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Abstract

Let P be a point set with n elements in general position. A triangulation T of P is
a set of triangles with disjoint interiors such that their union is the convex hull of P , no
triangle contains an element of P in in its interior, and the vertices of the triangles of T

are points of P . Given T we define a graph G(T ) whose vertices are the triangles of T ,
two of which are adjacent if they share an edge. We say that T is hamiltonean if G(T )
has a hamiltonean path. We prove that the triangulations produced by Graham’s Scan
are hamiltonean. Furthermore we prove that any triangulation T of a point set which
has a point adjacent to all the points in P (a center of T ) is hamiltonean.
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1 Introduction

Let P be a point set with n elements on the plane in general position. A triangulation T of
P is a set of closed triangles satisfying the following conditions:

1. The vertices of the triangles of T are points of P

2. No triangle in T contains a point of P in its interior
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3. The union of the triangles of T is the convex hull of P ; see Figure 2.

If two points p, q ∈ P are vertices of a triangle of T , we will say that they are adjacent in T ,
and the edge joining them will be denoted by p − q.

Given a triangulation T , we define the graph G(T ) as the graph whose vertices are the
triangles of T , two of which are adjacent if they have an edge in common. If G(T ) has a
hamiltonean path (cycle), we say that T has a hamiltonean path (cycle). In most of this
paper when we say that T is hamiltonean, we mean that G(T ) has a hamiltomean path,
otherwise we will mention explicitly that we have a hamiltonean cycle.

The study of triangulations of point sets on the plane has received considerable attention,
among other reasons, for their applications in numerous areas. In [1] the problem of calcu-
lating hamiltonean triangulations of point sets is considered. The existence of a Hamiltonian
path allows faster rendering on a graphics screen via pipelining [1, 4, 2]. In [1] the authors
present an easy algorithm for calculating such triangulations. A straightforward implemen-
tation of the algorithm presented in [1] runs in O(n2) time, and as the authors mention,
using ham-sandwich type algorithms, it can be implemented in O(n lnn) time. Such an
implementation however, uses balanced partition type algorithms for point sets, whose im-
plementations, while not overly complicated, are not straightforward either.

Our main goal in this paper is to show that the triangulations produced by Graham’s Scan
are indeed hamiltonean. We present a straightforward way to obtain a hamiltonean path
from them, and if P is such that it has at least one point in the interior of its convex hull, we
can easily modify Graham’s Scan to obtain a triangulation containing a hamiltonean cycle.
Our algorithms run in O(n lnn) time.

2 Graham’s triangulations

We review briefly Graham’s Scan [5, 6].

2.1 Graham’s Scan

One of the most widely used algorithms to calculate the convex hull, and a triangulation of
a point set, is Graham’s algorithm. It works as follows:

1. Given a point set P , first find the point p0 of P with the smallest x-coordinate, and sort
the remaining elements of P with respect to the slope of the line segments connecting
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Figure 1:

them to p0; see Figure 1(a). Relabel the elements of P − {p0} p1, ..., pn−1 according to
this order.

2. Once the convex hull of {p0, ..., pk−1} has been calculated, calculate the convex hull of
{p0, ..., pk−1, pk} recursively as follows:
Draw the line segments connecting pk to the elements of P in the convex hull of
{p0, ..., pk−1} visible from pk, that is the elements in the convex hull of {p0, ..., pk−1}
such that the line segments connecting them to pk do not intersect the interior of the
convex hull of {p0, ..., pk−1}; see Figure 1(b)

Our main objective in this section is to prove:

Theorem 1 Let P be a point set on the plane in general position. The triangulation produced

by applying Graham’s Scan to P is hamiltonean.

Some results will be necessary to prove our result.

2.2 Separating triangles

Given a triangulation T of a point set P , a separating triangle S of T is a triangle with
vertices pi, pj, pk ∈ P such that edges pi − pj, pi − pk, and pj − pk are edges of T , and at
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least one element of P lies in the interior of S. For example in Figure 1(b) the triangles
with vertices {p0, p2, p4}, and {p0, p2, p6} are separating triangles. Given a point set P , the
triangulation produced by Graham’s Scan will be denoted by GT (P ). Observe that if S is a
separating triangle of a triangulation T , S is not one of the triangles of T , as by definition
the triangles in T cannot contain elements of P in their interior. Since in GT (P ) vertex p0

is adjacent to all the vertices of GT (P ), the following lemma is clear.

Lemma 1 Let S be a separating triangle in GT (P ). Then one of the vertices of S is p0.

Given a separating triangle S of T , Ts will denote the subtriangulation of T defined by all
the triangles of T contained in S. Let e1, e2, and e3 be the edges of S, and let t1 (respectively
t2, and t3) be the triangle of S ′ that has e1 (respectively e2 and e3) as an edge. To make
our proofs easier, we will say that a hamiltonean path of TS that starts at ti and ends in tj
enters S in ei and exits it at ej. The following lemma is the basis of our main result.

Lemma 2 Let S be a separating triangle of GT (P ), with edges e1, e2, e3. Then for any

{i, j} ⊂ {1, 2, 3} there is a hamiltonean path of TS that enters S in ei and exits it in ej.

Proof: Observe first that all separating triangles of GT (P ) with vertices p0, pi, pk, i < k

are created during the execution of Step 2 of Graham’s Scan when we join vertex pk to the
vertices of the convex hull of {p0, ..., pk−1} visible from pk. For example when p6 is joined to
p4 and to p2 in Figure 1(a), two separating triangles are created.

Suppose the result is true for separating triangles S of GT (P ) with vertices p0, pi, pj, i, j < k.
We prove it for all triangles with vertices p0, pi, pk.
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Let us relabel the vertices on the convex hull of {p0, ..., pk−1} counter-clockwise starting at
p0 by q0 = p0, q1, ..., qr = pk−1 for some r ≤ k − 1, and assume that in Step 2 of Graham’s
Scan pk is joined to qr, .., qs, for some s ≥ 1.

Suppose that when we join pk to qi for some i, 1 ≤ i < r we create a separating triangle S

with vertices p0, qi, pk, see Figure 2. We now prove that for any two of the edges of S, there
is a hamiltonean path of TS that enters and exits S in these edges.

Suppose that triangles S ′ and S” with vertices p0, qi, qi+1 and p0, qi+1, pk respectively are
separating triangles of GT (P ) (our result follows easily if one or both of S ′ or S” are not
separating triangles). Assume by induction that the lemma is valid for these triangles. We
now show that the result follows for S. We show how to construct a hamiltonean path of TS

that enters and exits S in any pair of edges of S, e.g. a hamiltonean path that enters S by
edge p0 − qi and exits it by edge p0 − pk. The other cases follow similarly.

By induction there is a hamiltonean path P1 in the subtriangulation of GT (P ) induced by
S ′ that enters it in edge p0−qi and exits it in edge qi−qi+1. Similarly there is a hamiltonean
path P2 that enters S ′′ in qi+1 − pk and exits it by edge p0 − pk. By first traversing P1,
then the triangle with vertices qi, qi+1, pk and then P2, we obtain a hamiltonean path that
traverses all the triangles contained in S. The path enters S in p0− qi and exits it in p0 −pk.

To prove our main result we proceed as follows: Let q0 = p0, q1, ..., qr be the vertices of the
convex hull of P labeled in the counterclockwise order starting at the leftmost point p0 of P .
For i = 1, ..., r − 1 let S(i) be the triangle with vertices p0, qi, qi+1. Clearly GT (P ) contains
the edges of S(i), i = 1, ..., r−1. By Lemma 2 for each 1 ≤ i < r there is a hamiltonean path
Pi of TS(i) that enters S(i) by ei = p0 − pi and exits it by ei+1 = p0 − pi+1. Concatenating
P1, ..., Pr−1 we obtain a hamiltonean path of GT (P ).
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Figure 4: A triangulation with a center.

3 Triangulations with a central point

If a triangulation T of P has has a vertex v adjacent to all the vertices of G we call such a
vertex a center of T . In this section we generalize our previous result and prove:

Theorem 2 A triangulation with a center is hamiltonean.

First we prove our result for triangulations T of point sets P such that:

• the convex hull of P is a triangle

• The center of T , labeled p0, lies on the convex hull of P ,

see Figure 5. Call these pseudo-triangulations triangulations with an external center.

We will need the following. Let P be a simple polygon with vertices labelled {p1, ..., pn−1}
clockwise around its boundary, and TP a triangulation of P ; that is, a set of closed triangles
contained in P with disjoint interiors such that their vertices are vertices of P and their
union is P , see Figure 6. Edges of these triangles that are not edges of P will be called the
diagonals of P in T . Associate to each diagonal e = pi − pj of P the interval {i, i + 1, ..., j};
i < j. Define a partial order P in the set of diagonals of T as follows: an edge e = pi − pj

is smaller that e′ = pk − pm iff {i, i + 1, ..., j} ⊂ {k, k + 1, ..., m}. It is easy to see that the
diagonals of T can be labeled e1, ..., en−4 in such a way that if ei is smaller than ej in P then
i < j. Such a labeling is called a consistent labeling with respect to P; see Figure 6.

6



e
1

e
2

e
3

e
4p

0

p
1

p
2

p
7

p
6

p
5

p
4

p
3

Figure 5:

p
8

p
9

p
1

p
7

p
2e

1
e

2e
3

e
4

e
5

e
6

p
6

p
3p

5

p
4

Figure 6: A triangulation of a polygon with a consistent labeling of its diagonals.

Lemma 3 Let P be such that its convex hull is a triangle and T be a triangulation with an

external center p0. Then T has a hamiltonean path that enters and leaves T through any two

of the external edges of T ,

Proof: Assume that the vertices of T are labeled p0, p1, ..., pn−1 in such a way that if i < j,
then the slope of the line segment joining pi to p0 is smaller than the slope of the segment
joining pj to p0; see Figure 5. Observe that if we remove vertex p0 together with the edges and
triangles incident to it from T we obtain a triangulated polygon P with vertices p1, ..., pn−1.

Clearly all separating triangles of T have p0 as one of their vertices and a diagonal of P as
one of their edges. Let {e1, ..., en−4} be a consistent labeling of the diagonals of P . Let S(i)
be the separating triangle of T whose vertices are the vertices of a diagonal ei of P and p0,
e.g. in Figure 5 S(3) has vertices p0, p1, p3.
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We now claim that, as in the proof of Theorem 1, for every pair of edges of S(i) there is
a hamiltonean path of TS(i) that enters and exits S(i) at these edges, i = 1, ..., n − 3. The
proof proceeds by induction on i, i = 1, ..., n − 4. For i = 1 our result follows. Suppose it is
true for TS(1), ..., TS(k−i).

Several cases arise, the hardest is when TS(k) is the union of two sub-triangulations TS(i),
TS(j) of T and the triangle with edges {ei, ej , ek} for some pair of indexes i, j, 1 ≤ i < j < k.
For example in Figure 5, TS(4) contains TS(1), TS(2) and the triangle with vertices {p3, p5, p7}.
Using the same reasoning as in Lemma 2, it follows that for any two edges e and f of S(i)
there is a hamitonian path that enters and leaves S(i) in e and f respectively. The remaining
cases follow in a similar way.

The proof of Theorem 2 now follows in a similar way to that of Theorem 1. Observe, however,
that if the center vertex of T is in the interior of the convex hull of P , we obtain a hamitonean
cycle.

4 Conclusions

We have proved that for any point set P in general position, the triangualtion T of P

produced by Graham’s Scan has a hamiltonean path. Furthermore we proved that any
triangulation of P with a central vertex also has a hamiltonean path. If the central vertex
of T is in the interior of the convex hull of P , then T has a hamiltonean cycle. It is
straightforward to see that our methods yield algorithms with O(n lnn) time complexity to
obtain such triangulations and hamiltonean paths and cycles. To conclude, we would like to
mention the following graph theoretical implication.

A plane graph G is called a pseudo-triangulation if all of its faces except at most one, which
we call the external face of G, are triangles (that is, are bounded by three edges). The
external face of G may also be a triangle. It is well-known that such a graph G has a plane
immersion on the plane in which

1. all its vertices are represented by point sets in general position,

2. the edges of G are represented by non-crossing open straight line segments, and

3. the outer face of G is mapped to a convex polygon; see Figure 4.

The pseudo-dual graph D(G) of a pseudo-triangulation G is the graph whose vertices are
the faces of G, except for its external face, two of which are adjacent if they share an edge.
From our results it follows that if G has a central vertex, then D(G) has a hamiltonean path.
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Moreover if a central vertex of G is not a vertex of the external face of G, then D(G) has a
hamiltonean cycle. In this case we can find the hamiltonean path or cycle in linear time.

References

[1] Esther M. Arkin, Martin Held, Joseph S.B. Mitchell, and StevenS. Skiena. Hamiltonian
triangulations for fast rendering. Visual Comput., 12(9):429-444, 1996.

[2] R. Bar-Yehuda, C. Gotsman, Time/space tradeoffs for polygon mesh rendering.ACM
Trans. on Graphics, Vol 15, No. 2, pp 141-152 (1996).

[3] P. Bose and G.T.Toussaint. No Quadrangulation is Extremely Odd. Proceedings of
the International Symposium on Algorithms and Computation (ISAAC), LNCS 1004,
Springer, pp. 372-381, 1995

[4] R. Cassidy, E. Greg, R. Reves, and J. Turmelle. IGL: The graphics library for the i860,
March 22, 1991.

[5] R.L. Graham, An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters 1, 132-133 (1972).

[6] F. Preparata, and I. A. Shamos, Computational Geometry: An Introduction. Springer
Verlag, 1988.

9


