graphs.
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México, Mexico
j_cano@uxmcc2.iimas.unam.mx

J.M. Dı́az-Báñez
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Fig. 1 Flipping edge vw.

1 Introduction

In this paper, P will always denote a set of n points in the plane in general
position, Conv(P ) will denote the convex hull of P , and c and i the number of
elements of P on the boundary and in the interior of Conv(P ) respectively. A
geometric graph G on P is a graph whose vertices are the elements of P , and
its edges are straight line segments joining pairs of elements of P . The edge of
G joining x, y ∈ P will be denoted by xy. We say that G is plane if no edges of
G intersect except at a common vertex. All geometric graphs considered here
will be plane, and thus the term geometric graph will refer to plane geometric
graphs.

A geometric graph T on P is called a triangulation if the edges of T par-
tition Conv(P ) into a set of interior disjoint triangles such that they do not
contain an element of P in their interior. These triangles are called the tri-
angles of T . It is well known that any triangulation of P contains exactly
2c+ 3i− 3 edges.

An edge e of a triangulation T of P is called flippable if it belongs to
the boundary of two triangles t1 and t2 of T such that t1 ∪ t2 is a convex
quadrilateral Q. By “flipping e,” we mean the operation of removing e from
T and inserting the second diagonal of Q; see Figure 1. It is known that any
triangulation of P can be transformed into any other triangulation of P by
executing at most O(n2) edge flips; see [7,8].

In this paper we study an operation similar to an edge flipping called an
edge rotations. Let G be a plane geometric graph on P that is not a triangu-
lation, and xy an edge of G. An edge rotation of xy around point x replaces
xy by an edge xw 6∈ G if:

1. The geometric graph G− xy + xw is plane,
2. the open triangle 4xyw with vertices x, y, w contains no element of P , and
3. 4xyw does not intersect any edge e ∈ G; see Figure 2.

Edge rotations on graphs (not necessarily geometric graphs) have been
studied before in the literature; see e.g. [4]. Edge rotations on binary trees have
been studied in [9], among other things to their applications in data structures;
see also [10,11]. A similar transformation on plane geometric graphs, called
edge slides, was studied by Aichholzer and Reinhardt [1]. They poved that it
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Fig. 2 Rotating edge xy to xw.

is possible to transform any two plane-spanning trees of a point set into each
other by using O(n2) local and constant-size edge slides. Edge rotations on
labelled trees are studied in [5]. For more details on edge rotations and edge
flips, we refer the interested reader to a recent survey on this topic [2].

We are concerned with the question of when and how fast two geometric
plane graphs can be transformed into each other by means of edge rotations.
Given a set of points P , let PG(P, k) be the set of all plane geometric graphs
on P with k edges, k < 2c + 3i − 3. The edge rotation graph ERG(P, k) has
vertex set PG(P, k). Two vertices of ERG(P, k) are adjacent if they differ by
an edge rotation.

We prove that ERG(P, k) is connected, and give tight asymptotic bounds
on its diameter, and its chromatic number. Our paper is organized as follows:
In Sections 2 and 3 we prove that the edge rotation graph is connected and give
tight asymptotic bounds on its diameter. In Section 4, we study the chromatic
number of ERG(P, k), and finally in Section 5 we extend our results to plane
geometric graphs with labelled edges.

2 Connectivity

In what follows, we will assume that the geometric graphs we study are not
triangulations and have at least three vertices. A device that will prove useful
to us is the following: Given a geometric graph G on P which is not a trian-
gulation, we will add to it some Steiner edges, which we will call absent edges,
such that G together with these extra edges is a triangulation of P .

Thus instead of talking about plane geometric graphs, we will refer to
triangulations of P with at least one absent edge, or to “triangulations with
absent edges” for short. The dual graph of a triangulation is the graph whose
vertices are the triangular faces of T contained in Conv(P ), two of which are
adjacent if they share an edge on their boundaries.

Let a and b be an absent and a non-absent edge of a triangulation T of
P . Then T (a, b) will denote the graph obtained from T by removing b from
T (and thus making it an absent edge), and replacing a by a new non-absent
edge, i.e. we can think of this as switching a with b.
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The following two lemmas will be the main tools for proving the connec-
tivity of ERG(P, k).

Lemma 1 Let T be a triangulation of P with at least one absent edge, and
a and b an absent and a non-absent edge of T respectively. Then there is a
sequence of edge rotations that transforms T to T (a, b).

Proof Let T ′ be the dual graph of T , and Π a shortest path in T ′ among all
paths in T ′ connecting a triangle of T containing a on its boundary to another
triangle whose boundary contains b.

The proof proceeds by induction over the length of Π. If Π is a path whose
length is zero, a and b are edges of a triangle of T . By definition, we can rotate
b to a around the vertex incident to both of them, thus obtaining T (a, b).

Suppose then that the length of Π is m > 0. Let t1, . . . , tm+1 be the
triangles in Π, and assume that a belongs to the boundary of t1. Let ei be the
edge common to ti and to ti+1, i = 1, . . . ,m. Two cases arise. Suppose first
that all the edges ei are non-absent edges of T . Then since a and e1 belong
to a triangle of T , we can rotate e1 to a in T to obtain T1 = T (a, e1). Thus a
is now a non-absent edge of T1, and e1 is absent. By induction on the length
of Π \ {t1}, we can now exchange e1 (now an absent edge) with b to obtain
T1(e1, b). But T1(e1, b) = T (a, b), and our result follows.

Suppose next that at least one edge ei of Π is an absent edge of T . Let
j be the largest index such that ej is absent. By the previous paragraph, we
can now transform T to T1 = T (ej , b). By induction on Π \ {tj+1, . . . , tm+1}
we can now exchange a with ej (which is now non-absent) to obtain T1(a, ej).
Again, it is easy to see that T1(a, ej) = T (a, b). ut

Recall that an edge e of a triangulation T is flippable if the union of the
two triangles of T containing e on their boundaries is a convex quadrilateral;
denote it as Qe. Recall also that flipping d means replacing it in T by the
second diagonal of Qe; see Figure 1.

Lemma 2 Given a triangulation T with at least one absent edge, any edge
flip can be attained by a sequence of edge rotations.

Proof Let xy be a flippable edge of T . If xy is an absent edge of T , we simply
flip it to the second diagonal ofQxy which is also an absent edge in the resulting
triangulation. Suppose then that xy is a flippable non-absent edge of T , and
that the other two vertices of Qxy are w and z; see Figure 3.

Let e be an absent edge of T . By Lemma 1, we can exchange e and xw
by performing some edge rotations (at this point xw is an absent edge). Now
rotate xy to xw, then xy—which is now absent—can be flipped to wz, and
then rotate wx to wz. At this point we have flipped xy, and xw is again an
absent edge of T . Applying Lemma 1 again, move xw back to its original
position. Our result follows. ut

Let T be a triangulation of P with r absent edges, r ≥ 1. The underlying
triangulation T of T is the triangulation of P obtained by replacing each
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Fig. 3 Flipping edge xy to wz.

absent edge of T by a non-absent edge. Let T and T ′ be two triangulations
of P each with r absent edges and such that they have the same underlying
triangulation T , but their sets of absent edges are different. We prove:

Lemma 3 T can be transformed to T ′ using at most O(n2) edge rotations.

Proof Suppose that the absent edges of T and T ′ are not the same. Then there
are two different edges xy and uv such that:

a) xy is absent in T , and uv is non-absent in T , and
b) xy is non absent in T ′, and uv is absent in T ′.

By Lemma 1, we can transform T to T (xy, uv) with a linear number of
flips. Observe that T1 = T (xy, uv) and T ′ have now two more absent edges
in common. Our result follows by induction on the number of absent edges
not common to T and T ′. Clearly the above procedure is performed at most
a linear number of times, until T is transformed into T ′. Each iteration costs
linear time. Our result follows. ut

Next we prove:

Theorem 1 ERG(P, k) is connected.

Proof Let G1 and G2 be two plane geometric graphs on P with k edges.
Complete G1 and G2 to two triangulations T1 and T2 by adding some absent
edges to each of them. Let T1, and T2 be the underlying triangulations of T1
and T2. Since T1, and T2 are triangulations of P , we can transform T1 into T2
by using at most O(n2) edge flips [6,7]. By Lemma 2, each edge flip can be
achieved with a sequence of edge rotations, and thus T1 can be transformed
to T2 by a sequence of edge rotations. We must now be careful, as the absent
edges of T1 were not necessarily mapped to the absent edges of T2. We apply
Lemma 3 to fix this, and transform G1 into G2. ut



6 J. Cano et al.

We observe that the proof of the previous result gives us an O(n3) upper
bound on the diameter of ERG(P, k). We must perform O(n2) flips, each po-
tentially using a linear number of edge rotations. In the next section, we will
improve on this by showing that the diameter of ERG(P, k) is O(n2).

3 The diameter of ERG(P, k)

In this section we show tight asymptotic bounds on the diameter of the edge
rotation graph. For the sake of completeness, we recall first some well known
facts about Delaunay triangulations.

Let T be a triangulation of P . A triangle ti of T is called a Delaunay
triangle if the circumcircle of ti (the circle passing through the vertices of
ti) contains no element of P in its interior. A triangulation T is a Delaunay
triangulation of P if all of its triangles are Delaunay; see Figure 4. When P
contains no four co-circular points, the Delaunay triangulation of P is unique,
and thus well defined; we denote it as DT (P ). We will suppose that such is the
case. (This condition can easily be dropped, leaving our results unchanged.)
Let e be a flippable edge of a triangulation T , and t1 and t2 the triangles of T
containing e on their boundaries. Since e is flippable, Qe = t1 ∪ t2 is a convex
quadrilateral. We say that flipping e to the second diagonal of Qe is a Delaunay
flip if there is a circle passing through the endpoints of e that contains Qe;
see Figure 5. It is well known that when no Delaunay flips can be performed
on a triangulation T , it is the Delaunay triangulation of P [7]. An edge e of a
triangulation T is called a Delaunay edge if there is a circle passing through
its endpoints and containing no elements of P in its interior.

Fig. 4 A Delaunay triangulation.

A classical result on edge flipping and the Delaunay triangulation asserts
that any triangulation of P can be transformed to DT (P ) by performing at
most O(n2) Delaunay edge flips. To achieve this bound, we never flip an edge
which is already a Delaunay edge of any of the triangulations obtained while
transforming T to DT (P ) [7]. To prove that O(n2) Delaunay edge flips are
necessary, a weight is associated to any triangulation T of P as follows: Each
triangle of T receives a weight equal to the number of points in the interior
of its circumcircle. The weight of T is the sum of the weights of its triangles.
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Observe that the weight of a triangulation is in the worst case quadratic, and
that the weight of the Delaunay triangulation is DT (p) = 0. In [7], it is shown
that each time a Delaunay flip is performed on T , its weight decreases by at
least two, and thus the number of Delaunay flips required to reach DT (P ) is
bounded above by O(n2). We are now ready to prove:

u

v

y x

u

v

y x

Fig. 5 Flipping uv to xy is a Delaunay flip.

Theorem 2 The diameter of ERG(P, k) is at most O(n2).

Proof We will show that any triangulation T of P with absent edges can
be transformed to DT (P ) by O(n2) edge rotations. To achieve this, we will
perform a linear number of iterations each of which terminates when we obtain
a Delaunay edge. At the beginning of each iteration, we find a flippable edge
e of T , and exchange an absent edge of T with an edge e′ which is on the
boundary of the quadrilateral Qe. This will allow us to perform a sequence
of Delaunay flips (each obtained with a constant number of edge rotations)
until we produce a Delaunay edge. At this point the current iteration ends,
and we start another one, unless we have reached DT (P ). We observe that
the number of Delaunay flips in each iteration is not necessarily linear, in fact
the number of Delaunay edge flips in any given iteration may be super linear.
However since each time we perform a Delaunay flip the weight of the current
triangulation decreases by two, the total number of such flips is overall of our
iterations quadratic.

Each iteration proceeds as follows:

1) Find a flippable edge e of T which is not a Delaunay edge of T (it is easy
to see that if we flip e, we perform a Delaunay edge flip).

2) Consider the quadrilateral Qe. If no edge of Qe is an absent edge, exchange
an edge of Qe, say e′, with an absent edge of T .

3) We will now perform a constant number of edge rotations to exchange e
for the second diagonal f of Qe. As shown in Figure 6, there are two ways
to exchange e for f . Two possibilities arise.
Suppose first that f is not a Delaunay edge. In this case, it is easy to see
that at least one of the edges of Qe, call it e′′, is flippable and is not a
Delaunay edge. Exchange e and f in such a way that at the end, e′′ is
absent, or e′′ and the new absent edge are on the boundary of a triangle
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of T . One of the ways to exchange e for f in Figure 6 will allow us to do
this. Repeat Step 3) using e′′ instead of e.
Suppose next that f is a Delaunay edge of P . Rotate e to f using either
of the sequences of edge rotations shown in Figure 6. Stop the current
iteration, and start the next iteration.

e

e00

e0

e

e00
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e00

e0

e00

e0

e

e00

e0

e

e00

e0
e00

e0
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f f

ff

Fig. 6 Two ways to flip e to f . We can choose one of them such that when finished, the
dotted absent edge is the next edge to be flipped, or is incident to edge e′′.

Observe now that at the beginning of each iteration, the first time we
execute Step 2) we may need a linear number of edge rotations to exchange
an edge of Qe with an absent edge.

However from here on, in Step 3), we can rotate e to f in such a way that
the next edge to be rotated, namely e′′, is such that one of the edges of Qe′′

is absent. Thus all edge flips performed in Step 3), take at most two edge
rotations.

The number of iterations is linear, since the number of Delaunay edges
is linear. Step 3) of our procedure is executed at most a quadratic number
of times. This follows from the fact that each time Step 3) is performed, the
weight of the current triangulation decreases by at least two, and thus it cannot
be executed more than O(n2) times. Our result follows. ut

We now prove that our bound is tight.

Theorem 3 There exists a point set P such that the diameter of ERG(P, k)
is Ω(n2) for k equal the number of edges of a triangulation on P minus a
constant.

Proof Consider the point set P with 2m = n points, and the triangulations of
P shown in Figure 7 (for now, all edges, both solid and dotted, are in both
triangulations). It was proved in [6] that to transform the triangulation on the
left of Figure 7 to the triangulation on the right of the same figure takes 2m2

edge flips.
Remove two edges from each of these triangulations, (the dashed lines

in Figure 7). Observe that each edge rotation performed on each of these
triangulations, exchanges an absent edge (a dashed line) with a non-dashed
edge, or can be obtained with a constant number of edge flips involving absent
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Fig. 7 An example that requires Ω(n2) edge rotations.

edges. It is now easy to verify that the same arguments used in [6] to show
that 2m2 edge flips are required to transform one triangulation into the other
can be used to show that we need a quadratic number of edge rotations to
transform these geometric graphs into each other. We omit the details. ut

4 The Chromatic Number of ERG(P, k)

In this section we prove that the chromatic number of ERG(P, k) is at most
n. Let G be a graph. An edge coloring of G is an assignment of colors to its
edges in such a way that any two edges with a common vertex receive different
colors. The smallest integer r such that the edges of G can be colored with r
colors is called the chromatic index of G, and is usually denoted as χ′(G).

We recall a well known result in graph theory:

Theorem 4 The chromatic index of the complete graph Kn on n vertices is
n− 1 for n even, or n if n is odd, n ≥ 2.

Color the edges of the complete geometric graph Kn on P with the integers
{0, . . . , χ′(Kn) − 1}, that is with the integers {0, . . . , n − 2} for n even, and
with {0, . . . , n− 1} for n odd. We now use a similar idea to that used in [3] to
obtain colorings of tree graphs.

Let G be a plane geometric graph on P with k edges. To each edge of G,
assign a weight equal to the integer it received in the coloring of Kn obtained
above. Assign to G the color obtained by adding the weights of its edges,
mod χ′(Kn).

Suppose that G′ is obtained from G by an edge rotation that takes an
edge, say xy, to xw. Since both of these edges are adjacent to x, they receive
different colors in the edge coloring of Kn. Suppose that xy has color i, and
xz color j, 0 ≤ i, j ≤ χ′(Kn) − 1, i 6= j. Then if the color of G is r, the color
of G′ is s = r− i+ j, mod χ′(Kn). Clearly r 6= s. Thus we have just obtained
a good coloring of ERG(P, k) with χ′(Kn) colors.
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We now show that for n even, the chromatic number of some ERG(P, k) is
n−1. Let n = 2m, and let P contain 2m−1 points p1, . . . , p2m−1 equally spaced
on a circle C together with the center p of C. Choose k = n, and consider the
n − 1 geometric graphs Gi such that p1, . . . , p2m−1 form a cycle, and p is
adjacent to pi, i = 1, . . . , 2m − 1; see Figure 8. Clearly Gi is adjacent to Gj

in ERG(P, k), i 6= j. Then ERG(P, k), contains a clique (complete subgraph)
of size 2m − 1. It follows that the chromatic number of ERG(P, k) is exactly
2m− 1.

Thus we have proved:

Theorem 5 The chromatic number of ERG(P, k) is at most the chromatic
index χ′(Kn). This bound is sometimes achieved for n even, and k = n. For
n odd, the chromatic number of ERG(P, k) is sometimes at least χ′(Kn)− 1.

5 Edge-labelled graphs

In this section we consider graphs in which each edge has a different label or
identity. As we perform edge rotations, the edges change their endpoints but
keep their identities. Suppose then that the edges of a plane geometric graph
G with k edges are labelled e1, . . . , ek.

In Figure 9, we show how to exchange the labels of two edges of a triangle
with an absent edge. This is accomplished using three edge rotations.

Let PGL(P, k) be the set of all plane geometric graphs on P with k edges
such that in all of them, their edges are labelled with the labels e1, . . . , ek.
Observe that each geometric graph on P such that its edges are unlabelled
generates k! vertices in PGL(P, k), and thus |PGL(P, k)| = k! |PG(P, k)|.
The labelled-edge rotation graph ERGL(P, k) is the graph whose vertex set is
PGL(P, k) and two vertices are joined by an edge if and only if they differ by
an edge rotation.

A plane geometric graph W is called a k-wheel if it contains a cycle C with
k vertices and an extra vertex c, called the center of W , adjacent to all the
vertices of C. The edges of W split the interior of C into k triangles which we
call the triangles of W ; see Figure 10. The following result will be needed.
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Fig. 9 Exchanging the labels of ei and ej using three edge rotations.

Lemma 4 Let W be a k-wheel such that its edges incident to c are labelled
e1, . . . , ek in the clockwise direction. Suppose further that ek is an absent edge
of W . Then we can exchange the labels of e1 and e2 with a linear number of
edge rotations, leaving the rest of W unchanged.

Proof Suppose that W is as in the statement of the lemma, and that the third
edge of the triangle of W containing e1 and e2 is labelled a; see Figure 10.
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Fig. 10 Exchanging the labels of two edges in a wheel.

The process followed to exchange e1 and e2 is illustrated in Figure 10.
We first rotate e1 to the position of ek, and then exchange a with e2. We
now rotate ek counterclockwise k − 1 times until it reaches the position of a.
We then exchange e1 and e2, and rotate ek k − 1 times, but now clockwise
until it reaches the position of e2. We now exchange a with e1, and finally
rotate e2 to the position of ek. At this point the labels of e1 and e2 have been
exchanged, and the rest of the labels in W are back to their original position;
see Figure 10. ut

Lemma 5 Let G be a graph in PGL(P, k), and ei and ej two edges in G. Then
the labels of ei and ej can be exchanged, leaving the labels of the remaining
edges in G unchanged.
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Proof As in the proof of Lemma 1, we consider the dual graph of a triangu-
lation T of P obtained by adding some absent edges to G. We now find the
shortest path Π connecting a triangle tr containing ei on its boundary, to
another triangle ts containing ej on its boundary. We prove the lemma using
induction on the length of Π.

Suppose first that tr = ts, and that the third edge of tr is an absent edge.
Then we can exchange the labels of ei and ej by executing three edge rotations
as shown in Figure 9. Suppose then that tr contains no absent edge. Two cases
arise. Let a be the third edge of tr, and suppose that by using Lemma 1, we can
exchange it with an absent edge e of T , but leaving ei and ej on the boundary
of tr (this is not possible, for example, if a is an edge of the convex hull of P ).

If we can do this, leaving ei and ej as edges of tr, then we proceed to
exchange ei and ej as before. Next, we return the absent edge of tr to its
original position by executing the sequence of rotations used to move e to a in
reverse order. This guarantees that any labels that may have changed while
moving e to a are restored to their original positions.

Suppose then that whenever we try to exchange an absent edge e of T
with a, we always have to move ei or ej away from tr. Then it is easy to
see that before we move ei or ej away from tr, e is incident to ei or ej .
Suppose then that e is incident to ei, and that the endpoints of tr are x, y, z
as shown in Figure 13. Observe that if x is in the interior of Conv(P ), we
can now rotate e clockwise around x until it reaches a, leaving both ei and ej
in tr, which is a contradiction. Then x belongs to the convex hull of P . If z
also belongs to the boundary of the convex hull of P , then the quadrilateral
containing the two triangles containing ei on their boundaries is convex, and
it is straightforward to verify that we can exchange ei with ej in a constant
number of edge rotations, see Figure 11.
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Fig. 11 Exchanging labels using edge rotations.

Suppose then that z belongs to the interior of Conv(P ). Then if e is not
incident to z, then with a single rotation, we can make it incident to z; see
Figure 13, and thus the subgraph of T obtained by the union of the triangles
of T having z as a vertex is a wheel satisfying the conditions of Lemma 4, and
we can now exchange ei with ej . As before, return e to its original position to
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restore the labels that may have shifted. This completes the base case of the
induction.

x
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w
z

a
ei

ej

e

Fig. 12 Exchanging labels using edge rotations.

If the path Π between tr and ts has length ` > 0, we first exchange the
label of ei with that of the next edge, say em, of the triangle strip induced
by Π. Then we have a shorter path between ei and ej and by induction, we
can exchange the labels of ei and ej . We then exchange the labels of ej and
em. ut

We now show:

Theorem 6 ERGL(S, k) is connected.

Proof Suppose we have two labelled graphs G and H in ERGL(S, k). By The-
orem 1, ignoring the labels on the edges of H and G, transform G to H. At
this point the labels on the edges of H are permuted. Now using Lemma 5, we
move each labelled edge to its final position. ut

It is easy to see that the number of edge flips used to exchange ei with ej
in Lemma 5 could be quadratic. Thus the diameter of ERGL(S, k) is O(n3).

We remark that when considering edge flips in labelled triangulations, the
labelled edge flip graph is not necessarily connected any more, as can be seen
by assigning labels to the graph shown in Figure 7.

We conclude this section by pointing out that the bounds established earlier
for the chromatic number of ERGL(P, k) are the same as for ERG(P, k). The
proof of the next result is identical to that of Theorem 5.

Theorem 7 The chromatic number of ERGL(P, k) is at most the chromatic
index χ′(Kn). This bound is sometimes achieved for n even, and k = n. For
n odd, the chromatic number of ERGL(P, k) is sometimes at least χ′(Kn)− 1.

6 Concluding remarks

An open problem for labelled graphs is that of determining the diameter of
ERGL(P, k). We believe that for some point sets, the diameter of ERGL(P, k)
is cubic.
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Other types of edge rotations arise in a natural way. For example:

1. We can allow an edge xy to be rotated to an edge xw not in G if G−xy+xw
is plane, see Figure 13 a).

2. A more restrictive rotation allows us to replace xy by xw only if y and
w are consecutive vertices in the cyclic order of visible (as seen from x)
vertices around x, see Figure 13 b).

It is easy to see that these types of edge rotations, can be achieved by
performing a sequence of edge rotations as defined in the introduction of our
paper. Thus the rotation graphs ERG(P, k) generated by these new rotations
are connected. The bounds proved on the chromatic number of ERG(P, k) and
ERGL(P, k) remain unchanged.

x

y

w

x

y

w

x

y

w x

y

w

a) b)

Fig. 13 Different types of edge rotations.
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