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Abstract. In this paper we study the following problem: how to divide
a cake among the children attending a birthday party such that all the
children get the same amount of cake and the same amount of icing.
This leads us to the study of the following. A perfect k-partitioning of a
convex set S is a partitioning of S into k convex pieces such that each
piece has the same area and 1

k
of the perimeter of S. We show that for any

k, any convex set admits a perfect k-partitioning. Perfect partitionings
with additional constraints are also studied.

1 Introduction

The problem we study in this paper was introduced in [1]. It arises from a simple
and practical problem: how to divide a cake among the children attending a
birthday party in such a way that each child gets the same amount of cake and
(perhaps more important to them) the same amount of icing.

Let S be a convex set contained in the (x, y)-plane. In mathematical terms, a
cake C with base S is a solid containing all the points with coordinates (x, y, z)
such that (x, y, 0) ∈ S and 0 ≤ z ≤ h, h > 0; h is called the height of C. The
exposed area of C consists of the boundary of C minus S, i.e. the base of a cake
is not considered to be exposed. A cake will be called a polygonal cake if S is a
convex polygon.

A division of a cake C into k parts by a series of vertical cuts is said to be
perfect if:

i) Each part is convex.
ii) Each piece has the same volume and the same exposed area of S.



Our birthday cake problem can be stated as follows: given a cake C, does it
have a perfect partitioning into k pieces? If a cake has such a partitioning, we
will also say that C can be cut perfectly.

A cake whose base is a square can be cut perfectly into three pieces as follows:
take any three points x, y and z that divide the perimeter of its base into
three pieces of the same length. Now make vertical cuts along the line segments
connecting these points to the center of the base of the cake; see Figure 1.

Fig. 1. Cutting a square cake into 3 pieces.

Perfect partitionings of cakes in which the vertical cuts are all along line
segments concurrent at a point P are called radial perfect partitionings.

Notice that for any k > 0, any circular cake C has a radial perfect partitioning
into k pieces. This motivates the following definition.

A cake C is called graceful if, for every k, there is a perfect radial partitioning
of C into k pieces. A natural question arises here: is it true that a graceful cake
must necessarily be circular? We will prove that the answer to this question is
“no”. We will show that there are an infinite number of graceful polygonal cakes,
and give a full characterization of them.

There are perfect partitionings of rectangular cakes that are not radial. A
non-radial perfect partitioning of a cake whose face is a 2-by-4 rectangle can be
obtained by making vertical cuts along the line segments that divide its base
into four parts each with equal area and perimeter, as shown in Figure 2.

Since we consider cakes of uniform height h, iced uniformly on the top and
sides, we can model the problem of dividing the cake C with base S into pieces
of both equal volume and icing, by the equivalent problem of partitioning the
convex set S into subsets equal both in area and perimeter of S.

Thus in the rest of this paper, instead of perfect partitionings of cakes, we
will refer to perfect partitionings of convex sets.

In Section 3, we will prove that every convex set admits a perfect radial
partitioning. In Section 4, we exhibit a quadrilateral that does not admit perfect
radial partititonings into four or more pieces, and give an interesting family of
convex sets which admit perfect radial partititonings into four pieces.

We will conclude by showing that any cake can be perfectly partitioned into
k pieces for all k > 0. Of course these partitionings are not necessarily radial.
Some results on perfect n-partitions can be found in [3].



Fig. 2. A non-radial perfect partitioning of a rectangular cake into four pieces.

2 Polygonal graceful cakes

A perfect k-partitioning of a convex set S is a partitioning of S into k convex
sets of equal area such that the boundary of each set is 1

k
of the boundary of S.

We now proceed to characterize polygonal graceful cakes.
A convex polygon P is called co-circular if there is a circle R inscribed in P ,

such that R is contained in P and tangent to all the edges of P . The center of
R will be called the center of P . We prove:

Theorem 1. A polygon P with n sides is graceful if and only if it is a co-circular
polygon. Moreover, all perfect partitionings of P are radial.

Proof. Assume that we have a perfect division of P into k parts produced by
cutting along lines radiating from a point C in its interior. Then the perimeter
of P is divided equally among these parts. If k > n, then at least k − n of these
parts are triangles. Each of these triangles has a side along the perimeter of P ;
call this its base. Since these triangles have equal base lengths and equal areas,
their heights must all be the same, i.e. the distances from C to all the sides of P
containing the base of a triangle in our partitioning must be all the same. If we
take k sufficiently large, we may assume that on each side of P there is always
a triangle whose base lies entirely on that side. That is, C is equidistant to all
the sides of P , i.e. P is cocircular. Sufficiency is obvious.

We now proceed to prove the second part of our result, i.e. that all perfect
partitionings of P are radial. Let C be the center of P , and Θ a perfect parti-
tioning of P into k convex pieces C1, . . . , Ck, k ≥ 3. Let Cj be any element of Θ
that contains C in its interior or boundary.

Suppose that Cj contains several disjoint arcs A1, . . . , Am of the boundary of
P . Since Θ is a perfect partitioning of P , the sum of the lengths of A1, . . . , Am

is 1
k

of the perimeter of P . Let Di be the set bounded by Ai and by the line
segments joining the endpoints of Ai to C, i = 1 . . . ,m. Since C is equidistant
from all the sides of P , it follows that the area of D1 ∪ . . .∪Dm is 1

k
of the area

of P , and thus Cj = D1 ∪ . . . ∪ Dm. However since Cj is convex, m must be
equal to 1, i.e. the intersection of the boundary of P with the boundary of Cj is
connected. Let Sj denote the arc of the boundary of P contained in Cj , and let
Pj and Pj+1 be the endpoints of Sj . It follows that the boundary of Cj is Sj ,
together with the line segments joining Pj and Pj+1 to C. We now prove that



the set S′ obtained by joining all the elements Cj of Θ that contain C in their
boundary covers P . Suppose then that S ′ does not cover all of P . Let S ′′ be one
of the components of S − S ′. Since Θ partitions P , it induces a partitioning P ′′

of S′′. Since C belongs to the boundary of S ′′, it also belongs to the boundary
of one of the elements of P ′′, which is a contradiction. Hence Θ is radial. ut

3 Radial perfect 3-partitionings of convex sets

It is easy to see, using the Ham-Sandwich Theorem ([2] p.212), that any convex
set can be partitioned into two convex subsets, each with equal area and perime-
ter. In this section we prove that every convex set has a perfect 3-partitioning.
Some terminology will be needed in the rest of this paper. Given two points A
and B on the plane, |AB| will denote the distance from A to B, and AB the
line segment joining them. A triangle with vertices A, B and C will be denoted
by ∆(ABC). The internal angles of ∆(ABC) at vertices A, B, and C will be
denoted by 6 CAB, 6 ABC, and 6 BCA respectively. The area of a set S will
be denoted by A(S). Given a convex set S, and an arc Si of its boundary with
endpoints A and B, the lune L(Si) is the convex set bounded by Si and the line
segment AB. Our objective in this section is to prove the following result:

Theorem 2. Any convex set S admits a perfect radial partitioning into three
sets.

We will need to prove some preliminary results before we prove Theorem 2.

Lemma 1. If we can partition the boundary of S into three arcs S1, S2 and S3

of equal length such that A(L(S1)), A(L(S2)), and A(L(S3)) are at most A(S)
3 ,

then Theorem 2 holds.

Proof. Suppose that there are three arcs S1, S2, and S3 that satisfy the condi-
tions of our lemma, and let A, B be the endpoints of S1; B and C the endpoints
of S2; and C and A the endpoints of S3. Let us assume that the area of S1 is
A(S)

3 −x. Then if we take any point on the line L1 parallel to AB, and at distance
2x
AB

from S1, then for any point Y on L1, the area of ∆(ABY ) equals x, and
thus the area of the convex set bounded by S1 and the line segments BY and

YA has area A(S)
3 . Let L2 be defined in a similar way w.r.t. S2. Then it is easy

to see that L1 and L2 intersect at a point X in the interior of S. It follows that
the radial partitioning of S obtained by cutting along the line segments joining
X to A, B, and C is a perfect radial partitioning. ut

Next we prove:

Lemma 2. Consider two triangles ∆(ABC), and ∆(BCX ) such that:

i) 6 BCA ≤ 6 BCX and 6 ABC ≤ 6 BCX
ii) |AB|+ |AC| = |XB |+ |XC |.
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Fig. 3.

Then A(∆(ABC)) ≥ A(∆(BCX ))

Proof. Consider the ellipse E with foci A and B, such that for any point Y in E ,
|YA|+ |YB | = |XB |+ |XC |. Assume further that the line segment BC lies on the
x-axis, and that the origin is its mid-point. Suppose without loss of generality
that 6 ABC ≤ 6 BCA. Since 6 ABC ≤ 6 BCX it follows that the distance h1

from A to x-axis is greater than the distance h2 from X to the x-axis. And since

A(∆(ABC))=h1 |BC|
2 , and A(∆(BCX))=h2|BC|

2 our result follows see Figure 3.
ut

We now prove:

Lemma 3. Let triangle ∆(ABC) be such that 6 BCA ≥ 6 ABC. Let X and D

be points on CA, and E a point on AB that satisfy:

|BE|+ |ED|+ |DC| = |XB|+ |XC|.

Then the area A(C(BCDE )) of the quadrilateral C(BCDE ) with vertices B, C, D, E
is greater than A(∆(XBC )).

Proof. Let α = 6 BCA, γ = 6 BDA, θ = 6 BDE, β1 = 6 ABD, and β2 = 6 DBC.
Since 6 DAB + β1 + γ = π = 6 DAB + α + β1 + β2, it follows that γ = α+ β2;
see Figure 4.

Since γ = α+β2 > α > β > β1, and α > θ, and |BE|+ |ED| = |BX |+ |XD|,
it follows from our previous lemma that the area of ∆(BDE) is greater than
that of ∆(XBD). ut

We now prove the following result:

Lemma 4. Consider a triangle ∆(ABC) such that 6 BCA ≥ 6 ABC, and let Q
be a convex polygon with vertices Q1 = C,Q2, . . . , Qn−1, Qn = B contained in
∆(ABC) such that Q2 ∈ CA, Qn−1 ∈ AB, n ≥ 3. Let X ∈ CA be such that
|CX | + |XB | = |Q1Q2| + . . . |Qn−1Qn|. Then the area of Q is greater than the
area of the triangle ∆(XBC ).
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Proof. Our proof proceeds by induction on the number of vertices of Q. For
n = 4, our problem reduces to Lemma 3. Suppose then that our result is
true for polygons with n − 1 vertices, and let Q be a polygon with n vertices
{Q1 = C,Q2, . . . , Qn−1, Qn = B}, n ≥ 5. Consider now the quadrilateral with
vertices {Qn−3, Qn−2, Qn−1, Qn} and the triangle with vertices {Z, Qn, Qn−3},
where Z is the point of intersection of the lines containing Qn−3Qn−2 and
Qn−1Qn; see Figure 5. By Lemma 3 there is a point Y either on Qn−3Z or
on ZQn, (depending on which of 6 Q′QnQn−3 and 6 QnQn−3Q

′ is smaller) such
that |Qn−3Y | + |Y Qn| = |Qn−3Qn−2| + |Qn−2Qn−1|+ |Qn−1Qn|, and the area
of the quadrilateral C(Qn−3 Qn−2 Qn−1 Qn) is greater than the area of triangle
∆(QnQn−3Y ).

A

Q  =C1 Q  =Bn

n-1Q
2Q

X Z
Y

Q
n-3

Fig. 5.

Two cases arise:



Suppose first that Y ∈ ZB . By the previous paragraph, the area of Q is
greater than the area of the polygonQ′′ with verticesQ1, . . . , Qn−3, Y,Qn. More-
over Q′′ has the same perimeter as Q. By induction there is a point X ∈ CA such
that |CX | + |XB | = |Q1Q2|+ . . .+ |Qn−3Y | + |Y Qn| and the area of ∆(XBC )
is smaller than the area of Q′′, which is smaller than the area of Q. A similar
analysis is done when Y ∈ Qn−3Z. ut

We now prove:

Lemma 5. Let ∆(ABC) be such that 6 BCA ≥ 6 ABC, and let ψ be a convex
curve contained in ∆(ABC) joining C to B. Let Y be the point on CA such that
|CY |+ |YB | equals the length of ψ. Then the area of the convex set Q bounded
by ψ and the line segment BC is greater than A(∆(ABC)).

Proof. Let Q1 = C,Q2, . . . , Qn−1, Qn = B be n equidistant points on ψ, and
R and S be points on CA and AB such that the lines through R and Q1,
and Qn−1 and S are tangent to ψ. By the previous lemma, there is a point
Xn on CA such that |CXn| + |XnB| equals |Q1R| + |RQ1| + . . . + |SQn|, and
the area of ∆(CXnB) is smaller than that of the polygon Qn with vertices
Q1 = C, R, Q2, . . . , Qn−1, S, Qn = B. As n increases, Qn converges to Q, and
Xn converges to a point X ∈ CA. ut

We now prove our main lemma in this section, namely:

Lemma 6. Let S be a convex set, and let S1, S2, and S3 be a partitioning of
the boundary of S into three arcs of equal length. Then at most one of L(S1),

L(S2), and L(S3) has area greater than or equal to A(S)
3 .

Proof. Suppose that the endpoints of L(S1), L(S2), and L(S3) are A and B, B
and C, and C and A respectively. Let lA, lB , and lC be tangent lines to S at A,

B, and C respectively. Suppose that L(S1), L(S2) have area greater than A(S)
3 .

Two cases arise:

i) In the first case, lA, lB and lC determine a triangle that contains S. Let D be
the intersection point of lA and lC , E the intersection point of lA and lB , and
X the point on DA such that |CX |+ |XA| = t, where t is the length of S1,
and finally, let F be the point at which lB intersects the line through X and
C. See Figure 7(a). Observe now that the area of L(S1) is less than th1

2 , and

that the area of L(S2) is also less than th2

2 , where h1 and h2 are the distances
from B to lA and lB respectively. Let t1 = |XA|, and t2 = |CX |. Then by
definition, t1 + t2 = t. Notice now that the sum of the areas of triangles
∆(DAC) and ∆(ABC) equals t1h1+t2h2

2 which is less than the areas of both
L(S1)and L(S2). We may assume that h1 ≤ h2. Thus we obtain that

th1

2
=

(t1 + t2)h1

2
≤
t1h1

2
+
t2h2

2

That is, the area of L(S1) is less than the sum of the areas of ∆(DAX) and
∆(ABC), which is a contradiction.
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ii) Two subcases arise when the triangle determined by lA, lB and lC does not
contain S.
(a) The intersection point of lA, lC (call it D), together with A and C,

determine a triangle ∆(ADC) that contains B in its interior; see Fig-
ure 6. Suppose that lB is horizontal, and that the line through A and
C intersects it to the left of B as shown in Figure 6. Consider the line
parallel to AC through B, and let X be the point at which this line
intersects CD . Observe that |XB | < |AC|, and thus the area of trian-
gle ∆(CXB) is smaller than the area of ∆(ABC). However L(S2) ⊂
∆(CEB ) ⊂ ∆(CXB ) which is a contradiction, as the area of ∆(ABC) is

less than A(S)
3 .

(b) A similar argument solves the remaining cases when the intersection
point D′ of lA and lB (respectively lB and lC) determines a triangle
∆(D′AB) (resp. ∆(D′BC)) that contains C (resp. A) in its interior. ut

Lemma 7. There are three points A, B, and C on the boundary of S which
divide S into three sectors S1, S2, and S3 of equal length such that the areas of
L(S1), L(S2), and L(S3) are are smaller than one third of the area of S.

Proof. Choose A, B, and C on the boundary of S, and assume by Lemma 6 that

A(L(S2)) ≥
A(S)

3 , A(L(S2)) <
A(S)

3 , and A(L(S3)) <
A(S)

3 . Simultaneously
rotate A, B and C counter-clockwise along the boundary of S, keeping the
lengths of S1, S2, and S3 equal, until we reach the first position in which either

A(L(S3)) = A(S)
3 or A(L(S2)) = A(S)

3 . Suppose that the second case arises.
This must happen before B reaches the original position of A. At this point, we

know by Lemma 6 that A(L(S1)) <
A(S)

3 , and A(L(S3)) <
A(S)

3 . It now follows
that if we rotate A, B, and C in the clockwise direction by a sufficiently small

amount, we reach a final position for A, B and C in which A(L(S2)) <
A(S)

3 ,

A(L(S2)) <
A(S)

3 , and A(L(S3)) <
A(S)

3 . The case in which A(L(S3)) reaches

the value A(S)
3 first is solved in a similar way. ut
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Using Lemma 1 and Lemma 7, Theorem 2 follows. ut

3.1 Perfect 4-partitionings of convex sets

We now show that that we cannot extend Theorem 2 to radial perfect partition-
ings with four or more convex subsets.

Theorem 3. Let a and b be positive real numbers such that a > 4b, and let n ≥ 5
be an integer. Then every a×b rectangle R cannot be radially perfectly partitioned
into five or more convex subsets. Moreover there are convex quadrilaterals that
admit no perfect radial four partititonings.

Proof. Let V1, V2, V3, V4 be the vertices of R such that |V1V2| = |V3V4| = a and
|V2V3| = |V4V1| = b.

Suppose that R can be radially perfectly partitioned into n convex subsets
by n line segments CX1, CX2, . . . , CXn, where C is a point in R and the Xi’s
are points on the boundary of R. Since n ≥ 5 and a > 4b, both of the arc V1V2

and the arc V3V4 contain at least two points Xi and Xi+1. Thus C must lie on
the line passing through the midpoints of V2V3 and V1V4, respectively. Hence
the area of the triangle with vertices Xi, Xi+1, and C equals:

1

2

(2a+ 2b)

n
×
b

2
<
ab

n
=
A(R)

n
.

This is a contradiction, and the first part of our result is proved.

To prove the second part of our result, let us consider the quadrilateralQ with
vertices P1, P2, P3, P4 such that |P1P2| = |P1P4| = 40, |P2P3| = 4, |P3P4| = 2
and |P2P4| = 5; see Figure 8. Suppose thatQ can be radially perfectly partitioned
into four convex subsets by line segments DY1, DY2, DY3, DY4, where D is a
point of Q and Yi is a point on the boundary of Q, i = 1, . . . , 4. Since at least
three elements of {Yi; i = 1, . . . 4}, say Y1, Y2 and Y3, lie on P1P2 ∪P1P4, we can
easily show that D must lie on the bisector of the angle of Q at P1.



We may assume that Y1, Y2 ∈ P1P4 and Y3 ∈ P1P2. If Y4 ∈ P2P3, then since
the quadrilateral whose vertices are {D,Y3, P2, Y4} is the union of ∆(DY3P2)
and ∆(DP2Y4), it follows that D must be lie on the bisector of the angle of Q at
P2. Then since the height of ∆(DP3P4) with base P3P4 is greater than that of
∆(DP4P1) with base P4P1, it follows that the area of the pentagon with vertex
set {D, Y4, P3, P4, Y1} is greater than that of the quadrilateral with vertex
set {D, Y3, P2, Y4}, a contradiction. If Y4 ∈ P3P4, then we get a contradiction
as above. Hence we may assume that Y4 ∈ P1P2. Since the pentagon defined
by D, Y4, P2, P3, P4, and Y1 is a convex set, we can prove that D must be at
distance at least 7 from the lines containing P2P3 and P3P4, and thus the area
of the sector containing P2P3 and P3P4 on its boundary is bigger than that of
the remaining sectors, which is a contradiction. ut
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Fig. 8. A quadrilateral that has no perfect radial partitioning into four pieces.

We now give a weaker but interesting generalization of Theorem 2. A convex
set S is called normal if for every arc Si of its boundary with length equal to

one quarter of the length of the perimeter of S, A(L(Si)) ≤
A(S)

4

Theorem 4. Let S be a normal convex set. Then S admits a perfect radial
partitioning into four convex subsets.

Proof. Let P1, P2, P3, P4 be four points on the boundary of S that divide its
boundary into four arcs S1, . . . , S4 of equal length. Assume without loss of gen-
erality that Si has endpoints P1 and Pi+1, i = 1, . . . , 4, where P5 = P1. Given a
point Q in the interior of S, let Wed(Si, Q) be the subset of S bounded by Si

and the line segments joining the endpoints of Si to Q, i = 1, . . . , 4.
Clearly there is a unique point Y in the interior of S such that:

A(Wed (S1, Y )) = A((Wed (S2), Y ) = A(S)
4

See Figure 9.
Since S is normal, Y belongs to the quadrilateral with vertices P1, . . . , P4. It

is clear that the point Y is uniquely determined by (P1, P2, P3, P4), and that as
P1, P2, P3, and P4 move continuously on the boundary of S splitting its boundary
into equal length segments, Y moves continuously within S.



p
1

p
2

p
3

p
4 Y

p
1

p
2

p
3

p
4

y
0

X

l
1

l
2

Fig. 9. Finding a perfect radial partitioning of a normal convex set.

By the Ham-Sandwich Theorem on the plane ([2] p.212), we can choose initial
positions of P1 and P3 on ∂(S) such that P1P3 bisects both the area and the
boundary of S. For this choice, let Y0 be the initial position of Y . Clearly Y0 lies
on the line segment joining P1 to P3.

Assume without loss of generality that A(Wed(S3)) ≥A(Wed(S4)). Consider
the line L1 parallel to the segment joining P3 to P4 such that the area of any

wedge Wed(S4, Q) equals A(S)
4 ; Q ∈ L1.

Similarly, consider the line L2 parallel to the line segment joining P2 to P3,

such that the area of any wedge Wed(S2, Q) equals A(S)
4 ; Q ∈ L2, and let X be

the point of intersection of L1 and L2. Observe that Wed(S1, Y0) ⊂ Wed(S1, X),

and thus A(Wed (S1, X)) ≥A(S)
4 .

Notice that when we slide P1, . . . , P4 continuously in the clockwise direc-
tion until P1 reaches the original position of P2, Y moves from Y0 to X , and
Wed(S4, y0) becomes Wed(S1, X). Then its area moves from an initial value

smaller than or equal to A(S)
4 to a final value greater than or equal to the same

value. Thus at some point in time equality holds, and our theorem is proved. ut

4 Perfect partitionings of convex sets

In this section we prove the following result:

Theorem 5. For every k, any convex set S has a perfect k-partitioning.

To prove our result, we will prove the following:

Theorem 6. Let S be a convex set such that its boundary is divided into an even
number of alternately-coloured arcs, say red and blue. Then for every k there is
a convex partitioning of S such that each piece has 1

k
of the red boundary of S.

Proof. The result is true for k = 1. Notice that for k = 2 it follows directly
from the ham-sandwich theorem [2]. Suppose then that the result is true for



0 < k′ < k. We show that it also holds for k. The case when k = 2m can be
solved as follows: by the ham-sandwich theorem, there is a line segment l that
splits S into two pieces, C1 and C2, each with half the area of S, and half of its
red boundary. Color l blue to produce two convex sets, each with half of the red
boundary of S. By induction, both C1 and C2 can be partitioned into m convex
sets, each with 1

m
of the red perimeter of C1 and C2, i.e. 1

k
of the boundary of

S.
Now suppose that k = 2m+1. Choose k points P1, . . . , Pk in clockwise order

along the boundary of S that divide it into k sectors S1, . . . , Sk (where the
endpoints of Si are the points Pi and Pi+1, with Pn+1 = P1) each containing 1

k

of the red boundary of S.

If for some i the area of the lune L(Si) equals A(C)
k

, then by cutting L(Si)
away from S and coloring the line segment used in this cut blue, we reduce the
problem to that of cutting C−L(Si) into k − 1 pieces, and our result follows.

Suppose now that the area of at least one lune L(Si) of S is strictly greater

than A(C)
k

. Notice that there is at least one L(Sj) such that its area is strictly

less than A(C)
k

, i 6= j. It now follows that if we continuously rotate Pj and Pj+1

in the clockwise direction along the boundary of S in such a way that the red
sector of the boundary of S contained in Si is 1

k
of the red perimeter of C at

all times, then at some point before Pj reaches Pi, the area of L(Sj) will equal
A(C)

k
, and our result follows.

P
1

2
P

m+1
P

L
X Y Z

Fig. 10. A(B1) >
A(C)

k

Thus we can assume that the areas of all the lunes of S are smaller than A(S)
k

.
Given two points Pi, Pi+m, we define Si,m to be the sector of the boundary of S



connecting Pi to Pi+m, and containing Pi+1, . . . , Pi+m−1 addition taken mod n.
Using similar arguments, we can prove that for every i the area of the lune

L(Si,m) is smaller than mA(S)
k

.
Let Bi be the set bounded by Si and the line segments joining Pi and Pi+1

to the point Pi+m, i = 1, . . . , k. Notice that the union of all Bi’s covers S, and

thus the area of one of them, say B1, is strictly greater than A(S)
k

; see Figure 10.
Let L be the line parallel to P1P2 such that the area of any triangle with

base PiPi+1 and having its third point on L has area A(S)
k
−A(L(S1). By the

assumption that the area of B1 is greater than A(C)
k

, L intersects P2Pm+1 and
P1Pm+1. Call the points of intersection of L with P2Pm+1 and P1Pm+1 X and
Y respectively.

Then there is a point Z on L between X and Y such that the rays connecting
Z to P1, P2 and Pm+1 divide S into three sectors; the one bounded by the

segments connecting Z with P1 and P2 and L(S1) having area A(S)
k

, and the

others having area mA(S)
k

; each having m
k

of the red boundary of S. Color the
line segments connecting Z with P1, P2 and Pm+1 blue. Our result now follows
by induction on k. ut

We now observe that Theorem 5 follows directly from Theorem 6 by coloring
the entire boundary of C red. As in the proof of Theorem 6, the cuts used to
partition S will be colored blue. ut
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