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1. Introduction

Let  P  be a simple polygon with n
vertices.  We say that  P  is  k-guardable if it is
possible to find a set of points  Q consisting of
interior points of edges of   P  such that every
point of  P  is visible from at least   k  elements
in  Q and  no edge of  P  has more than one
element in  Q.   The following question was
asked by A. Lubiw at the open problem session
of the Fourth Canadian Conference in
Computational Geometry:  For what values of
k, is every simple polygon k-guardable?  It has
been observed by T. Shermer that comb polygons
[Chv75, O'R87] are not 3-guardable; such a
polygon is shown in Figure 1.  

A polygon which is not 3-guardable

Figure 1.

In this paper we prove that every simple
polygon with  n  vertices can be 2-guarded using
at most n-1  points.  We also prove that any
simple polygon with n vertices can be 1-guarded
with at most Î

n
2 ˚  guards.  These bounds are

tight up to an additive constant.  We prove
that any polygon with one hole is also 2-

guardable.  We also prove that every polygon
with holes is 1-guardable, and that it is not
true that every polygon with holes is  2-
guardable.

2.  One and Two-Guarding Simple
Polygons.

In this section, we consider the problem
of 1-guarding  and 2-guarding simple polygons.
We proceed now to prove our first result,
namely that every simple polygon can be 2-
guarded.

Theorem 1:  Every simple polygon can be two-
guarded.

Proof:  Let  a  be any point on the interior of an
edge of  P  and let  Pa  be the visibility  polygon
of  a,  that is the set of all points q Œ P  such
that the line joining  a  with  q  is contained in
P*.  Notice that  Pa  may contain vertices tha t
are not vertices of  P  and that some edges of  P
may have up to two vertices of  Pa in their
interior (See Figure 2.)  Let   v  be a vertex of  Pa
that is not a vertex of  P.  The line joining  v  to
a  contains a vertex of  P, which we shall denote
by  va.  Let  e  be an edge of  P  that has two
vertices of  Pa in its interior,  say  b  and  c.
Notice that  b  and  ca  are mutually visible in
Pa (the triangle formed by a, b and  c  is
contained in  Pa.)   Thus the line segment joining

                                                                        

* To facilitate our presentation, we may assume that  a  is not
contained in the line joining any two vertices of  P and that for every
edge  e  of  P  the line containing  e  contains no vertex of  P other that
the endvertices of  e.  This condition may be easily dropped, leaving
our result unchanged.



them is contained in  Pa. Remove from  Pa  the
triangle  determined by  b, c and ca .  Apply this
procedure to all edges of  P  containing  two
vertices of   Pa  and call the resulting polygon
Pa

1
!  .  Place a guard at all vertices of   Pa

1
!    that

are not vertices of  Pa.  If an edge  e  of  P  is
completely visible from  a  place one guard  in
the middle of it  and finally place one guard a t
the point  a  itself (See figure 2.).
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Figure 2

Observation 1:  All points in   Pa
1
!   are 2-guarded

(by  a  and at least one of the other guards
placed on the boundary of ! Pa

1
!  .

 Clearly  P-Pa
1
!    can be "broken" into

several simple polygons P1,...,Pk  with disjoint
interiors with the property that each one of
them contains exactly one vertex that is not a
vertex of  P.  We will denote such a vertex by
v(i), i=1,...,k.  Notice that some pairs of
elements of P1,...,Pk may have at most one point
in common, i.e. a vertex of  Pa

1
!   that is not  a

vertex of  P.  Now we process recursively each
Pi  using the following recursive procedure:

 Procedure 2-Guarding (Pi, v(i))

Calculate its visibility polygon Pv(i)  of
v(i) in  Pi .  Two cases arise:

a ) Pi=Pv(i).  In this case place a guard in
the middle of each edge of  Pv(i)  except for a l l
the two edges of  Pv(i)  containing  v(i).  

b) P≠Pi .  Three cases are consider now:

i)  An edge  e  of  Pi  completely visible
from  v(i) .  Place a guard in the middle of e.  

ii)  An edge of  Pi   containing exactly
one vertex  v  of  Pv(i)  that is not a vertex of Pi .
Place a guard at  v.

iii)  For each edge  e  of  Pi   containing
two vertices of  Pv(i)  say  b  and  c  that are not
vertices of  Pi  proceed as follows:  Locate the
reflex vertices  ba( i )  and  cv(i)  of  Pi   contained
in the interior of the line segment joining  v(i)
to  b  and  c  respectively.  Join  ba( i )  to  c with a
line segment and delete from  Pv(i) the triangle
with vertices  b, c  and  ba( i ).  Place a guard a t  
c.  Let  Pv(i)

1
!    be the polygon obtained from  Pi

after we deleted all the triangles generated by
edges containing two vertices of  Pv(i) not
vertices of  Pv(i).  Partition  Pv(i)-Pv(i)

1
!    into m

simple polygons  P1,...,Pm  each containing
exactly one vertex  v(j) that is not a vertex of
Pi ,  j=1,...,m.

For j=1,..., m execute 2-Guarding (Pj, v(j)).

End 2-Guarding

It now follows by Observation 1  that
the collection of guards thus obtained  is a  2-
guarding of  P, that is each  visibility
subpolygon  Pv(i)  calculated during our
execution of 2-Guarding   is  2-guarded.  
Moreover, our procedure places at most one
guard on each edge of  P.

QED.

Corollary 1:   Î n2  ˚  guards are always sufficient
and sometimes necessary in a 1-guarding of a
simple polygon.

Proof:  In the proof of Theorem 1, color the
initial point  a  with color 1  and the guards
generated by  a  with color  2.  In the successive
iterations,  if a guard was generated by a guard
with color 1 (resp. 2), color it with color 2 (resp.
1).  By observation 1,  and our coloring rule, i t
follows that every point  is seen by at least one
point with color  1  and one with color  2.
Choose the color class with fewer vertices to



obtain the sufficiency of our result.  The family
of comb polygons similar to the polygon shown
in Figure 1 demonstrates that  Î

n
2 ˚   guards are

sometimes required.

QED.

3. Polygons With Holes

Given a simple polygon  P', and k
disjoint polygons Q1,...,Qk  contained in the
interior of  P,  we say that the polygon P=P'-
(Q1»...»Qk)  is a polygon with k holes.  An
edge  e  of  P'  will be called an exterior edge of
P  while edges of Q1,...,Qk  will be called
internal edges of  P.

In this section we study the problem of 1
and 2-guarding for polygons with holes.  We
start by proving:

Theorem 2: Not every polygon with holes is 2-
guardable.

Proof:  To prove Theorem 2, all we have to do is
to exibit a polygon with two holes that is not 2-
guardable.  To this end consider the polygon
with two holes shown in Figure 4.
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   Figure 4

Consider the point set S={a,b,c,d,e,f}. In
order to two-guard the elements of  S, we can
choose guards only placed in the interior of
e1,...,e11.  Moreover, no guard placed in any of
these edges can see two elements of
simultaneously.  Our result now follows.

QED.

Next we prove:

Theorem 3:  Every polygon with holes is 1-
guardable.

Before we proceed with the proof of
Theorem 3 we recall the following result on
visibility.

Lemma 2:  Let  S={l1,...,l  n} be a collection of
disjoint line segments and  p  a point on the
plane such that  p is externally visible from  S ,
i.e.  there is a ray starting at   p  that does not
intersect any one of the elements of  S.  Then  S
contains at least one line segment  li   that is
completely visible from  p.

A proof of this Lemma can be obtained from
results presented in [FRU].  It is easy to see tha t
p  induces an order relation  "<"  in  S  as
follows:

i ) We say that   la  blocks  lb  (denoted by la
Æ  lb) if there is a point  q  in  lb  such that the
line segment joining  p  to  q  intersects la.

i i ) We now say that  la  <  lb  if  la  Æ  lb  or
there is a chain of elements  la = l1  Æ l2 ...  Æ
lk = lb.

In the language of  [FRU]  "<"  is a light
source order.  Thus the element  li  claimed in
Lemma  2 is nothing else than a minimal
element of  the order relation  "<"  on  S.

Proof of Theorem 3:  Let  P  be a polygon with
holes.  Without loss of generality, assume that
no edge of  P  is parallel to the  x-axes, that no
two vertices of  P  have the same  y-coordinate,
and that the difference between the  y-
coordinate of any two such vertices is at least  e
> 0.  

For every vertex  v  of  P  consider the
longest line segment contained in  P  which is
parallel to the x-axis and contains  v.  These
lines partition  P  into a collection of convex
polygons  T={R1,....,Rm} with disjoint interiors.
For every edge  e  of  P  place a guard in its



interior at distance at most   e2     from its lower
end point.  

R j

Ri

Figure 5

We claim that these points 1-guard  P.  In order
to prove our claim we observe that if the
boundary of a region  Ri  of  T  intersects the
interior of an edge  e  and also contains its lower
end-point,  then it contains the guard assigned
to  e.  Suppose then that an element  Rj  of  T
does not contain a  guard in its boundary  and
consider a point  p  in  Rj.  If  p  lies in a line
segment contained in  P  that contains an edge  e
of  P,  then the guard assigned to  e  guards  p.
Suppose then that this is not the case. Using
the horizontal line through  p  cut the polygon
P  in two parts and delete that part of  P  above
it.  At all the remaining vertices of  P, cut away
a sufficiently small segment from each edge of
P, or the remaining segment of an edge of  P (See
Figure 6).  Notice that we get a disjoint family
of line segments for which  p  is externally
visible.  By Lemma 2,  one of these segments say
e'  is completely visible from  p.  Since  p  is in
the interior of  P,  it follows that  p  sees the
side of  e'  facing towards the interior of  P, and
thus the guard assigned to the edge of  P  tha t
contains  e'  guards p.

To finish this paper we give an outline
of our last result in this paper, namely:

Theorem 4:  Every polygon with exactly one
hole is 2-guardable

An edge  e  of a simple polygon  P  is
called convex  if the end vertices of  e  are

convex vertices of  P.  We give the following
lemmas without proof.

Lemma 3:  Let  e  be a convex edge of  P.  Then
there is a 2-guarding of  P  with n-1 guards tha t
does not use a guard at  e.  Furthermore, such
guarding can be chosen so that the guards at the
edges adjacent to  e  are arbitrarily close to  e.

Proof:  Let us assume that e  is convex, and that
the edges adjacent to  e  in  P  are  ei-1  and  ei+1.
In the proof of Theorem 1, choose the initial
point  a  on  ei-1  and close enough to  ei  such
that  a  sees an interior point of ei+1.  See Figure
5.  In this case, it is easy tu see that the point  x
that our initial procedure in theorem 1would
place on  ei  is redundant,  (See Figure 5).  If we
now proceed as in the rest of theorem 1, we end
up with a two guarding of  P  that does not place
any guard at ei.

To prove our second claim of this
lemma, we notice first that  a  can be chosen
arbitrarily close to  e.   This however, could
places the guard at ei+1  at a point  p  at fixed
distance  d  from  e   as in Figure 5.  In this case,
ei+1  is not entirely visible from  a.  Then the
line joining  a  to the guard  y  in  ei+1  contains a
vertex, say v in its interior.  To solve this case,
we simply choose a point  w  on  ei+1  as close to
e  as we choose, place aguard at  w  and delete
from  Pa

1
!   the triangle  with vertices  v, w and  p.

From here on we proceed as in Theorem 1 (See
figure 6).

QED.

A funnel  is a polygon  P  with vertices
v1,...,vn  such that  P  contains exaclty three
convex vertices, v1, vk  and vn  for some 1<k<n.

e i+1 a e i-1
e i x

Figure 5
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Let  e = [vi,vi+1]  an edge of  P   and vk  ≠
vi, vi+1  be a vertex  of  P  .  Then it is easy to see
that if the shortest polygonals  paths  Hi  and
Hi+1  contained in  P  from  vk  to vi  and vi+1  are
disjoint,  then the polygon bounded by  e, Hi
and  Hi+1  is a funnel; denote this funnel by  F(e,
vk).  We now have:

Lemma 4:  Let  e = [vn,v1] be a convex edge of a
polygon  P  and vk ≠v1,vn  a vertex  of  P  such
that the following conditions are satisfyed:

a)  The shortest polygonals in P  from vk  to vn
and  v1  are disjoint.

b)  P-F(e,vk)  can be broken into s interior
disjoint subpolygons  P1,..,Ps  of  P  such that the
edge  ej  of  Pj  that intersects  F  is a convex edge
in  Pj; i=1,...,s.

Then  P  can be two guarded avoiding placing a
guard at  e.

Proof(Sketch):  Place a guard in the middle of
each edge of  F(e, vk)  that is an edge of  P.  B y
Lemma 3, every one of  P1,...,Ps  can be two
guarded avioding placing guards at the edges of
F(e, vk).   It is now easy to see that if in each  Pi
the guards placed at the edges incident with  ei
are placed close enough to  ei  then these guards
together with those placed at the edges of  F(e
vk)  that are edges of  P  will also 2-guard F(e,
vk) .

QED.

The next observation will be useful:

Observation 1:  The guards placed at the edges
adjacent to  vk  can be placed arbitrarily close to

vk.  Moreover, the guards placed at the edges
adjecent to edege e can also be placed
arbitrarily close to  e.

v1 vn

k

Figure 6

We are now ready to prove Theorem 4.

Proof of Theorem 4:  Let  P  be a polygon with
one hole.  Consider two points u and v that are
mutually visible in  P  such that  u is an interior
point to an external edge of  P  while  v  is an
interior point to an internal edge of  P.

Delete from  P  an e-stripe  L    alog the
line segment joining  u  to  v  to obtain a new
simple polygon  P" with four new vertices and
two new convex edges  e' and  e". We now
proceed to two guard  P" as in Theorem  1  but
modify our procedure to avoid placing guards on
e' and e".

Since  e' ia a convex edge of  P", by
lemma 3, we can avoid placing a guard at  e' by
selecting  the initial guard on any of the two
edges of  P"  adjacent to  e'.  Moreover, the
second guard placed at the other edge adjacent
to e' can also be chosen arbitrarily close to  e'.
We proceed now to 2-guard P" until we generate
the first guard call it  x  that can see a point of
e".  At this point, calculate the funnel  F(e",x)
generated by  e" and  x  in  P".  Let  y  be the
guard that generayed x.  By cutting  P" along
the line joining  y  to  x, we obtain two polygons
one of which, call it  P"(e")  contains  edge e"  of
P".  Finish the 2-guarding procerdure for  P"-
P"(e") first.  We now proceed to 2-guard  P"(e").
By Lemma 4, we can 2-guard  P"(e") in such a
way that



a)  No guard is placed at  e" and the guards
placed at the edges of  P"  adjacent to  e"  are
arbitrarily close to  e".  

b)   The guards placed at  the edges of  P"(e")
adjacent to  x  are arbitrarily close  to  x.  At this
point, eliminate these two guards and
substitute them for a gurd at  x.  Notice that we
still get a two guarding of  P"(e").

We now obtain a two guarding of  P'  by
simply using the 2-guarding of  P'-P(e") and the
2-guarding of  P"(e") (See Figure 7).

u
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x

Figure 7

To finish our result, we notice that the guards
on the edges of  P' adjacent to  e' and  e"  can be
placed arbitrarily close to them, and thus we
can replace them by guards at he original
points u  and  v  of  P to obtain a two guarding of
P.

QED.

References

[Chv75] V. Chvátal, A Combinatorial
Theorem in Plane Geometry, J. Comb. Theory
Ser. B  18 (1975) 39-41.

[Fol92]  S. Foldes, I. Rival and J. Urrutia,
L i g h t  S o u r c e s ,  O b s t r u c t i o n s  and                  
Spherical Orders, Discrete Mathematics   102
(1992),13-24.

[Pes89]  G. Pesant,  Factorizations of Covers,
M . S c .  T h e s i s ,  M c G i l l  U n i v e r s i t y                       
(1989).

[O'R87]  J. O'Rourke, Art Gallery Theorem
and Algorithms , Oxford University Press
(1987).

[She92] T. C. Shermer, Personal Com.


