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Abstract

A folding of a simple polygon into a convex polyhedron is accomplished by glueing
portions of the perimeter of the polygon together to form a polyhedron. A polygon Q

is a flat n-folding of a polygon P if P can be folded to exactly cover the surface of Q

n times, with no part of the surface of P left over. In this paper we focus on a specific
type of flat 2-foldings, flat 2-foldings that wrap Q; that is, foldings of P that cover both
sides of Q exactly once. We determine, for any n, all the possible flat 2-foldings of a
regular n-gon. We finish our paper studying the set of polygons that are flat 2-foldable
to regular polygons.

1 Introduction

A folding of a simple polygon into a convex polyhedron is accomplished by glueing portions of
the perimeter of the polygon together to form the polyhedron (Figure 1). The paper [1] proves
the existence of nondenumerably infinite foldings of simple polygons to convex polyhedra.
In [2, 5, 3, 4], all possible foldings of an equilateral triangle, square, regular pentagon,
and regular n-gons, respectively, are determined, n ≥ 6. This paper deals with related
constructions, flat n-foldings of convex polygons to other convex polygons. Let P and Q be
two polygons. We say that Q is a flat 2-folding of P if P can be folded to wrap Q such that
each of its points on both sides of Q is covered exactly once. For example, in Figure 1 we
show a flat 2-folding of a pentagon that wraps a triangle.
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In this paper, we focus on flat 2-foldings. In Section 2, we determine all the convex polygons
that can result from flat 2-foldings of regular polygons. In Section 3, we determine all the
convex polygons that can be flat 2-folded to regular polygons. We conclude the paper with
some remarks and open problems.

Figure 1: Folding a pentagon to wrap a triangle.

Figure 2: A flat 2-folding of a square to a pentagon

Figure 3: A flat 3-folding of an equilateral triangle to a trapezoid

2 Flat 2-foldings of Regular n-Gons

2.1 The regular pentagon and the regular n-gons, n ≥ 7

Let P be a regular n-gon. The interior angle at a vertex of Pn is Θn = π − 2π
n

. In a flat
2-folding of Pn, a necessary condition for a vertex v of Pn to coincide with an interior point
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p of Pn is that there exist some positive integer m ≤ n , such that mΘn = 2π or mΘn = π;
see Figure 4. If mΘn = π, then Pn has an edge that is incident with vertex v in the flat
2-folding. These inequalities can not be satisfied for n = 5, or any n ≥ 7. This proves the
following:

Figure 4: Here 3Θ3 = 2π, and 2Θ4 = π

Proposition 1 Any flat 2-folding of a regular (2n + 1)-gon, n ≥ 2, can be obtained by

folding along one of its lines of symmetry. Flat 2-foldings of a regular 2n-gons, n ≥ 4, can

be obtained by folding either along a line of symmetry that bisects two opposite sides or one

that bisects two opposite angles.

Figures 5 and 6 provide an illustration of Proposition 1.

Figure 5: A flat 2-folding of P7

Figure 6: Flat 2-foldings of P8

2.2 The regular hexagon

One way to obtain a flat 2-folding of a regular hexagon is to fold along one of its lines of
symmetry. If any other flat 2-foldings exist, then the necessary condition mentioned earlier
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must be satisfied. Certainly 3Θ6 = 2π, and in fact two other ways to obtain a flat 2-folding
can be found:

1. Choose three alternate vertices of the hexagon. The other three vertices determine an
equilateral triangle. Fold the hexagon along the sides of this triangle so that the three
chosen vertices meet at the center of the hexagon.

2. Choose two adjacent sides of the hexagon and their opposite sides. The midpoints
of these four sides determine a rectangle. Fold the hexagon along the sides of this
rectangle so that each set of three consecutive vertices enclosing the chosen adjacent
sides meets at a point.

It is easy to check that no other flat 2-foldings exist. This proves the following.

Proposition 2 The foldings shown in Figure 7 are all the possible flat 2-foldings of a regular

hexagon.
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Figure 7: All possible flat 2-foldings of a regular hexagon

2.3 The square

To obtain flat 2-foldings of a square, we can again fold along lines of symmetry. Alternatively,
we may note that the necessary condition is satisfied; 4Θ4 = 2π and 2Θ4 = π, and search for
ways in which the four vertices of the square can coincide with an interior point of the square
or two vertices of the square can coincide with an interior point and be incident with a side
of the square. If any other flat 2-foldings exist, each vertex of the square must coincide with
a point on a side of the square. Such foldings are obtained as follows. Choose two parallel
lines in the interior of the square such that the lines are a distance 1

2
l apart, where l is the
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length of the side of the square; and fold the square along these lines. These considerations
lead to the following proposition.

Proposition 3 The foldings shown in Figure 8 are all the possible flat 2-foldings of a square.
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Figure 8: All possible flat 2-foldings of a square

2.4 The equilateral triangle

A flat 2-folding of an equilateral triangle can be obtained by folding along a line of symmetry.
Although the necessary condition is satisfied; 3Θ3 = π, there is no way that the three vertices
of the triangle can meet at an interior point and be incident with a side of the triangle. Hence,
if any other flat 2-foldings of the triangle exist, each vertex of the triangle must coincide with
a point on a side of the triangle. In fact, this point must be the midpoint of a side; otherwise,
a flat 2-folding will not be possible.

If the point is the midpoint of the side opposite the vertex, then the remaining uncovered
surface areas will consist of equilateral triangles (see Figure 9). These isosceles triangles can
be folded into themselves in three essentially different ways (Figure 10).

If the point is the midpoint of an adjacent side, the result is the configuration shown in
Figure 11b). Consider the vertex C. If C is made to coincide with the midpoint M , then
the resultant folding is the same as that of Figure 10a). If C is made to coincide with L,
then the folding that results is essentially the same as that of Figure 10 b). If C is made to
coincide with N , then the folding that results will either be the same as that of Figure 12b)
or c), according to whether A is made to coincide with L or N .
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Figure 9:
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Figure 10:

The possibilities for vertex A can be identified in the same way. They will be included among
the foldings shown in Figure 10.
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Figure 11:

Hence only four different flat 2-foldings can be obtained from an equilateral triangle. This
proves the following proposition.

Proposition 4 The foldings shown in Figure 12 are all the possible flat 2-foldings of an

equilateral triangle.

3 Convex Polygons Flat 2-foldable to Regular Polygons

In the previous section, we answered the question of what convex polygons can result from
flat 2-foldings of regular polygons? In this section, we turn the question around; what convex
polygons can be flat 2-folded to regular polygons ?
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Figure 12:

3.1 Regular Polygons with at Least Five Vertices

We first prove that no convex polygon is flat 2-foldable to a regular n-gon, n ≥ 5. Let P be
a convex polygon with vertices {p1, . . . , pn}. For each i, let αi be the internal angle of P at
vertex pi and let t(pi) = π − αi (see Figure 13).
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Figure 13:

Observation 1:
∑n

i=1
t(pi) = 2π.

Let Q be a flat 2-folding of P , and {q1, . . . , qm} and {β1, . . . , βm} the vertices and angles of
Q. Consider an angle βi > π

2
of Q. Since Q is a flat 2-folding of P , one or more vertices of

P are mapped to qi.

Case 1: Exactly one vertex pj of P is mapped onto qi. This case happens when qi was
obtained by folding P along an edge and pj is mapped to qi (see figure 14). In this case
t(pj) = 2t(qi)

Case 2: Suppose that k ≥ 2 vertices p1, . . . , pk of P are mapped to qi. Observe that

k∑

j=1

αj ≤ 2βi.
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Figure 14:

Since
k∑

j=1

t(pj) =

k∑

j=1

(π − αj) = kπ −
k∑

j=1

αj ≥ kπ − 2βi ≥ 2(π − βi) = 2t(qi),

we have proved the following.

Lemma 1 Let Q be a flat 2-folding of P and qi a vertex of Q such that βi > π
2
. Then if

p1, . . . , pk are mapped to qi,
k∑

j=1

t(pj) ≥ 2t(qi).

Theorem 1 No convex polygon is flat 2-foldable to a regular n-gon, n ≥ 5.

Proof: Let Qn be a regular n-gon, n ≥ 5. Then all internal angles of Qn are greater than π
2
.

Observe that
n∑

i=1

t(qi) = 2π.

Suppose that Qn is a flat 2-folding of some convex polygon P . For each i, let Si be the set
of vertices of P mapped in the folding to qi, 1 ≤ i ≤ n. Observe that Si ∩ Sj = ∅, i 6= j. By
Lemma 1,

t(Si) =
∑

pj∈Si

t(pj) ≥ 2t(qi),

and thus
n∑

i=1

t(Si) ≥ 2

n∑

i=1

t(qi) = 4π,

which is a contradiction.

In view of the theorem, we now proceed to study the set of convex polygons flat 2-foldable
to equilateral triangles and squares.
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3.2 The equilateral triangle

A way to obtain convex polygons flat 2-foldable to an equilateral triangle is as follows. Take
an equilateral triangle T and a point p on it. For each edge ei of T , let pi be the mirror
image of p with respect to the line generated by ei (see Figure 15).
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Figure 15:

Let P be the polygon whose vertices are p1, p2, p3 and the vertices of T . Depending on the
position of p, we obtain a hexagon (Figure 15), a pentagon, or a quadrilateral (Figure 16).
It is now not difficult to see that with this procedure, all polygons flat 2-foldable to an
equilateral triangle will be generated.

D E

Figure 16:

3.3 The square

There are two types of polygons which are flat 2-foldable to a square; those that contain a
copy of S (which is not folded in the flat 2-folding of P ), and those which do not contain such
a copy of S; see Figure 17. In this paper we confine ourselves to foldings of the first type
and characterize them. Foldings of the second type will be characterized in a forthcoming
paper.

Let Q be a polygon and P a convex polygon flat 2-foldable to Q. Consider a flat 2-folding of
P to Q. A point q of Q, not a vertex of Q, is called singular if in the folding of P to Q, at
least one vertex of P is mapped to q. There are two types of singular points, those lying in
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Figure 17:

the interior of Q, and those lying in the relative interior of edges of Q. The following three
lemmas are given without proof.

Lemma 2 Let Si be the set of vertices of P mapped to a singular point q of Q. Then

∑

pi∈Si

t(pi) ≥ π.

Lemma 3 In a flat 2-folding of P to Q, Q has at most two singular points.

Let q be a singular point of Q such that k vertices of P are mapped to Q. We call k the
degree of q.

Lemma 4 The degree of any singular point of Q is at most four. Moreover if Q has a

singular point q of degree four, then q is the only singular point of Q.
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Figure 18:
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Consider the labeling on the vertices and edges of S as in Figure 18, and p, q, two points
on S, not necessarily different. Suppose that we join p to v1, v2 and q, and q to v3 and v4

using non-crossing line segments. We also require that the angles formed around p and q

by these line segments be less that or equal to π, as shown in Figure 18. Let p1, p2 and p4

be the mirror images of p with respect to e1, e2, and e4. Define q2, q3, and q4 similarly; see
Figure 19.

N
O

PN

QN RN

SO

ROQO

Figure 19:

Clearly the polygon with vertex set {p1, p2, q2, q3, q4, p4} is flat 2-foldable to S. According to
the position of p and q, we obtain the cases shown in Figure 20, which characterize the set
of all polygons of the first type flat 2-foldable to a square. It is now not difficult to show,
using the preceding lemmas, that any convex polygon flat 2-foldable to S can be obtained
from one of the cases shown in Figure 20.

4 Further research

The problem of determining all flat n-foldable convex polygons n ≥ 2 remains open. In a
forthcoming paper, we identify all convex polygons that are flat 2-foldable to a square, and
those that are flat 3-foldable to a triangle.

A more specific question is the following. Are there any convex polygons other than the
rectangle which are flat n-foldable for any n?
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