On the number of internal and external visibility edges of polygons

Jorge Urrutia*
Department of Computer Science
University of Ottawa, Ottawa ON Canada

Abstract

In this paper we prove that for any simple polygon P with n vertices, the sum of the number of strictly internal edges and the number of strictly external visibility edges of P is at least $\left\lfloor\frac{3 n-1}{2}\right\rfloor-4$.

The internal visibility graph of a simple polygon P is the graph with vertex set equal to the vertex set of P, in which two vertices are adjacent if the line segment connecting them does not intersect the exterior of P. The external visibility graph of P is defined in a similar way, except that the line segments that generate its edges are not allowed to intersect the interior of P. A visibility edge is called strictly internal (resp. strictly external) if it is not an edge of P. In this paper we prove the following conjecture of Bagga [1]:

For any simple polygon P with n vertices, the number of strictly internal visibility edges plus the number of strictly external visibility edges is at least $\left\lfloor\frac{3 n-1}{2}\right\rfloor-4$.

In Figure 1 we present a family of polygons that achieve this bound. They have exactly $n-3$ strictly internal visibility edges, and $\frac{n-3}{2}$ strictly external visibility edges.

[^0]

Figure 1: A sequence of polygons for which the number of strictly internal plus strictly external visibility edges is exactly $\left\lfloor\frac{3 n-1}{2}\right\rfloor-4$.

Let $\operatorname{int}(P)$ and $\operatorname{ext}(P)$ denote the number of strictly internal and external visibility edges of P. Some observations will be used to prove that for any polygon P with n vertices, $\operatorname{int}(P)+\operatorname{ext}(P) \geq\left\lfloor\frac{3 n-1}{2}\right\rfloor-4$. A vertex v of P will be called internal if it is in the interior of the convex hull $\operatorname{Conv}(P)$ of P. An external vertex is a vertex of the convex hull of P.

The following result is easy to prove:
Lemma 1 Let P be a simple polygon with n vertices, k of which are internal. Then $\operatorname{ext}(P)$ is at least k.

From this we have:
Lemma 2 If P has k internal vertices, then $\operatorname{int}(P)+\operatorname{ext}(P) \geq(n-3)+k$.
Proof: Observe that any triangulation of P has exactly $n-3$ strictly internal edges. By Lemma 1, $\operatorname{ext}(P) \geq k$.

We now prove:
Lemma 3 If P has k internal vertices, then P can be decomposed into exactly $k+1$ convex polygons P_{1}, \ldots, P_{k+1}. Moreover this decomposition can be achieved in such a way that if n_{i} is the number of vertices of P_{i}, $i=1, \ldots, k+1$, then $n_{1}+\ldots+n_{k+1}=n+3 k$.

Proof: One at a time, and for all the internal vertices v of P, repeat the following operation: starting at v, draw a line segment that bisects the internal angle of P at v and extend it until it hits the boundary of P, or a
previously drawn line segment. If this line segment hits a vertex of P, rotate it slightly so that it ends in the middle of an edge; see Figure 2. Observe that the endpoints of these segments, appear as vertices in exactly two of the resulting subpolygons of P, and therefore each of them contributes four units to $n_{1}+\ldots+n_{k+1}$. Our result now follows.

Figure 2: Partitionng a polygon into convex subpolygons.

In our previous lemma, each P_{i} has two types of vertices; those which are vertices of P, which we call real vertices, and vertices which are endpoints of the line segments used to partition P, and which are not vertices of P. Let P_{i}^{\prime} be the convex polygon generated by the set of real vertices of P_{i}, and m_{i} be the number of vertices of P_{i}^{\prime}. Notice that if $m_{i} \geq 4$, then any strictly internal visibility edge of P_{i} is intersected by at least $m_{i}-3$ strictly internal visibility edges of P_{i}^{\prime}. Thus we have:

Lemma 4 If P_{i}^{\prime} has m_{i} vertices, $m_{i} \geq 4$, then any strictly internal visibility edge of P_{i}^{\prime} is intersected by at least $m_{i}-3$ strictly internal visibility edges of P_{i}^{\prime}.

We now have:

Theorem 1 For any simple polygon P with n vertices, $\operatorname{int}(P)+\operatorname{ext}(P) \geq$ $\left\lceil\frac{3 n-1}{2}\right\rceil-4$.

Proof: Suppose that P has k internal vertices. Partition it into $k+1$ convex polygons P_{i}, \ldots, P_{k+1} as in Lemma 3. If $m_{i} \geq 4$, select a strictly internal visibility edge e_{i} of $P_{i}^{\prime}, i=1, \ldots, k+1$. Obtain an internal triangulation T of P such that the set of edges e_{i} as defined before, belong to T. We now show that $\operatorname{int}(P) \geq 2 n-2 k-6$. By Lemma 4, for each $m_{i} \geq 4$, edge e_{i} is intersected by at least $m_{i}-3$ strictly internal edges of P_{i}^{\prime}. Since e_{i} belongs to T, none of these edges belongs to T. Furthermore these edges are strictly internal visibility edges of P. It now follows that

$$
\operatorname{int}(P) \geq(n-3)+\sum_{m_{i} \geq 4}\left(m_{i}-3\right) \geq(n-3)+\sum_{i=1, \ldots, k+1}\left(m_{i}-3\right)
$$

But

$$
\sum_{i=1, \ldots, k+1}\left(m_{i}-3\right)=n+k-3(k+1)=n-2 k-3
$$

(each internal vertex of P appears in two P_{i} 's and each vertex in the convex hull of P in one). Then we have

$$
\operatorname{int}(P) \geq 2 n-2 k-6
$$

By Lemma 1, we know that $\operatorname{ext}(P) \geq k$, and thus we have:

$$
\operatorname{int}(P)+\operatorname{ext}(P) \geq 2 n-k-6
$$

On the other hand, by Lemma 2 we have that

$$
\operatorname{ext}(p)+\operatorname{int}(P) \geq(n-3)+k
$$

Combining these equations we get that $\operatorname{int}(P)+\operatorname{ext}(P) \geq\left\lfloor\frac{3 n-1}{2}\right\rfloor-4$.

References

[1] J. O'Rourke, Combinatorics of visibility and illumination problems. Technical report 1996.

[^0]: *Supported by NSERC of Canada

