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Abstract

    Let shape P be any simply-connected set in the plane, bounded by a Jordan curve,  that is not a circular disk. We
say that a set of points I on the boundary of P immobilize the shape if any rigid motion of P in the plane causes at
least one point of I to penetrate the interior of P. We prove that four points always suffice to immobilize any
shape. For a large class of shapes, which includes polygons without parallel edges, three points are sufficient to
immobilize. An O(n log n) algorithm is suggested that finds a set of 3 points that immobilize a given polygon
without parallel edges. The algorithm becomes linear for convex polygons. Some results are generalized for d-
dimensional polytopes, where 2d points are always sufficient and sometimes necessary to immobilize.

1. Introduction

The set of points I is said to immobilize a planar shape P if any rigid motion of P
in the plane forces at least one point of I to penetrate the interior of P. Clearly, any
minimal I contains only points belonging to the boundary of P. The disk is excluded
from consideration since any number of points on its boundary leave it free to
rotate. By shape we mean a set bounded by a Jordan curve; a Jordan curve is a
homeomorphic image of a circle - a continuous curve without self-intersections that
separates the (nonempty) interior and the exterior regions of the corresponding
shape.

Problems of immobilization of planar shapes were introduced by W. Kuperberg
[K] and later reported in [O] where a number of open questions were presented:

- Do four points always suffice to immobilize any shape? Any convex shape?
- Find all the classes of convex shapes for which three points do not suffice.
- Do three points suffice for all smooth convex shapes?
- Design an algorithm finding a set of points immobilizing a given polygon.
- Extend to three (and higher) dimensions.

__________________________________
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A partial answer to the first of these questions may be obtained using some results
from grasping. For the shape P which is known to be smooth with the
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exception of some final number of points on its boundary, Mishra, Schwartz and
Sharir [MSS] and independently Markenscoff, Ni and Papadimitriou [MNP]
studied the problem of closure grasp, i.e. ability to respond to any external force or
torque by applying appropriate forces at the grasp points. They proved that there
exists so-called force-torque closure grasp using a minimal set S of four finger
points.  From a discussion by Mishra and Silver  [MS] it follows that any rigid
velocity of P causes at least one of the points of S to have an instantaneous velocity
strictly directed towards the interior of P. In consequence S immobilizes P. In
[MSS] it was also proved that the set S may be found in O(n) time. More recently,
Montejano and Urrutia [MU], using methods from differential geometry, proved
that any smooth shape may be immobilized using three points. Finally, Czyzowicz,
Stojmenovic and Szymacha [CSS] gave a linear-time algorithm checking whether
n given points immobilize the given polygon. The ideas of using the inscribed circle
and Voronoi diagram, exploited in this paper,  were first used in [BFG], while the
idea of normals to the boundary  of a triangle meeting at a point appears in [MP],
all in the context of an equilibrium grip. The problem of immobilization, that differs
from all known variations of grasping, is studied here for any shape bounded by a
Jordan curve.

A rigid motion of a shape P on the plane is a mapping M from the set  t¥P  (t
represents time) to the plane, continuous with respect to its first coordinate, such
that  for every pair of points  u, vŒP the distance between their images remains
constant for all t and M(0, u)=u for every element of P. A set of points I
immobilizes the shape P if the only motion of P which does not allow the
penetration of some element of I to the interior of P is the identity M(t, u)=u for all
t and u.

In Section 2 we study the problem of immobilization of a polygon. We first
investigate immobilization of a triangle and then extend considerations to
immobilizing convex and simple polygons. We prove that any polygon in the plane
without parallel edges can always be immobilized using three points.  We describe a
large class of polygons that require four points to immobilize. This class includes
polygons other than parallelograms, which were suggested in [K], but any such
polygon  must always contain two parallel edges. For a given convex polygon and
three given points on its boundary we have a criterion to check whether the points
immobilize the polygon. When the points are not located at the vertices of the
polygon we have a similar criterion for the class of simple polygons. An O(n log n)
algorithm is obtained to find a set of three points that immobilize a polygon without
parallel edges. In the case of a convex polygon the algorithm works in O(n) time. In
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both cases algorithms computing Voronoi diagrams for line segments were used
([F], [Ki], [AGSS]).

In  Section 3 we deal with arbitrary shapes. We prove that four points will
suffice to immobilize any shape P. The proof splits into two cases depending on the
position of the circle S inscribed in P: in the easy case, when the center of S
belongs to the interior of the convex hull of S«P three points are sufficient to
immobilize P. In the opposite, more difficult case, four points may be needed. In the
case of arbitrary shapes, no assumption can be made about the smoothness of the
shape (and therefore also about the existence of lines tangent or normal to its
boundary). As a consequence, this section required more involved and subtle
proofs.

In Section 4 some results are extended to higher dimensions. We prove that any
d-dimensional polytope P can be immobilized by a set containing at most 2d points.
Moreover, if some set of d+1 vectors normal to faces of P is linearly independent
(as in the case of a random P), d+1 points suffice to immobilize P. From the proof
it follows that for any number n between d and 2d there is a d-dimensional
polytope P requiring n immobilization points

2. Immobilizing a polygon

2.1. Immobilizing a triangle

In this section we study the problem of immobilizing  triangles. In order to
describe all possible sets containing three points that immobilize a given triangle,
we first prove a lemma that is valid for any shape and will be also used later to
obtain other results.

Suppose we are given a shape P which, after the time to, has moved from an
initial position P to a new position P’=M(to,P). It is easy to show that the
movement can be rerouted using the following two actions (see Fig. 1):
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-rotation b(to,O,P) of P around any point O in the plane for an appropriate
angle b, to obtain the interim position P”,

-translation t(to,O,P’’) of P” to the destination position P’ for a vector t (t is
equal to vector OO’, where O’ is the new position of O).

Then M(to,P)=t(to,O,b(to,O,P)). Since the movement is continuous, it is easy
to see that both t and b must be continuous functions of their first parameter.
We may then assume that for any arbitrarily small value µ>0 we can always
choose a time moment to>0, such that for to>t>0 the positions of M(t,P) are
such that corresponding values of b and |t| are both less than µ.

We will use the following method to build a set of points I that immobilize P.
Each point W from I belonging to the boundary of P may restrict the
movement of P to avoid W penetrating P. If P’ is the position of P after an
arbitrarily small movement, the movement can be rerouted as indicated and W
should not become an interior point of P’. Observe, however, that although
positions P and P’ of the shape disallow penetration, it is possible that W
penetrates the intermediate position P”.This will be used to prove the following
lemma.

Lemma 2.1. Let OUV be a circle sector centered at O and determined by
arc UV, and let W be an interior point of the arc UV that is also a point on the
boundary of P (see Fig. 2). If the circle sector OUV lies entirely inside given
shape P, then any movement of M(t,P) that for arbitrarily small value of t>0
brings the point O inside the circle w centered at W with radius WO,  implies
that W must penetrate P.
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Proof. Suppose that O has moved to a point O’ where O’ is in the
neighbourhood of O and inside W. We can choose O’ such that after rerouting
the movement of P as indicated above, with O being the center of rotation, both
b and |t| will be arbitrarily small. The rotation for a small angle b moves OUV
to a new position OU’V’ (see Fig. 2)  such that W is still an interior point of the
new arc U’V’ and OU’V (or alternatively OUV’)  is still entirely inside the
shape P. Translation moves O to O’. However, it is easy to note that the same
translation moves a point W’ from the interior of the circular sector OU’V’ to
the point W. This results in W penetrating P.

Theorem 2.1.  Three points  X, Y and Z  immobilize a triangle T with
vertices A, B and C if and only if the three orthogonal lines to the boundary of
T  at the points X, Y and Z are concurrent.

Proof:  We prove first the necessity of the condition.  Clearly each of  X, Y
and  Z  must lie on different sides of  T.  Let X, Y and Z belong to sides BC,
AC, and AB, respectively. Suppose that the three orthogonals at the points X, Y
and Z do not meet at a single point.  Let O be a point in the interior of the
triangle determined by these orthogonals.  Then the three angles OXB, OYC
and OZA are all acute (or all obtuse) (see Fig. 3).  Therefore the triangle  T
may be rotated counterclockwise (or clockwise) around  O  by an e>0  angle
and the points  X, Y and  Z  will remain outside the interior of  T.
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Suppose now that the three orthogonals intersect at a point  O. To prove
that X, Y  and  Z  immobilize  T, we show that any movement of  T  will force
one of X, Y  or  Z to penetrate the interior of  the image of  T. We first
consider the case when O is inside T  (see Fig. 4).
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We show that the point O cannot move anywhere  from its initial position.
Suppose  that  O moves  to a point  O' within an  e>0  distance  from O. Let x,
y, and z be circles containing  O on their boundaries and centered at X, Y, and
Z, respectively. The conditions of Lemma 2.1 are satisfied and O cannot move
inside any of the circles x, y, and z. But, it is easy to note that  any point from
the neighbourhood of O is inside at least one of circles x, y, or z; thus if O’≠O
then at least one of the points X, Y, or Z will penetrate T. Therefore  O=O'  and
the only allowable movement for  T  is a rotation around  O.  This is however
impossible because in this case some interior points of T will move to  X, Y  and
Z (causing the penetration of X, Y, and Z).  
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Consider now the case when O is outside T. Suppose without loss of
generality, that the straight line passing through A and B separates O from C
(see Fig. 5a). Then OZ is the shortest among the segments OX, OY, and OZ,
and OZ is completely outside T while OY and OX intersect T. Suppose that T
can move to a new position T’. We reroute the movement by a rotation around
O by an appropriate angle b  and translation by corresponding vector t.  Let
T”=A”B”C” be the rotated position of  T. It is easy to show that X and Y are
interior points of T” while Z is the exterior one. Therefore the second step,
translation of T” to destination T’, should be chosen such that X and Y
“escape” from T’ while Z stays outside T’. Let ∂x, ∂y, and ∂z be the distances
of X, Y, and Z from B”C”, A”C”, and A”B”, respectively. Then ∂z<∂x and
∂z<∂y since OZ is the shortest among OZ, OY, and OX (∂x=|OX|(1-cos b), and
similarly for other two distances). Let x’, y’ and z’ be straight lines parallel to
B”C”, A”C”, and A”B”, and with distances ∂x, ∂y, and ∂z from O,
respectively, such that O does not lie between any two corresponding parallel
lines (see Fig. 5b). Observe that triangle A1B1C1 in Fig. 5b is similar to ABC.
X and Y can “escape” from T” only if the translation vector brings O to a
point O’ lying in both half-planes determined by x’ and y’ that do not contain
O. To keep Z outside T”, point O’ must be located within the half-plane
determined by z’ containing O. However, as ∂z<∂x and ∂z<∂y the three
mentioned half-planes have empty intersection.

The above argument holds also for the case of O on the boundary of T.®

Corollary 2.1.  Given two points  X  and  Y  on two different sides of  T,  it
might not be possible to find a third point  Z  on the remaining side such that
X, Y  and  Z immobilize  T (see Fig. 6). This happens only for obtuse T.
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2.2. Immobilizing a convex polygon

We are now ready to give necessary and sufficient conditions under which
three given points immobilize the convex polygon.

Given a convex polygon P we say that three of its sides x, y, and z enclose P
if the triangle T(x,y,z) determined by the three lines containing them contains P.

Theorem 2.2.  A convex polygon  P  can be immobilized by three points X,
Y  and Z  if and only if:

a) each of them belongs to the interior of a different side, say  x, y and z of P
respectively such that x, y and z  enclose  P,  and

b) the orthogonals to  x, y and z  at the points X, Y  and Z  respectively
meet at a common point.

Proof.  It is clear that x, y and z must enclose  P, otherwise we can translate
it away (see Fig. 7(a)). We prove now that each of X, Y  and Z  must belong to
the interior of an edge of  P.  Suppose that one of them, say X, is a vertex of  P
(see Fig. 7(b)).
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Then we can take a triangle  H  that encloses  P  and is formed by the two

sides of  P  containing  Y  and  Z  and any line  L  that intersects  P exactly at
X.  The line  L  can be chosen in such a way that the orthogonals at  X, Y and
Z  do not meet.  Then X, Y  and  Z do not immobilize  H  and therefore do not
immobilize  P.

To prove the sufficiency of our conditions, observe that by Theorem 2.1,  the
points X, Y, and  Z  immobilize triangle  T(x,y,z)  and therefore they also
immobilize P. ®

2.3. Immobilizing a simple polygon

When the three immobilizing points are known not to be located at the
vertices of the polygon the last result may be generalized for all simple
polygons. First we generalize the definition of enclosing sides to any simple
polygon P in the following way. Assign to each edge x of P the halfplane
containing x on its boundary and containing the points from the interior of P
that are in the proximity of x. The sides x, y, and z of P enclose P if the
intersection of three halfplanes assigned to x, y, and z is nonempty and bounded
(i.e. a triangle).

Generalizing the argument presented in Fig. 3 we will prove first the
following

Lemma 2.2. If the three points X, Y and Z different from vertices of a given
polygon P immobilize P, the orthogonals at X, Y and Z to its respective sides x,
y and z must meet at a common point.

Proof: Suppose that the orthogonals to x, y, and z at X, Y, and Z do not
meet at a common point. Obviously no two of these orthogonals may be
parallel otherwise the translation along this parallel direction would have been
possible. Take the orthogonals to X and Y. They partition the plane into four
regions. One of them, R1, is such that for any point O located in R1 a small
clockwise rotation of P around O would leave both X and Y outside P (see Fig.
8).
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Similarly, the opposite region R2 allows centers of the counterclockwise
rotation. Clearly the orthogonal to Z must intersect one of these regions (R1 in
Fig. 8) partitioning it into two parts, one of which allowing a small rotation
without any of X, Y, and Z penetrating P. ®

Theorem 2.3.  A  polygon  P  can be immobilized by three points X, Y  and
Z different from vertices of P if and only if:

a) the orthogonals at the points X, Y and Z to its respective sides x, y and z
meet at a common point, and

b)  x, y and z  enclose  P.

Proof:  Lemma 2.2 proves the necessity of the first condition. Suppose that
x, y, and z do not enclose P. This may happen for one of two reasons: either the
intersection of the halfplanes assigned to x, y, and z forms an unbounded region
and then, as in the convex case (see Fig. 7a), P may be translated away, or this
intersection is empty. In the latter case, if the orthogonals meet inside T(x,y,z)  P
may be rotated around the point of their intersection. In the remaining
nontrivial case the orthogonals meet at a point O that is outside T(x,y,z) (as
indicated on Fig. 9a). A repeated analysis as performed in the proof of Theorem
2.1 (refer to Fig. 5b) leads now to a different conclusion:  any translation vector
OU, where U is in the interior of the triangle T(x’,y’,z’) (see Fig. 9b) sets the
points X, Y, and Z outside P’ (the new position of P). It is easy to see that this
may be done for any small value of the rotation b>0 and so that the
corresponding translation t(b) is a continuous function of b. As a consequence
there exists a continuous movement that is the composition of the rotation
around O and the translation by vector OU that does not cause any of X, Y, or
Z to penetrate P.
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The sufficiency of both conditions can be proved along the similar lines as in
Theorem 2.2. Triangle T from Fig. 5a stands now for the intersection of
halfplanes assigned to x, y, and z. Existence of the nonempty intersection T of
these halfplanes implies empty intersection of their  complements (using
similarity of triangles A1B1C1 and ABC in Fig. 5b and 5a). This is valid for any
location of the point of intersection O of three orthogonals in plane (Fig. 4 and
Fig. 5b show two out of three cases of the location of O in the arrangement of
three lines). ®

From the proof of theorem 2.3 follows an interesting example (see Fig. 10) of
a polygon without parallel sides, with three points on its boundary  which
“imprison” the polygon, without immobilizing it. The only possible movement
of the polygon is such that the three points “slide” on its boundary. Notice that
in such a case the three normals to the boundary of the polygon at  the three
concerned points meet at a common point, and the extensions of the  three
sides containing these points also meet at a common point.

Figure 10
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Obviously, any convex polygon P needs at least three points to immobilize it.

We will see soon that three points will suffice, also for simple polygon P, when
there is no two parallel sides in P. Before that we have to turn our attention to
polygons which may be immobilized using two points only. Clearly, at least one
of these two points will have to be located at the reflex vertex of P.

Theorem 2.4.  Two points X and Y immobilize a simple polygon P if and
only if segment XY forms an angle at least π/2 with four adjacent sides of P and
if two of these four sides are parallel they must lie on opposite sides of XY.

Proof. To prove the necessity observe that if one of the four angles (say
XYZ on Fig. 11a) is <π/2 then P may rotate around X. If the two sides on the
same side of XY are parallel (as XT and YZ in Fig. 11b) then P may be
translated perpendicularly to XY.

Y

X

Z

(a)

Y

X T

Z Y

X X'

Y'

(b) (c)

Figure 11

Sufficiency follows from the fact that for any pair of points X’ and Y’ not in
the interior of P, X’ from the neighbourhood of X and Y’ from the
neighbourhood of Y, we have  |X’Y’|>|XY| (see Fig. 11c). ®

Theorem 2.5.  Any polygon without parallel edges can be immobilized using
three points.
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Proof.  Let  S be the largest circle contained inside given polygon P and let
O be the center of S. If among the points at which S touches P we cannot
chose three points A1, A2, and A3 such that O is in the interior of the triangle
A1A2A3 then S must touch P in two endpoints of a diameter of S. As P has no
parallel sides it is easy to see by Theorem 2.4 that these two points immobilize
P. In the other case S touches P in three points A1, A2, and A3 such that O is
an interior point of triangle A1A2A3. We call such a circle S a 3-type circle (see
Fig. 12a). The proof follows now as a special case of Theorem 3.1, or as follows.
The conditions of Lemma 2.1 are satisfied; the point O is the intersection of
three orthogonals to P at points A1, A2, and A3. Therefore we can repeat the
proof given in Theorem 2.1. The triangle ABC is determined by the tangent
lines to  S  at the points A1, A2, and A3 as seen on Fig. 12b and Fig. 4.
Applying Theorem 2.1 gives a straightforward result that the points A1, A2,
and A3 immobilize ABC and therefore immobilize P (triangle ABC is generated
by three sides of polygon P that contain A1, A2, and A3

 respectively as interior
points). ®

It is not true, however, that all polygons can be immobilized using three
points.  For example, any parallelepiped with four vertices cannot be
immobilized with three points (see [K]). In fact examples given by Kuperberg
might suggest that each convex figure needing four points to immobilize is an
intersection of two objects each one being either a strip or a disk. We show,
however, that there are convex polygons other than parallelepipeds that also
cannot be immobilized with three points.
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Theorem 2.6. For every n>3 there are convex polygons with n vertices for

which exactly four points are needed to immobilize them.

Proof.  An example of a quadrilateral, but not a parallelepiped, for which
four points are needed to immobilize it can be obtained as follows. Consider a
triangle  T  with vertices A, B and C such that the angle at B is obtuse.  Then
the quadrilateral P with vertices A, B, E  and  D,  such that the side DE is
parallel to AB and close enough to it, cannot be immobilized by using  three
points  (see Fig. 13).

Figure 13
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To prove this result, we first notice that if three points  X, Y  and Z were to
immobilize  P,  then by Theorem 2.2, the three sides of P containing them
would have to enclose  P.  Then these sides would be the segments AB, AD
and BE.  It is easy to verify, however, that if  the segment DE is close enough
to AB  condition (b) of Theorem 2.2 is not satisfied.

To prove that for every n>3 there are polygons that cannot be immobilized
with three points, it is sufficient to notice that we can substitute the side AD in
P  by a convex chain of edges  close enough to AD and the same argument
holds.®

Corollary 2.2. There exists an immobilizing set I with at most 4 points for
any given polygon P.

The proof of this corollary follows from the techniques of [MSS] and [MS],
mentioned in the introduction. We give below, however, an elementary proof of
this fact.

Proof of Corollary 2.2. Consider a circle  S  contained in  P  with the
largest possible radius. If S intersects the boundary of P in three points whose
corresponding sides  enclose  P, then they immobilize  P  by Theorem 2.2.
Suppose then that this does not happen.  It is easy to prove that, in this case,  S
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intersects the boundary of  P  in two points U and V diametrically opposed in S
where U and V belong to the interior of two parallel sides u and v, respectively,
contained in P.  Suppose, without loss of generality, that UV is a vertical
segment. Let U and V be chosen to immobilize S (plus two more points to be
determined below). Let U’ and V’ be points that move to U and V,
respectively. Since |UV| is the shortest distance between two parallel lines u and
v, U’ and V’ are not interior points of P, and |U’V’|=|UV|, it follows that |U’V’|
is also the shortest distance between u and v. Therefore the only possible
movement that does not cause U or V to penetrate P is a horizontal translation
of P. This can be prevented by adding two more points L and R to
immobilizing set I, where L and R are, for instance, the leftmost and the
rightmost intersection point of the boundary of P with a horizontal line that
does not pass through any vertex of P (see Fig. 14). Now one can verify in a
straightforward way that U, V, L and R  immobilize  P.

O
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U
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Figure 14
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Theorem 2.7. Let P be a polygon without parallel edges. In O(n log n) time
(O(n) time if P is convex) we can find a set of three points immobilizing P.

Proof: As P does not have parallel edges, the largest circle inscribed in P touches
its boundary in three points immobilizing it. Such circle is a vertex of a Voronoi
diagram V(P) of the segments being edges of P. By [F, Ki, Y] V(P) may be
constructed in O(n log n) time (O(n) time if P is convex following [AGSS]). It is
then sufficient to check in linear time all vertices of V(P). ®

The similar algorithm would produce 4 immobilization points (for some
cases), had P contained parallel edges.
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3. Immobilizing a shape in the plane.

Given a  shape P, let S be a locally largest inscribed circle of P, and let O be
the center of S. There are two possible cases:

1)  One of such circles S touches P in three points A1, A2, and A3 such that
O is an interior point of triangle A1A2A3 (see Fig. 12a).  In this case we call  P
a 3-type shape.

2)  If P is not a 3-type shape then it is easy to prove that any locally largest
circle S is a diameter circle, i.e. touches P in the endpoints of a diameter of S (an
example is the intersection of two disks; see also figures in [O]).

To be more precise, we say that a circle touches a set of points if:
- no point from the set lies inside the circle, and
- the interior of every larger concentric circle contains a point from the set.

3.1. Immobilizing a 3-type shape

In this section we study the case 1) and prove the following theorem.

Theorem 3.1. If P is a 3-type shape then P has an immobilizing set consisting
of three points.

Proof. Suppose that a locally largest circle  S  touches P in three points A1,
A2, and A3 such that O is an interior point of triangle A1A2A3. We find first
three points (not necessarily A1, A2, A3) on the boundaries of S and P, such
that O belongs to the interior of the triangle determined by them and, as
immobilization points, they disallow any rotation around O. Next we prove that
these points disallow any other movement as well.

We may say that each of A1, A2, A3 belongs to some maximal arc from  the
intersection of boundaries of S and P. There are three cases:
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- A1, A2, and A3 belong to the same maximal arc A’1A”1. Then we take as
the immobilization points A’1, A”1 and the point B in the middle of the arc
A’1A”1 (see Fig. 15a).

- If not, then suppose that a point B1, in some arc A'1A"1 has its diametrically
opposed (with respect to S) point B2 in another arc, say A'2A"2.  Then we take
as the immobilization points B1, A'2  and  A"2 (see Fig. 15b). Observe that,
when two points among A1, A2 and A3 belong to the same arc, this condition
is always verified.

- otherwise, each point A1, A2 and A3 must belong to a separate arc. Following
the counterclockwise orientation,  choose three points as follows: the last point
of some arc, the first point of the next arc and any interior point of the third arc
(see Fig. 15c).

In any of the above cases the three points disallow the rotation around O and
the interior of the triangle generated by them contains O. In the remaining case
any possible motion of P will make O move to a new position O’≠O.
 Consider the triangle ABC determined by the tangent lines to  S  at the three
immobilization points A1, A2 and A3 (see Fig. 12b).  Applying Lemma 2.1 as
in the proof of Theorem 2.1 (see Fig. 4), it follows that the center  O  of  S
must remain in the same place and thus O’=O.
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The above fact can be proved in a more elegant way. Suppose O has
“slightly” moved to a new position O’. Let S’ be the new position of S, and let
S and S’ intersect in points U and V; U and V lie on the bisector b of the
segment OO’ (see Fig. 16) which separates the boundary of  S into two halves,
one being inside and one being outside S’, respectively. When O’ is near O,
OO’ lies completely inside triangle A1A2A3. In that case b intersects triangle
A1A2A3, therefore splitting points A1, A2 and A3; there is at least one points
on each side of b, thus at least one in the interior of S’, and that one penetrates
S. Therefore O cannot move.®

3.2. Diameter shapes

For a given shape P let U and V be touching points of a diameter circle S,
centered at O. Suppose, for simplicity, that UV is vertical, both U and V with x-
coordinate equal to 0, and V being below U. In order to immobilize P, we may
restrict the analysis to a neighbourhood of U and V only; clearly any set that
will immobilize restricted shape will also immobilize P. Thus for ∂>0 we
consider a ∂-interval of P consisting of two continuous pieces, upper Pu and
lower Pl, containing U and V, respectively (see Fig. 20) such that each point on
them has x-coordinate between -∂ and ∂; each Pu  and Pl is further subdivided
into left and right portion by point U or V. The choice of ∂ will be discussed
below.

Let f(A) be the radius of the largest  circle centered at A, which touches both
Pu  and Pl. As A must be equidistant from Pu and Pl, f is defined only for some
points between Pu and Pl. There are two cases:



  19
a) for every e>0 there exists a point A, such that |AO|<e, f is defined for A

and f(A)<f(O)=|OU|. In other words, S cannot move from its original position
O, without intersecting the exterior of P;

b) there exist e>0 such that  f(A)=f(O) for any center A for which f is defined
and such that |AO|<e. Intuitively in this case S may slide inside P in some e
neighbourhood of O; we refer to such a shape as a tube.

3.2.1. Immobilizing diameter non-tube shapes

We show how to immobilize any diameter shape P that belong to the case a)
of the previous section; tubes will be studied in the next section.

Theorem 3.2. Four points always suffice to immobilize any diameter non-
tube shape.

Proof. To immobilize the shape P, we choose a set I of four points U’, V’,
U”, and V” on P, one on each left and right portion of Pu  and Pl, such that U’
and V’ (U” and V”) are touching points of an inscribed circle S’ (S”) centered
at O’ (O”, respectively) with Pu  and Pl, where O’ and O” are in the
neighbourhood of O and lying on opposite sides of the line UV (as shown in
Fig. 17). By u’, v’, u”, and v” we denote the four tangents to S’ and S” (they
are not necessarily tangents to P). We will show that for any e>0 we can choose
∂>0 such that the following properties are satisfied on ∂-intervals:
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(i) the slopes of the tangents u’, v’, u”, and v”, (the angles the tangents form
with x-axis) are between -e and e. The choice of any e<π/4 will suffice for our
purpose;
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(ii) the slope of O’O” is between -e and e. The choice of any e<π/4 will also
suffice;

(iii) two tangents u’ and v’ at the touching points U’ and V’ of S’ with Pu  and
Pl intersect to the left of  UV (or, in other words, the angle U’O’V’ in the
polygon UU’O’V’V is >π); We refer to this angle as critical angle at O’.
Analogously two tangents u” and v” intersect to the right of UV.

However, if S«P contains many points in any neighbourhood of U or V (or  
both) some special cases may arise. Observe first that these points must be
situated on one side only (say right) of OU (see Fig. 18). Otherwise P

 

U U"

V"V

P S

Figure 18

would be a 3-type shape. In this case we replace S” and O” by the diameter
circle S and its center O; as U” and V” we take two points in the right
neighbourhood of U and V, respectively. This is true also if U or V contain
many points in their left neighbourhood or if in the neighbourhood of only one
point among U and V we have many points from  S«P.
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Thus in the sequel we may assume that P and S do not share many points in

a neighbourhood of U or V. Assuming that (i), (ii), and (iii) are valid, we will
now complete the proof of Theorem 3.2. The proof that the four points
immobilize P uses the fact that any movement of P preserves the distance
between O’ and O”. Consider possible movements of points O’ and O”. Let
m’ and m” be two arcs starting at O’  such that the tangents at O’ to these arcs
are parallel to u’ and v’, respectively. Applying Lemma 2.1 (and property (iii))
twice for center O’ and interior points U’ and V’, respectively, we get as
possible movement of O’ the region limited by m’ and m” and the line UV.
Similarly the movement of O” is only within the region limited by n’ and n ”
(see Fig. 19). Consider now the circle T with diameter O’O”. Since the slope
O’O” (according to (ii)), and the slopes of four arcs at O’ and O” (according to
(i)) are between e and -e , the possible  movements of both O’ and O” are
within the circle T. Clearly any such movement will decrease the distance
between O’ and O”. However, any movement of the shape P must preserve
the distance. This is a contradiction, and Theorem 3.2 is proved.

To complete the above proof of Theorem 3.2 we need to prove properties (i),
(ii), and (iii) for appropriate choice of S’ and S”.

First we prove the following lemmas.

Lemma 3.1. The set of centers O’ of inscribed circles of Pu  and Pl forms a
continuous curve (homeomorphic image of an interval) in the neighbourhood of
point O (we call it the center curve).
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Proof. Consider a circle R with  radius r < |OU| centered at O. Let the
diameter circle S and the vertical lines x=-∂ and x=∂ intersect at points A, B, C,
and D, as illustrated in Fig. 20. The angles AOU, UOD, BOV, and VOC are all
equal to e, where ∂=|OU|sin e. Let A’, B’, C’, and D’ be intersections of OA,
OB, OC, and OD with R (see Fig. 20), and let X be any point on Pu. It is easy
to see that the distance |XY| is a monotone increasing function on Y when Y
scans from A’ to B’. Since this is valid for any point X on Pu, it means that the
distance from Y to Pu is a monotone increasing function when going from A’
to B’. Similarly the distance from Y to Pl is a monotone decreasing function
when Y scans from A’ to B’. Since A’ is obviously closer to Pu than to Pl, and
vice versa for B’, there exists exactly one point Y on the arc A’B’ that is
equidistant from Pu  and Pl; Y is the center of an inscribed circle for Pu  and Pl.
Analogously there exists exactly one such center on the arc D’C’.  Therefore
the set of centers contains exactly one point to the left and one point to the
right of O at any given “small” distance from O. The distances from Pu  (and
Pl) are continuous functions in the plane; if the sequence of centers of inscribed
circles converges towards a point Y on the arc A’B’ then Y must also be
equidistant from Pu  and Pl.  This is sufficient to claim that the set of centers is a
continuous curve. ®

Lemma 3.2. Suppose that Pu  and Pl do not share any arc with their
diameter circle S left (right) to UV. Given an e such that p/4 > e > 0, we can
chose ∂>0 so that in the ∂-interval the slope OO’ is between -e and e for any
center O’ of an inscribed circle of Pu  and Pl that is sufficiently close to O.

Proof. Choose ∂<|OU|sine. Suppose that there exists a center O’ of an
inscribed circle for Pu  and Pl with the slope that is outside the interval   [-e,e]
within any neighbourhood of O; suppose that an infinite number of them have
slopes that are smaller than -e and are to the left of UV (the other three cases
can be discussed analogously); see Fig. 21. Since the angle O’OU is acute,
|O’U|<|OU| when O’ is close enough to O. On the other hand, as ∂<|OU|sine, b
does not intersect Pl, where b is bisector of segment OO’. Thus for any point X
in Pl  |O’X|>|OX|≥|OV|=|OU|. It follows that O’ is strictly closer to Pu than to
Pl, which is a contradiction. ®

According to our earlier discussion we may assume that U and V are the only
common points of P and S in the neighbourhood of U and V. Let A”, B”, C”,
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and D” be (first) intersections of Pu  and Pl with the vertical lines x=-∂ and x=∂
(i.e. the endpoints of Pu  and Pl; see Fig. 20). Distances from O to these points
are greater than |OU|; let the closest one be at distance |OU|+ e’, where e’>0.
Then we may restrict the neighbourhood of O to at most e’ (i.e. |OO’|<e’,
|OO”|<e’). This will assure that the chosen inscribed circles with centers O’ and
O” really touch P (i.e. do not intersect P at one of A”, B”, C”, or D”).

From Lemma 3.1 it follows that two points O’ and O” can be chosen at any
distance < min(∂,e’) from O. Since the slopes OO’ and OO” are between -e and
e (Lemma 3.2), the slope O’O” is also between -e and e, where e can be chosen
arbitrarily (p/4 > e > 0). This assures property (ii). Next, it is easy to show that
for any point X on Pu  or Pl the angle between O’X and OU is also within [-
e,e] for any such choice of O’. From this it follows that the slope of any tangent
to inscribed circle centered at O’ (or, analogously, O”) is within [-e,e], since
such a tangent at some point X from P is perpendicular to O’X. This confirms
property (i).

To verify property (iii) we prove first the following two lemmas.

Lemma 3.3. If the inscribed circle of Pu  and Pl is a diameter circle for each
center O’ belonging to a (closed)  interval on the center curve then the diameter
of the circles is the same for all these centers (i.e. the shape is a tube).

Proof. We show first that any such circle S’ does not share with Pu  or Pl an
infinite set I of points in the neighbourhood of U’ or V’, except possibly the
endpoints of the interval. Suppose that, in contrary, it does so for a center O’.
Then it is easy to show that the centers lying on the same side of the diameter
U’V’ as I are not centers of diameter circles. Now from Lemma 3.1 and
Lemma 3.2 (this lemma can be applied to any point O’ instead of O) it follows
that the center curve is smooth since there exists the tangent to the curve at any
center O’ and the tangent is normal to the diameter U’V’.

 Next, we show that at least one of Pu  and Pl is also a smooth curve. Let O”
approach O’ on the center curve. Observe that U’V’ and U”V” cannot
intersect; indeed if they do, say O”U” and U’O’ intersect at point T then
|O”U’|+|O’U”| ≥ |O”U”|+|O’U’| =  |O”T|+|TU”|+|O’T|+|TU’| >
|O”U’|+|O’U”|, which is a contradiction. So U” must then approach U’ and
V” must approach V’ (note that the distance is a continuous function). Suppose
that, when O” moves towards O’ the segment O”O’ is becoming horizontal
but, say, V”V’ is not. Then the bisector b of V’V” leaves both O” and O’ on
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the same side. If V’ is on the same side of b as O’ and O” then |O”V’|<|O”V”|;
otherwise |O’V”|<|O’V’|, which is in both cases a contradiction. Thus V”V’ is
also becoming horizontal, i.e. the center curve and Pl (in this case) have parallel
tangents at O’ and V’, respectively. In case V”=V’ it may be shown that V’
corresponds to any center on interval between O’ and O” on the center curve;
the tangent at V’ does not exist but the corresponding tangents for Pu are well
defined (i.e. Pu is then smooth).

Now we map the center curve continuously to an interval I of a straight line
(say, x-axis). Suppose that Pl is smooth. Construct f(x) in the following way: for
every point xoŒI corresponding to O’ in the center curve let f(xo)=|O’V’|. It
may be shown that f(x) is a smooth curve with always horizontal tangent. But if
f’(x)=0 for each x belonging to an interval, applying integral gives f(x)=c
(constant). Therefore the diameter is constant on the interval. ®

Lemma 3.4. If the critical angle at the center O’ is <π then the radius of the
inscribed circle decreases in the neighbourhood of O’ when O’ approaches O.
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Proof. Let a function f be defined as follows: f(|OO’|)=|O’U’|, i.e. the
argument is the distance between O and O’ (O’ is unique, see the proof of
Lemma 3.1) and the value is the radius of inscribed circle at O’. Suppose that
the critical angle at O’ is smaller than π. Therefore at least one of the angles
OO’U’ and OO’V’, say angle OO’U’, is smaller than π/2. Consider a circle C
centered at O with radius r such that r<|OO’| but r is greater than the distance
from O to the segment O’U’ (see Fig. 22). Let U* be the intersection of C and
O’U’. U* is closer to Pu than to Pl as the bisector of O’U* is almost horizontal.
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If C intersects O’V’ then V* is defined analogously. Otherwise let V* be such
that O’V* is the lower tangent to C (see Fig. 22). O’V* is almost vertical;
therefore its bisector is almost horizontal and thus V* is closer to Pl than to Pu.
Therefore the arc U*V* contains a point X that is equidistant from Pu and Pl.
Radius r can be chosen (increased) such that V* and X fall inside triangle
O’U’V’. Then at least one of the angles O’XU’ or O’XV’, say O’XV’, is
greater than π/2. Hence |XV’|<|O’V’| and f(|OX|)<f(|OO’|). This means that the
function f decreases in the neighbourhood of O’ when O’ approaches O. ®

To verify property (iii), suppose that the critical angle at O’ is not greater
than π for any point O’ on the center curve which is near O. It is easy to prove
that the set of centers O’ for which the critical angle is =π (<π) is a closed
(open, respectively) set on the center curve, consisting of the union of possibly
infinite number of closed (or open) intervals, respectively. According to Lemma
3.3 the diameter is a constant function within any of the closed intervals of
centers O’ with the critical angle equal to π.

Since the diameter |OU| is a local maximum, f(|OO’|≤f(|OO|)=f(0). If the
critical angle at O’ is smaller than π then f(|OO’|) decreases when O’ moves
toward O (Lemma 3.4); if, on the other hand, the critical angle is equal to π, O’
belongs to a closed interval with such critical angles and remains constant
function (Lemma 3.3). This is possible only if f(|OO’|)=f(0), i.e. when the
diameter is a constant function and all critical angles are equal to π. But then the
shape is a tube, which contradicts the type of shape studied. Hence there exists
a center O’ such that the critical angle at O’ is greater than π, and property (iii)
is verified.

Therefore properties (i), (ii), and (iii) may be satisfied and this completes the
proof of  Theorem 3.2. ®

3.2.2. Immobilizing tubes

In this section we will prove that four points will always suffice to immobilize
any tube. The idea of the proof is to choose first two immobilizing points U and
V in the intersection of the diameter circle S and the tube. Then we show that
the only possible motion of the shape P, without one of these two points
penetrating the interior of P, is the “sliding” of P between U and V. U and V
remain then in the boundary of P and the points from the center curve move to
O. Each point in plane moves along a smooth curve, determined by the center
curve. Two additional points will be chosen, each one to prevent the motion in
one of two possible directions of the sliding. This will be easy to do when during
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such motion some points from the boundary of P must move to the interior of
P. If this does not happen we will prove that no point of P can move to the
exterior of P, otherwise P would change its area. In the remaining case, all the
points from the boundary of P during the motion must stay in the boundary of
the original position of P. We prove in Lemma 3.5 that this may happen only
when P is a circle.

Lemma 3.5. Suppose that during the motion of P every point from the
boundary of P moves to a point belonging to the boundary of the initial position
of P. This is possible only when P is a circle.

Proof: Take the circumcircle of P, i.e. the minimum radius circle C enclosing
P, centered at O. Observe that O cannot move during the motion, otherwise the
maximum distance from O’, the new position of O, to P«C would be greater
than the radius of C. As at each instance of time the motion is an izometry this
is clearly impossible. Therefore the motion preserving the boundary of P must
be a rotation around O. Under this motion, a point from P«C traces an arc of C
and the whole circle is traced when the motion is repeated few times. Thus
P=C. ®

Theorem 3.3. Four points always suffice to immobilize any tube.

Proof. First we show that any movement of P that respects U and V as
immobilizing points maps two other points U’ and V’ to U and V (respectively)
such that U’V’  are also touching points of another diameter circle of P (i.e. the
shape is “sliding” along UV). To prove this fact, neither U’ nor V’ can be an
interior point of P, since in that case U or V will penetrate P. Thus U’ and V’
are outside P or on the boundary of P. Suppose that at least one of them lies
outside P. The circle S’ that has U’V’ as diameter intersects in this case both Pu
and Pl. A continuous decrease in the diameter of S’ (first keeping the same
center and decreasing until S’ just touches Pu or Pl; then keeping the same
touching point and moving the center of S’ closer to the point until S’ touches
the other curve; see Fig. 23) gives another inscribed circle S” that touches P in
two points U” and V” such that |U”V”|<|U’V’|=|UV|. This is a contradiction
because we get an inscribed circle with diameter less than r=|UV|.



  27
U

V

U'

V'

P

P
V"

U"

Figure 23

u

l

Therefore only points U’ and V’ from the boundary of P move to points U
and V such that U’V’ is the diameter of an inscribed circle of P (|U’V’|=|UV|).
Let T be a point from the boundary of P, and let T’ be the point that moves to
T. Since the distances are preserved by any given movement, it follows that
|T’U’|=|TU|, and |T’V’|=|TV|. Thus at any given time t the point T’ that moves
to T is uniquely determined, and we may write T’=f(T,t) where t stands for
time with f(T,0)=T (the cases t<0 and t>0 correspond to the movements in one
or another direction). f(T,t) is clearly a continuous curve. It is easy to show that
f(T,t) is a smooth curve, determined by the center curve which is smooth (see
the proof of Lemma 3.3) and the tangent to it. For each of the two directions
we will show that there is a point from the boundary of P that penetrates the
interior of P.  Choosing one such point to immobilize P will prevent the whole
movement in the direction, and four points that immobilize P will be found. Let
t>0 (the case t<0 is considered analogously). We partition all points from the
boundary of P into four disjoint classes:

(1) Points T for which there exists e(T)>0 such that  f(T,t) is the boundary
point on P for any t in the interval 0≤t≤e(T) (points that move along the
boundary of P).

 (2) Points T for which f(T,t) assumes values of both some interior and some
exterior points from P in any interval  0≤t≤e(T), no matter how small  e(T) is
chosen.  Such a point T oscillates between the interior and the exterior of P.

(3) Points T, that do not belong to class (1), for which there exists e(T)>0
such that f(T,t) is not an interior point of P for any t in the interval 0≤t≤e(T),.
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(4) Points T, that do not belong to (1), for which there exists e(T)>0 such that

f(T,t) is not an exterior point of P for any t in the interval 0≤t≤e(T)>0.

There are two cases:

- class (2) or class (4) is nonempty. Therefore there exists a point T on the
boundary of P such that, no matter how small is the movement (i.e.  no matter
how small is the time e(T)>0), there exists T’ from the interior of P which moves
to T in time 0<e’(T)≤e(T). This means that T penetrates P during the movement,
and can thus be chosen to immobilize P in given direction (note that T may or
may not belong to the tube part of P).

- classes (2) and (4) are empty. We will show that then class (3) is also empty.
Suppose that, in contrary, it is not, and that T belongs to class (3). Then for any
sufficiently small e(T)>0 there exists T’ from the exterior of P which moves to T
in time 0<e’(T)≤e(T). However, the area of P is an invariant of any movement.
Thus some points from the interior of P must move to the boundary of P (to
keep the same area) in same time e’(T). Therefore one of the classes (2) or (4) is
nonempty, which is a contradiction.  Thus all points belong to class (1), i.e. any
point from the boundary of P moves to the point from the boundary of P. By
Lemma 3.5 that is possible only if P is a circle. This completes the proof for the
tube shapes. ®

In consequence we have the following major result.

Theorem 3.4. Four points always suffice to immobilize any  shape which is
not a circle.

Proof. Follows from Theorems 3.1, 3.2, and 3.3. ®

The reader may check that four points suffice also to immobilize any shape P
with holes (except concentric rings).

4. Generalizations to higher dimensions

In this section we will generalize some results on immobilization of polygons
in the plane to high-dimensional case.
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Consider the largest inscribed sphere S (centered at O) of a given d-
dimensional polytope P. Suppose S touches P in points A1, A2, ..., At. Let
T=CH(A1, A2,..., At) denote the convex hull of these points.

Lemma 4.1. OŒCH(A1, A2,..., At).

Proof. If O is  located outside T, O must be a vertex of CH(O, A1, A2,..., At),
and therefore there exists a (d-1)-dimensional hyperplane C passing through O
such that A1, A2,..., At are all on the same side of C (and not on C). Let OX be
a vector normal to C such that all angles XOAi (1≤i≤t) are obtuse. Then, when
we move point O in the direction OX it may be a center of a sphere larger than
S. ®

Lemma 4.2. Let  A1A2...Ad+1 be a d-dimensional simplex containing O in
its interior. Then {A1, A2,..., Ad+1} immobilizes P.

Proof. For any motion keeping O in place, the final position of this
movement may be described as a composition of d-1 rotations around O. Some
points among A1, A2,..., Ad+1 (all those which move at all) will then penetrate
the interior of P. Therefore, any possible motion must move O to a new
position O’≠O, and S moves to S’. Let b be the (d-1)-dimensional hyperplane
that is bisector of OO’. Because A1A2...Ad+1 contains O, when O is close
enough to O’, on each side of b there are some points among {A1, A2,...,
Ad+1}. All points of S that lie on the opposite side of b than O are then inside
S’, the new position of S, (once more when O and O’ are close enough), and
thus penetrate P.  For d=2 consult Fig. 16 and corresponding part of the proof
of Theorem 3.1.®

Now we will turn our attention to the question of the upper bound for the
number of points necessary to immobilize a polytope. Before we pass to the
general d-dimensional case, let us consider, as a more intuitive illustration, the
case of 3-dimensional polyhedra.

Theorem 4.1. Six points suffice to immobilize any polyhedron.

Proof. By Lemma 4.1, O is inside or on the boundary of CH(A1, A2,..., At).
Let m be the minimal number such that there exists an m-dimensional simplex
T’ with m+1 vertices taken from {A1, A2,..., At} containing point O in its
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interior. Let these points be named A1, A2,..., Am+1. Thus T’=CH(A1, A2,...,
Am+1). Consider the following cases:

Case 1) m=1. Then O is in the interior of a segment, say, A1A2, and A1A2 is
a diameter of S. We will include A1 and A2 into the set of points to immobilize
P. A1A2 is the minimal distance between corresponding faces containing A1
and A2 (there may be, in case of non-convex polyhedron, several faces
containing A1 or A2). This distance is exactly the distance between parallel
planes that are tangent to S at A1 and A2, respectively. The points from these
planes that are in the neighbourhood of A1 or A2 are inside or on the boundary
of P, and thus the only motion (if any) that does not cause A1 or A2 to
penetrate P must be the motion within the plane normal to A1A2. In other
words, for any point pŒP, its  motion remains within the plane containing p and
normal to A1A2. P intersects any such plane in a simple polygon, and that
polygon can be immobilized in that plane with four points (Corollary 2.2). Thus
P can be immobilized with six points.

Case 2) m=2.  Then O is inside a triangle, say, A1A2A3. We include A1, A2,
and A3 in the set of points to immobilize P. Consider the tangent planes to S at
A1, A2, and A3. P is obviously the superset of these planes in the
neighbourhood of touching points and will have restricted motion as the figure
that is formed by the three tangent planes. The only possible motions of P are
now translations along the line normal to the plane A1A2A3.The translations
can be prevented by choosing two more points, one for each direction of
translation, thus giving a total of five points for immobilization.

Case 3) m=3. O is the interior point of the tetrahedron, say, A1A2A3A4. A1,
A2, A3, and A4 will then immobilize P by Lemma 4.2. So, in this case four
points suffice to immobilize P. ®

Theorem 4.2.  2d points are always sufficient and sometimes necessary to
immobilize a given d-dimensional polytope P.

Proof. The proof is by induction on d. It is already proved for d=2 and d=3.
For d=1 it is trivially sufficient to immobilize a segment on a line with two
points. Suppose that the statement is true for any dimension smaller than d. We
prove that the statement is then true for dimension d as well.
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According to Lemma 4.1, the center O of the largest inscribed sphere S must

be located inside or on the boundary of CH(A1, A2,..., At). Let m be the
minimal number m≥1 such that there exists a m-dimensional simplex T’ with
m+1 vertices taken from {A1, A2,..., At} containing point O in its interior. Let
these points be named A1, A2,..., Am+1. Thus T’=CH(A1, A2,..., Am+1).
Consider the following cases:

Case 1) m=d. Then by Lemma 4.2, {A1, ..., Ad+1} immobilizes P.

Case 2) 1≤m<d. Include the points A1, A2,..., Am+1 in the set to immobilize P.
Analogously as in Theorem 4.1, there is no motion of P within the m-
dimensional space determined by the points A1, A2,..., Am+1. Thus each of the
possible motions, so far, must be within a (d-m)-dimensional space that is
orthogonal to the above m-dimensional one. Since d-m<d, by induction
hypothesis, this motion can be prevented by 2(d-m) additional points. Therefore
2(d-m)+m+1=2d-m+1≤2d points suffice to immobilize P.

The necessity follows from the obvious fact that a d-dimensional cube (or
parallelepiped) requires 2d points to immobilize it. ®

The following theorem is a generalization of Theorem 2.5.

Theorem 4.3. Let P be a polytope in d-dimensional space. If there does not
exist a linearly dependent set of d vectors v1,  v2, ... ,vd , such that each  vi  is
orthogonal to some face of P then P may be immobilized with d+1 points.  

Proof. Let m and T’ be defined as in the proof of Theorem 4.2. Vectors
OA1, OA2, ..., OAm+1 then form a linearly dependent set of m+1 vectors
(m+1 vectors in m-dimensional space). These vectors are indeed normals to
some faces of P. According to the condition of the theorem it follows that
m+1>d. Therefore m=d and the result follows from Lemma 4.2.  ®

Corollary 4.1. Any d-dimensional simple polytope needs at least d points to
immobilize it.

Proof. The proof is obvious by noting that in d dimensions for any d-1 points
there exists an axes of rotation keeping these d-1 points in place. ®



  32
The reader may verify that there exist d-dimensional non-convex simple

polytopes for which d points suffice to immobilize. From Lemma 4.2 (the
conditions of the lemma are satisfied given a random polytope) and Corollary
4.1 follows

Corollary 4.2. Expected number of points necessary to immobilize a simple
d-dimensional polytope is equal to d or d+1.

In the case of convex P, however, d points will not be sufficient to immobilize
P. The region delimited by the hyperplanes tangent to P at these d points must
be unbounded and P may be translated away (similarly as in Fig. 7(a) for the
planar case). As a consequence we have

Corollary 4.3. Expected number of points necessary to immobilize a d-
dimensional convex polytope is equal to d+1.

5. Conclusions and open problems.

In this paper we studied the problems of immobilization of two types of figures:
polygons (polytopes) and planar sets bounded by a Jordan curve. A number of
interesting open problems follow from this work.

Theorem 2.3 gives a characterisation of immobilization of a polygon by three
points not located at its vertices. An interesting question is to extend this
characterisation to cover the placement of immobilization points anywhere on the
boundary of the polygon.

Theorem 2.7 gives an O(n log n) algorithm finding three points immobilizing a
given polygon having no parallel sides. However, this algorithm may output four
immobilization points for some polygons having parallel sides, which may actually
require only three points. For convex polygons, we can find out whether four
points are actually needed and eventually output the optimal solution but it will take
an O(n3) time following Theorem 2.2. It is an open problem to reduce the
complexity of the algorithm finding the optimal number of immobilization points.
For the case of non-convex polygons, it remains an open problem to recognize
those that need four points to immobilize them. The problem of finding the optimal
immobilizing set may be solved also by giving first the full answer to the question
stated in [K] about the characterisation of the class of polygons (convex polygons)
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needing four points to immobilize. The result from theorem 2.6 is not a complete
solution of this problem.

It seems that the theorem 2.2 (and theorem 2.3) may be fully extended to the
case of d-dimensional polytope P. In particular, d+1 points should immobilize a
convex polytope if and only if the (d-1)-dimensional hyperplanes tangent to P in
these points enclose P, and the lines orthogonal to the hyperplanes at the points of
immobilization meet at a common point. Another extension to higher dimension
was suggested in [K] where instead of using points, immobilization by lines, planes,
etc... may be considered.

For the case of arbitrary shapes, an extension to higher dimensions may be
considered an interesting area of further research. For planar shape with holes (ring
is excluded), where each hole is bounded by a Jordan curve, we conjecture that
three points should be always sufficient to immobilize it. Moreover, two points
should be sufficient in most cases. This is obvious for polygonal shapes where the
two points are placed at  endpoints of the diameter of a hole.

Finally, we would like to recall a challenging questions asked by Kuperberg
which were not addressed in this paper. Say a set C of points not in the interior of
P captures P if P cannot be moved to infinity without at least one point of C
becoming internal to P at some time. Is the minimum number of points needed to
capture P always the same as the minimum number of points needed to immobilize
it? The answer is negative for general shapes (a shape of the form of letter H is an
example) but remains open for convex shapes.

We would like to thank the anonymous referees whose comments contributed to
the significant improvement of our paper.
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