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Abstract

In this paper we prove that for any simple polygon P with n ver-
tices, the sum of the number of strictly internal edges and the number

of strictly external visibility edges of P is at least L3"2_1J —4.

The internal visibility graph of a simple polygon P is the graph with
vertex set equal to the vertex set of P, in which two vertices are adjacent if
the line segment connecting them does not intersect the exterior of P. The
external visibility graph of P is defined in a similar way, except that the line
segments that generate its edges are not allowed to intersect the interior of P.
A visibility edge is called strictly internal (resp. strictly external) if it is not
an edge of P. In this paper we prove the following conjecture of Bagga [1]:

For any simple polygon P with n vertices, the number of strictly
internal visibility edges plus the number of strictly external visi-
bility edges is at least [2%-1] — 4.

In Figure 1 we present a family of polygons that achieve this bound. They
have exactly n — 3 strictly internal visibility edges, and "T_?’ strictly external
visibility edges.
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Figure 1: A sequence of polygons for which the number of strictly internal
plus strictly external visibility edges is exactly |2%1] — 4.

Let int(P) and ext(P) denote the number of strictly internal and external
visibility edges of P. Some observations will be used to prove that for any
polygon P with n vertices, int(P) + ext(P) > |221] — 4. A vertex v of P
will be called internal if it is in the interior of the convex hull Conv(P) of
P. An external vertez is a vertex of the convex hull of P.

The following result is easy to prove:

Lemma 1 Let P be a simple polygon with n vertices, k of which are internal.
Then ext(P) is at least k.

From this we have:
Lemma 2 If P has k internal vertices, then int(P)+ ext(P) > (n—3) + k.

Proof: Observe that any triangulation of P has exactly n—3 strictly internal
edges. By Lemma 1, ext(P) > k. N

We now prove:

Lemma 3 If P has k internal vertices, then P can be decomposed into
exactly k + 1 convexr polygons Py, ..., P.i1. Moreover this decomposition
can be achieved in such a way that if n; is the number of vertices of P;,
1=1,....k+1, thenny + ...+ ngs1 =n+ 3k.

Proof: One at a time, and for all the internal vertices v of P, repeat the
following operation: starting at v, draw a line segment that bisects the in-
ternal angle of P at v and extend it until it hits the boundary of P, or a



previously drawn line segment. If this line segment hits a vertex of P, rotate
it slightly so that it ends in the middle of an edge; see Figure 2. Observe
that the endpoints of these segments, appear as vertices in exactly two of
the resulting subpolygons of P, and therefore each of them contributes four
units to ny + ...+ ngyq1. Our result now follows. [ |

Figure 2: Partitionng a polygon into convex subpolygons.

In our previous lemma, each P; has two types of vertices; those which are
vertices of P, which we call real vertices, and vertices which are endpoints
of the line segments used to partition P, and which are not vertices of P.
Let P! be the convex polygon generated by the set of real vertices of P;, and
m; be the number of vertices of P/. Notice that if m; > 4, then any strictly
internal visibility edge of P; is intersected by at least m; — 3 strictly internal
visibility edges of P/. Thus we have:

Lemma 4 If P! has m; vertices, m; > 4, then any strictly internal visibility
edge of P/ is intersected by at least m; — 3 strictly internal visibility edges of

P!

We now have:



Theorem 1 For any simple polygon P with n vertices, int(P) + ext(P) >
[32=17 — 4.
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Proof: Suppose that P has k internal vertices. Partition it into k+ 1 convex
polygons P;, ..., Py,iq as in Lemma 3. If m; > 4, select a strictly internal
visibility edge e; of P/, i =1,...,k+ 1. Obtain an internal triangulation 7'

17

of P such that the set of edges e; as defined before, belong to T. We now
show that int(P) > 2n — 2k — 6. By Lemma 4, for each m; > 4, edge e; is
intersected by at least m; — 3 strictly internal edges of P/. Since e; belongs
to T', none of these edges belongs to 1. Furthermore these edges are strictly
internal visibility edges of P. It now follows that

int(P)>(n—-3)+ > (m;—3)>n-3)+ > (m—3)

m;>4 i=1

But
> (mi—-3)=n+k-3k+1)=n—-2k-3

(each internal vertex of P appears in two P;’s and each vertex in the convex
hull of P in one). Then we have

int(P)>2n —2k —6
By Lemma 1, we know that ext(P) > k, and thus we have:
int(P) +ext(P) >2n—k —6
On the other hand, by Lemma 2 we have that
ext(p) +int(P) > (n—3)+k
Combining these equations we get that int(P) + ext(P) > L%J —4. 1
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