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1. Introduction

Art gallery problems have been intensely studied in the literature in recent years.  A typical problem in this area is the
following:  given a simple polygon  P  with  n  vertices in the plane, how many guards are required to completely guard
the interior of  P?  A well known result of Chvatal asserts that  În/3˚  guards are always sufficient and occasionally
necessary.  Since then, several versions of this problem have been studied, depending on the shape of the polygon or the
type and placements of the guards.  A survey of  results on the art gallery problems may be found in [5].

In [9], illumination problems for families of disjoint convex sets were studied.  In these problems, the typical
question is:  given a family  F  of  n  disjoint compact convex sets, how many light sources, idealized by points on the
plane, are needed to completely illuminate the boundaries of the elements of  F?  It is proved in [9] that  4n-7  points are
always sufficient and occasionally necessary to illuminate the boundaries of any family of n disjoint compact convex
sets.

In this paper, we study the following problem.  Let  F={T1,T2,... ,Tn}  be a collection of  n  disjoint compact

convex sets on the plane.  A set  S  in  R2  is said to guard  F  if each of the sets  Ti  is visible from at least one point

in  S;  i.e. if for every  Ti ŒF  there exists a point  xi  in  Ti   and a point  yi  in  S  such that the segment  xiyi  meets

T1» T2 » ... »Tn  only at the point  xi.   How many points are needed to guard any  collection   F  of  n  disjoint

compact convex sets in the plane?  For example, in  Figure 1 we show a collection  F  of 11 rectangles for which four
guards are needed.

Four guards, represented by small circles,  
are needed to guard these 10 rectangles.
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  In this paper we prove first that any family  F={T1,T2,... ,Tn}  of  n  disjoint plane compact sets can be guarded

with at most  Î2(n-1)/3˚  points (guards).   This bound is proved to be tight by  constructing families of sets for which
exactly  Î2(n-1)/3˚  points are required.  Some interesting problems arise when the elements of  F  are restricted to satisfy
some extra conditions. We prove that any  family of  n  disjoint of line segments can be guarded using at most  n/2
points and that occasionally  2n/5  points are needed.  The 3-dimensional case turns out to be different altogether,  for in
this case it is shown that no constant  c,  c<1,  exists such that any family  F  of n disjoint compact sets can be guarded
with  cn  points.

2. Guarding Plane Convex Sets

 We now proceed to give a tight bound on the number of points needed to guard families of arbitrary disjoint compact
convex sets on the plane.  We prove:

Theorem 1.  È2 (n-1) /3˘    points  are always sufficient and occasionally necessary to guard any family
F={S1,S2,...,Sn}  of  n  disjoint convex compact sets in the plane.

The following result will be used in the proof of this theorem:

Theorem  N (Nishizeki [6]):  If  G  is a planar graph of  n  nodes with minimum vertex degree  d ≥ 3  and with
connectivity  k ≥ 2,  then for all  n ≥ 14,  the number of edges in a maximum matching of  G  is greater than or equal to
È(n+4)/3˘,  and for  n<14,  the number of edges is  În/2˚.

Proof of Theorem 1.  Let  F={S1,S2,...,Sn}  be any family of  n  disjoint compact convex sets in the plane; we

may assume that they are all contained in a large enough triangular region  T.  Let  S'n+1 be the complement of T.

Construct a family  F'={S'1, S'2,...,S'n} with  n  strictly convex sets with pairwise  disjoint interiors  such that :

i) T  ⊇ S'i  ⊇ Si, i =1,2,...,n.

ii) The number of pairs of sets   S'i,  S'j,  whose boundaries meet is as large as possible;

It is easy to verify that if  T  is chosen to be sufficiently large, each S'i  will intersect at least three different sets S'j,

j≠i, i=1,...,n+1.  (See Figure 2).

Define the dual graph  D  of  S'1,S'2,...,S'n+1  as follows:  D  has a vertex  vi  for each set  S'i;  the vertices  vi  and

vj  are adjacent in  D  if  S'i  and  S'j  have a point in common.  The  graph  D  is planar,  2-connected and with
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minimum degree at least three.  By Theorem N,  D  has a matching  M  of size at least  È((n+1)+4)/3˘.   To guard

S1,S2,...,Sn  it is sufficient to select a point in the common boundary of each pair  S'i ,Sj  matched in M,  plus a point

for each of the remaining unmatched sets.  This yields a total of  [(n+1)-(2 È(n+5)/3˘)] +  È(n+5)/3˘ = È2(n-1)/3˘  points
which collectively guard F.

     The following example shows that as many as   È2(n-1)/3˘   points might be necessary to guard   n  disjoint discs in
the plane.

Start with three mutually tangent discs  C1, C2 and C3  and consider the gap formed by them (i.e. the region bounded

by them).  Insert one disc in this gap tangent to  C1,C2 and C3  so as to form three smaller gaps.  In each gap insert a

smaller disc tangent to the three circles bounding each gap,  so as to create nine new gaps.

Continue inserting discs until  3k  gaps are obtained.  In the final step, shrink all the discs by an   amount e>0;

insert  3k  discs, one in each gap, and 3 more discs outside the gap formed by  C1,C2 and C3.  This may be done in such

a way that no two of these  3k + 3  discs are visible from a point.  It follows that a guarding set must contain at least

3k  + 3 points, one for each disc inserted in the last step.

However, the total number of discs is   n  =  3 + 1 + 3 + 32 + 33 + ...+ 3k-1 + (3k + 3) = (3k+1 +11)/2   and  3k  +
3 =È2(n-1)/3˘.

®

Corollary 1.  È2(n-1)/3˘    points  are always sufficient and occasionally necessary to guard any family
F={S1,S2,...,Sn}  of  n  disks.

3. Line Segments

In this section we turn our attention to the study of guarding problems for families of line segments.  Our main
objective in this section is to prove the following result:

Theorem 2.  Any collection of n line segments can always be guarded using at most Èn/2˘  points;  Î(2n-9)/5˚

points are occasionally necessary.

Some preliminary results and definitions will be needed before we can prove our result.

 Consider a collection  F={S1,..., Sn}  of  n  disjoint compact convex sets on the plane.   Construct a graph  G(F)

with  n  vertices  v1,... vn  such that  vi  is adjacent to  vj  iff there is a point  x  on the plane that sees at least a point

in the boundary of each one of Si and Sj.  In Figure 3 a collection  F  of eight line segments and its corresponding graph

G(F)  is shown.  
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The main idea in our proof of Theorem 2 is to show that for any family  F  with an even number  n  of disjoint line
segments,  G(F) has a perfect matching.  We recall a well-known result of Tutte which provides necessary and sufficient
conditions for the existence of perfect matchings in graphs.

Theorem T (Tutte).  A graph  G  has a perfect matching iff for every subset S of V(G), Odd(G-S)≤|S|.

The following lemma, given without proof, will be used to prove our main result:

Lemma 1.  Let  Q be any convex polygon,  F={S1,..., Sn}  a family of n disjoint line segments and  H  the subset of

elements of  F  containing at least one point  in  Q.  Then the subgraph of  G(F) induced by the vertices of  G(F)
representing elements in  H  is connected.

We proceed now to prove Theorem 2.

Proof of Theorem 2:   Let  F={L1,..., Ln}  be a collection of n disjoint line segments and  G(F) its associated graph.

Assume that  n  is even, otherwise add any other line segment to  F.  We now show that  G(F) satisfies Tutte's theorem
and thus has a perfect matching  M.  Consider any subset  H  of  F  and let us call S the set of vertices of  G(F)
representing elements of  H.  We now show that the number of connected components of G(F)-S  is at most  |S|=|H|.

To start, delete from the plane all the line segments not in  H.  One at a time, extend the elements of  H  until they
meet another element of  H, meet a previously extended element of  H  or become lines or semilines.  Let  π  be the
plane partition induced by the extended elements of  H.  It is easy to verify that  π  contains exactly | H|+1  polygonal
faces.  Replace the elements of  F  not in  H. (See Figure 4).

 By Lemma 1,  the number of components of  G(F)-S  is at most the number of faces of  π,  which is  |H|+1.  The
reader can easily verify that there are at least two adjacent faces in  π  such that the line segments that intersect them are
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in the same component in  G(F)-S.  Then the number of components in  G(F)-S  is at most  |S|  and  G(F) has a perfect
matching  M.  It now follows that  F  can be illuminated using at most n/2 points on the plane, one for each edge in  M.

We now construct an example of a family  F  with  n  line segments such that  Î( 2n-9)/5˚  points  are required to
guard  F.  Let  H  be a  cubic plane graph with a triangular outer face T.  H  may be redrawn on the plane using straight
line segments to represent its edges in such a way that for all of its vertices  v,  except  the outer ones, the three vectors
emanating from the vertex  v  along the edges positively span the plane. Let H  have  k  vertices; it has  3k/2  edges.
Substitute the edges of  H  by line segments such that at each of the  k-3  inner vertices we obtain a triangular face in
which we insert a small segments.

Discard the 3 edges of the outer face of  H  and disconnect each edge in a small neighborhood of its end vertices to
form a  collection of  n=(3k/2) + k - 3  segments.  Since no two of our k-3 small segments are visible from a single
point,  k-3 points are needed to guard our collection of line segments.  It is easy to verify that  k - 3  points are also
sufficient.  But  k-3 = Î( 2n-9)/5˚ thus proving our result. ®

When all of our line segments are parallel to the x or y-axes, we have been unable to improve on the general upper
bound of n/2 for guarding line segments.  

3. Guarding Convex Sets in R3

     We finish by remarking that the situation in  R3  is quite different.  In fact, there exist no constants  c  and  k,  with
c < 1,  for which it is true that every collection of  n  mutually disjoint compact convex sets can be guarded from   cn+k  
points.   To see this, we repeat a construction given in  [2], (see also [5]).  

Given three intervals  I, J, K of the real line,  let  Box(I,J,K)  be the box of all points (x,y,z)ŒR3  such that xŒI,
yŒJ, zŒK. Consider the families X={[2i+e, 2i+1-e]: i=0,...,m}, Y={[2i-1+e, 2i-e]: i=1,...,m} and  Y'= {[2i-1-e, 2i+e]:
i=1,...,m}.
 Let  A={Box(Ia,Jb,Kc) : Ia,JbŒX, Kc=[0,2m+1]}, B={Box(Ia,Jb,Kc) : Ia  =[0,2m+1],JbŒY, KcŒX },  C=

{Box(Ia,Jb,Kc) : Ia, KcŒY, Jb=[0,2m+1]} and  F'=A»B»C.  Notice that the elements of  F'  leave a set of  O(m3)  gaps

(small cubes)  between them.  In half of them, namely the ones of the form  Box(Ia,Jb,Kc) : Ia ,Jb, KcŒY', insert a small

box in the center of them.

There are  m3  tiny boxes,  and  3m2 + 3m+1   long boxes.  However, no two of the  m3  tiny boxes are visible

from a common point. Therefore at least   m3  points are needed to guard these   m3 + 3m2 + 3m+1  boxes.  Thus we
have proved:

 Theorem 3.  There is no constant  c<1  such that any family with  n  boxes can be guarded with  cn  points.

4. Conclusions
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In this paper we proved that  Î2(n-1)/3˚  points are always sufficient and occasionally necessary to guard any family  F
of  n  disjoint compact convex sets.  For line segments, we proved that  Èn/2˘  points are always sufficient and that  
Î(2n-9)/5˚  points are occasionally sufficient.  It is not hard to construct families F  of line segments containing only
line segments line segments parallel to the x or y-axes for which n/3 points are needed to guard  F. We would like to
state the following conjectures:

Conjecture 1.  Î(2n-9)/5˚  points are always sufficient to guard  n disjoint line segments.

Conjecture 2.  n/3±c  points are always sufficient to guard any family of  n  disjoint orthogonal line segments.
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