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Abstract

In this paper we prove that for any simple polygon P with n ver-

tices, the sum of the number of strictly internal edges and the number

of strictly external visibility edges of P is at least b 3n−1
2

c − 4.

The internal visibility graph of a simple polygon P is the graph with
vertex set equal to the vertex set of P , in which two vertices are adjacent if
the line segment connecting them does not intersect the exterior of P . The
external visibility graph of P is defined in a similar way, except that the line
segments that generate its edges are not allowed to intersect the interior of P .
A visibility edge is called strictly internal (resp. strictly external) if it is not
an edge of P . In this paper we prove the following conjecture of Bagga [1]:

For any simple polygon P with n vertices, the number of strictly
internal visibility edges plus the number of strictly external visi-
bility edges is at least b 3n−1

2
c − 4.

In Figure 1 we present a family of polygons that achieve this bound. They
have exactly n− 3 strictly internal visibility edges, and n−3

2
strictly external

visibility edges.
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Figure 1: A sequence of polygons for which the number of strictly internal
plus strictly external visibility edges is exactly b 3n−1

2
c − 4.

Let int(P ) and ext(P ) denote the number of strictly internal and external
visibility edges of P . Some observations will be used to prove that for any
polygon P with n vertices, int(P ) + ext(P ) ≥ b 3n−1

2
c − 4. A vertex v of P

will be called internal if it is in the interior of the convex hull Conv(P ) of
P . An external vertex is a vertex of the convex hull of P .

The following result is easy to prove:

Lemma 1 Let P be a simple polygon with n vertices, k of which are internal.

Then ext(P ) is at least k.

From this we have:

Lemma 2 If P has k internal vertices, then int(P ) + ext(P ) ≥ (n− 3) + k.

Proof: Observe that any triangulation of P has exactly n−3 strictly internal
edges. By Lemma 1, ext(P ) ≥ k.

We now prove:

Lemma 3 If P has k internal vertices, then P can be decomposed into

exactly k + 1 convex polygons P1, . . . , Pk+1. Moreover this decomposition

can be achieved in such a way that if ni is the number of vertices of Pi,

i = 1, . . . , k + 1, then n1 + . . . + nk+1 = n + 3k.

Proof: One at a time, and for all the internal vertices v of P , repeat the
following operation: starting at v, draw a line segment that bisects the in-
ternal angle of P at v and extend it until it hits the boundary of P , or a



previously drawn line segment. If this line segment hits a vertex of P , rotate
it slightly so that it ends in the middle of an edge; see Figure 2. Observe
that the endpoints of these segments, appear as vertices in exactly two of
the resulting subpolygons of P , and therefore each of them contributes four
units to n1 + . . . + nk+1. Our result now follows.

Figure 2: Partitionng a polygon into convex subpolygons.

In our previous lemma, each Pi has two types of vertices; those which are
vertices of P , which we call real vertices, and vertices which are endpoints
of the line segments used to partition P , and which are not vertices of P .
Let P ′

i be the convex polygon generated by the set of real vertices of Pi, and
mi be the number of vertices of P ′

i . Notice that if mi ≥ 4, then any strictly

internal visibility edge of Pi is intersected by at least mi − 3 strictly internal
visibility edges of P ′

i . Thus we have:

Lemma 4 If P ′
i has mi vertices, mi ≥ 4, then any strictly internal visibility

edge of P ′
i is intersected by at least mi − 3 strictly internal visibility edges of

P ′
i .

We now have:



Theorem 1 For any simple polygon P with n vertices, int(P ) + ext(P ) ≥
d3n−1

2
e − 4.

Proof: Suppose that P has k internal vertices. Partition it into k+1 convex
polygons Pi, . . . , Pk+1 as in Lemma 3. If mi ≥ 4, select a strictly internal
visibility edge ei of P ′

i , i = 1, . . . , k + 1. Obtain an internal triangulation T

of P such that the set of edges ei as defined before, belong to T . We now
show that int(P ) ≥ 2n − 2k − 6. By Lemma 4, for each mi ≥ 4, edge ei is
intersected by at least mi − 3 strictly internal edges of P ′

i . Since ei belongs
to T , none of these edges belongs to T . Furthermore these edges are strictly

internal visibility edges of P . It now follows that

int(P ) ≥ (n − 3) +
∑

mi≥4

(mi − 3) ≥ (n − 3) +
∑

i=1,...,k+1

(mi − 3)

But
∑

i=1,...,k+1

(mi − 3) = n + k − 3(k + 1) = n − 2k − 3

(each internal vertex of P appears in two Pi’s and each vertex in the convex
hull of P in one). Then we have

int(P ) ≥ 2n − 2k − 6

By Lemma 1, we know that ext(P ) ≥ k, and thus we have:

int(P ) + ext(P ) ≥ 2n − k − 6

On the other hand, by Lemma 2 we have that

ext(p) + int(P ) ≥ (n − 3) + k

Combining these equations we get that int(P ) + ext(P ) ≥ b 3n−1
2

c − 4.
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