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Abstract

In this paper we study the extremal type problem arising from
the question: What is the maximum number ET (S) of edges that a
geometric graph G on a planar point set S can have such that it does
not contain empty triangles? We prove:(

n

2

)
−O(n log n) ≤ ET (n) ≤

(
n

2

)
−
(
n− 2 +

⌊n
8

⌋)
.
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1 Introduction

Let S be a set of n points on the plane in general position. A geometric
graph G on S is a graph whose vertices are the points of S and whose edges
are line segments joining pairs of points of S. Let p, q, r be three points on
the plane. We say that the triangle T (p, q, r) with vertex set {p, q, r} is a
triangle of G if the vertices and edges of T (p, q, r) are vertices and edges of
G.

We say that a triangle T (p, q, r) of G is empty if it contains no points of
S in its interior. In this paper we study the extremal type problem arising
from the following question:

Problem 1. What is the maximum number of edges that a geometric
graph on a planar point set S can have such that it does not contain empty
triangles?

For a given point set S, let ET (S) be the maximum integer such that
there is a geometric graph on S with ET (S) edges and containing no empty
triangles. Additionally, let ET (n) be the largest possible value of ET (S)
taken over all the point sets S of n points.

For example, it is easy to see that for any set S of four points, there
is a geometric graph on S with exactly four edges containing no empty
triangles. Moreover, any geometric graph on S with more than four edges
always contains an empty triangle; see Fig. 1. Thus ET (4) = 4.

Figure 1: Triangle-free geometric graphs on four points.

The main result of this paper is the following:(
n

2

)
−O(n log n) ≤ ET (n) ≤

(
n

2

)
−
(
n− 2 +

⌊n
8

⌋)
.

Several results related to our problem have been studied in the past.
For example, a well known result in graph theory is Turán’s Theorem [8]
which states the following: The maximum number of edges in a graph with
n vertices containing no subgraph isomorphic to Kr+1 is at most (1− 1

r )n
2

2 .
Notice that for r = 2, Turán’s Theorem tells us that any graph that contains
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no triangles contains at most n2

4 edges. Thus if the elements of S are the

vertices of a convex polygon, then ET (S) = n2

4 . This follows since in this
configuration any triangle with vertices in S is empty.

In regard to geometric graphs, Nara, Sakai and Urrutia [6] give sharp
bounds for the next problem: What is the largest number of edges that a
geometric graph with n vertices may have in such a way that it does not
contain a convex r-gon? We observe that for r = 3, this problem is not the
problem studied here, as in this paper we deal with empty triangles.

A k-hole of S is a convex k-gon whose vertices are points of S containing
no point of S in its interior. Erdős [2] asked about the existence of k-holes
in planar point sets. Horton [5] proved that for k ≥ 7 there are point sets
containing no k-holes. Nicolás [7] proved that any point set with sufficiently
many points contains a 6-hole. A second proof of the same result was later
obtained by Gerken [3]. It follows trivially that

(
n
2

)
is the maximum number

of edges that a geometric graph can have in such a way that it contains no
empty convex k-gons, k ≥ 7.

In Sections 2 and 3 respectively we give lower and upper bounds for
ET (n). In Section 4 we present some conclusions and propose some open
problems.

2 Lower Bound

In this section we show that
(
n
2

)
−O(n log n) ≤ ET (n). Horton sets will be

key elements for achieving this result. Horton [5] recursively constructed a
set Hk of size 2k, for any positive integer k such that Hk has no 7-holes.
The construction is as follows:

(a) H1 = {(0, 0), (1, 0)}.

(b) Hk consists of two subsets of points H−k−1 and H+
k−1 obtained from

Hk−1 as follows: If p = (i, j) ∈ Hk−1, then p′ = (2i, j) ∈ H−k−1 and

p′′ = (2i + 1, j + dk) ∈ H+
k−1. The value dk is chosen large enough such

that any line ` passing through two points of H+
k−1 leaves all the points

of H−k−1 below it.

The next observations follow from the definition of Hk.

Observation 1. The points p = (i, j) of Hk with i even belong to H−k−1,

and those with i odd belong to H+
k−1.
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Let p and q be two points in the plane, and consider the vertical lines `p
and `q passing trough them. Consider the vertical strip STp,q bounded by
`p and `q. Given a point set S, and p, q ∈ S. We say that the segment pq
has no points below it (respectively above it) if there is no element of S in
STp,q below (resp. above) the segment pq.

Let B(Hk) be the set of line segments joining pairs of points of Hk such
that there are no points of Hk below them. See Figure 2.

H�
3

H+
3

Figure 2: The set line segments of B(H4).

Observation 2. If p, q ∈ H+
k−1, then there is at least one point of H−k−1

below the line segment pq. If p, q ∈ H−k−1 then there is a point of H+
k−1

above pq.

A proof of the following lemma was also given by Bárány and Valtr in
[1].

Lemma 1. |B(Hk)| = 2k+1 − (k + 2).

Proof. The proof is by induction on k. It is clear that for k = 1 our result
is true. Let Hk = H−k−1 ∪ H+

k−1 as above, and let p, q ∈ Hk such that the
segment pq has no point of Hk below it. The following cases arise. Suppose
first that p and q belong to H−k−1. By induction there are 2k − (k + 1) such

pairs. Clearly by Observation 2, p and q cannot both belong to H+
k−1. Thus

the only remaining case is that one of them is in H−k−1 and the other is in

H+
k−1. By Observation 1, it is easy to see that if p = (i, j), then q = (i±1, r)

for some r, and thus there are exactly 2k − 1 such pairs. Hence

|B(Hk)| = 2k − (k + 1) + 2k − 1 = 2k+1 − (k + 2)
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and our result follows.

We remark that the only segments in B(Hk)\B(H−k−1) are those joining

pairs of points such that one of them belongs to H+
k−1 and the other to H−k−1.

Thus we have:

Observation 3. |B(Hk)| − |B(H−k−1)| = 2k − 1.

It is easy to see that the number of segments joining pairs of points in
Hk having no elements of Hk above them is also 2k+1 − (k + 2).

Hence Lemma 1 states that the number of segments joining pairs of
elements of Hk such that there is no element of Hk below them, (namely
2× 2k − (k + 2)), is linear with respect to 2k, the cardinality of Hk.

We will use Lemma 1 to prove the following theorem:

Theorem 1. For every n = 2k, k ≥ 1, there is a point set (namely Hk) such
that there is a geometric graph on Hk with

(
n
2

)
− O(n log n) edges with no

empty triangles.

Proof. Let Gk be the geometric graph on Hk obtained as follows: G1 con-
tains the edge joining (0, 0) to (1, 0). Suppose now that we have constructed
Gk−1 on Hk−1. Gk is obtained as follows:

1. If the edge pq is in Gk−1, then the edges p′q′ and p′′q′′ are in Gk, where
p′, q′, p′′ and q′′ are as in item (b) in the definition of Hk.

2. Add to Gk all the edges joining pairs of points p, q such that p ∈ H+
k−1,

and q ∈ H−k−1.

3. Finally, remove from Gk all the edges joining pairs of vertices in H+
k−1

that have no elements of H+
k−1 below them, plus all the edges joining

pairs of vertices in H−k−1 that have no elements of H−k−1 above them;
see Figure 3.

We now show, by induction on k, that Gk contains no empty triangles.
Our result is true for k = 1. Suppose that Gk−1 contains no empty triangles.
By induction, if Gk contains an empty triangle T , it must have two vertices
in H+

k−1 and one vertex in H−k−1, or vice versa.

Suppose that T has two vertices p, q ∈ H+
k−1. Then it is easy to see that

the line segment pq has no point of H+
k−1 below it. But all such edges were

removed from Gk in the third step of the construction above. In a similar
way we can prove that T cannot contain two vertices in H−k−1.
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H−
3

H+
3

Figure 3: The solid and dashed edges are removed to construct G4. As it
turns out, the dashed edges were already removed when G3 was constructed.

To show that Gk contains
(
n
2

)
− O(n log n) edges, we notice that by

Lemma 1, in the third step of our construction of Gk we remove at most
2(2k − (k + 1)) edges from the complete graph on Hk. Since the number
of vertices in Hk is n = 2k, the number of edges that we remove from the
complete graph on Hk is bounded by the recursion

g(n) ≤ 2g
(n

2

)
+ 2n,

which implies that g(n) is bounded above by O(n log n). Our result follows.

As it turns out, by using Observation 3, and the fact noted in the caption
of Figure 3, we can in fact count exactly the number of edges removed from
the complete graph on Hk, which is:

n log2 n− 2n + 2 = 2k(k − 2) + 2 .

The details are left to the reader.
Thus by Theorem 1, for n = 2k,

(
n
2

)
−O(n log n) ≤ ET (n).

Since ET (n) is monotonically increasing, we now have that for any
2k−1 < m < 2k

(
m
2

)
− O(m logm) ≤ ET (n) (simply remove 2k −m points

from Hk). Thus for every n, and by the definition of ET (n) we have:

Theorem 2.
(
n
2

)
−O(n log n) ≤ ET (n).
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We observe that Theorem 1 can be generalized to empty quadrilaterals,
pentagons and hexagons of Hk. That is Gk, contains no empty quadrilat-
erals, pentagons, and hexagons. This follows from the observation that any
empty polygon with vertices in Hk having vertices in H+

k−1 and in H−k−1,

has two adjacent vertices p and q, both in H+
k−1 or in H−k−1. In the first

case, pq has no elements of H+
k−1 below it, in the second case pq has no ele-

ments of H−k−1 above it. For empty convex polygons with more than seven
vertices, we remove no edges from the complete geometric graph on Hk, as
Hk contains no such empty convex polygons.

3 Upper Bound

In this section we provide an upper bound for ET (n). Observe that for
n ≥ 3, ET (n) <

(
n
2

)
, as the complete graph Kn on any point set with n

elements in general position has at least one empty triangle. A non-trivial
upper bound is given by the following theorem.

Theorem 3. ET (n) ≤
(
n
2

)
−
(
n− 2 +

⌊
n
8

⌋)
.

Proof. Let S be any set of n points in general position, and Kn the complete
geometric graph with vertex set S. Let F be a set of f edges of Kn such
that G = Kn \F contains no empty triangles, and for any subset F ′ of edges
of Kn with |F ′| < f , Kn \ F ′ contains empty triangles. We call the edges
in F forbidden edges. Clearly ET (S) =

(
n
2

)
− f . The following is easy to

prove:

Observation 4. There is at least one point u ∈ S lying on the boundary
of the convex hull of S such that u is incident to a forbidden edge e ∈ F .

To start, assign e to the vertex u. Then discard u and e and recursively
apply Observation 4 to the geometric graph G\{u} until only two points are
left. At the end of the process, we have associated n− 2 forbidden edges to
n−2 different points in S; moreover these edges form a forest B of forbidden
edges.

Next we show how to find
⌊
n
8

⌋
additional forbidden edges. Let p be

the point in S with the lowest y-coordinate, and let p1, . . . , pn−1 be the
elements of S \ {p}, sorted radially from p in the clockwise order. Set
Si = {p8i+1, . . . , p8i+9} ∪ {p}, for 0 ≤ i < bn8 c. Observe that |Si| = 10; see
Figure 4.

It is known that every set of ten points on the plane contains an empty
convex pentagon [4]. Let Pi ⊂ Si such that its elements are the vertices of
a convex empty pentagon.
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p1

p

p9

p17

p25

S0

S1

S2

Figure 4: Splitting S into subsets of ten points.

Let Q5 be any set of five points in convex position, and K5 the complete
geometric graph on Q5. It is not hard to see that we need to remove at least
four edges from K5 to obtain a geometric graph with no empty triangles.
In fact, there are only two such subsets of edges that are combinatorially
different. Moreover each of these configurations of removed edges contains a
cycle which is, in fact, a triangle; see Figure 5. Additionally, any geometric
graph on Q5 with five or more edges contains a cycle. Therefore each Pi

should contain at least one cycle Ci of forbidden edges, one of which is not
in B, as B is a forest. Our result would follow if all the cycles Ci were
edge-disjoint; see Figure 6.

Figure 5: K5 without dashed edges contains no empty triangle.

Let i and j be two integers with 1 ≤ i < j ≤ bn8 c and such that for any
r, i ≤ r < j, Cr and Cr+1 share an edge. It is easy to see that Cr and Cr+1

share two vertices, one of which is p. Thus, the graph Ci ∪ · · · ∪Cj contains
(|Ci| − 2) + · · ·+ (|Cj | − 2) + 2 vertices, and (|Ci|− 1) + · · ·+ (|Cj |− 1) + 1
edges. To destroy all the cycles in Ci ∪ · · · ∪ Cj , we need to remove at least
j − i + 1 edges. Our result follows now easily, and thus

f ≥ n− 2 +
⌊n

8

⌋
.
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p

Pi Pi+1

Figure 6: Each cycle of forbidden edges contains at least one edge that has
not been counted before.

Hence

ET (S) =

(
n

2

)
− f ≤

(
n

2

)
−
(
n− 2 +

⌊n
8

⌋)
,

and

ET (n) ≤
(
n

2

)
−
(
n− 2 +

⌊n
8

⌋)
.

Summarizing, we have:

Theorem 4.(
n

2

)
−O(n log n) ≤ ET (n) ≤

(
n

2

)
−
(
n− 2 +

⌊n
8

⌋)
.

4 Conclusions and open problems

We obtained lower and upper bounds for the largest number of edges, ET (n),
that a geometric graph on any n-point set in general position can have such
that it does not contain empty triangles. We conjecture that the lower
bound (

n

2

)
−O(n log n) ≤ ET (n)
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is tight. An open and interesting question is that of improving on the upper
bound of Theorem 4. The problem of determining ET (n) can be seen as a
geometric version of Turán’s Theorem [8], except that we focus on empty
triangles rather than on complete graphs of order r.

Acknowledgements

Part of this work was achieved in the Segundo Taller Mexicano de Geometŕıa
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