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Resumen

In this paper we review recent results on a new variation of the Art Gallery problem. A common
problem we face nowadays, is that of placing a set of wireless modems in a building in such a way
that a computer placed anywhere within the building receives a signal strong enough to connect to
the Web. In most buildings, the main limitation for this problem is not the distance of a computer
to a wireless modem, but rather the number of walls that separate them. We study variations of
the following problem: Let P be a simple polygon with n vertices. How many points p1, . . . , pk
(representing wireless modems) are always sufficient such that for any other point p in P , there
is a pi such that the line segment joining p to pi crosses at most k edges of P? The parameter k
represents the strenght of the signal emited by the modems. We study variations of this problem
for families of line segments, families of lines, orthogonal polygons, and sets of horizontal or vertical
disjoint segments, or sets of lines.

1. Introducción

Let p0, . . . , pn−1 be a set of points on the plane, and ei the line segment joining pi to pi+1, i =
0, . . . , n − 1, addition taken mod n. We say that e1, . . . , en−1 form a simple polygon P if ei and ej
do not intersect, except perhaps at a common end point, i 6= j. The elements of {e0, . . . , en−1} are
called the edges of P . All polygons considered here are simple. Abusing a bit our terminology, in this
paper a polygon will refer to the closed region of the plane bounded by its edges. We say that two
points p and q of a polygon P are visible if the line segment joining them is contained in P . A set of
points g1, . . . , gk guards P if any point in P is visible from at least one gi. In 1975, V. Klee posed the
following problem, known as The Art Gallery Problem:

How many guards are always sufficient to guard any simple polygon with n vertices?

The Art Gallery problem was solved by V. Chvatal [3], he proved that bn3 c guards are always
sufficient and sometimes necessary to guard any polygon with n vertices.

Since then, there has been a plethora of very interesting results and variations to the original
problem, the interested reader can consult [8, 11, 12]. A new variation in which the edges of our
polygons are allowed to be arcs of convex curves has been studied in and [2, 6, 7]. In this paper we
deal with a new variation of the Art Gallery Problem arising from the following everyday and practical
problem: How to place wireless modems in a building in such a way that at any point within the
building a laptop with a wireless card receives a signal strong enough to have a stable connection to
navigate in the Web?

Experience dictates that in most buildings, the distance of our laptop to a wireless modem is not
a limiting factor to obtaining a good signal, the main limiting factor seems to be the number of walls
that separate us from a wireless modem.

This inspired us to study the following problem which we cast as follows: Let k ≥ 0 be an integer,
and P a polygon with n vertices. We say that a k-modem M represented by a point on the plane
covers a point p ∈ P if the line segment joining p to M crosses the boundary of P at most k times.
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In this paper we review some of the results known in this area, and present some new results. In
section 3 we study several variations of the following problem:

The k-modem Art Gallery Problem: How many k-modems are always sufficient to cover all
the points of a polygon P with n vertices?

In Figure 1 we show a polygon for which we need two 2-modems to cover it, one is not sufficient.

Figura 1: Two 2-modems placed at the points shown as small circles cover the polygon shown here.

In section 2 we study the following problem: Suppose then that we have a set of obstacles represented
by a set L = {l1, . . . , ln} of n disjoint line segments. As above, we say that a point p is covered by a
k-modem M if the line segment connecting p to M intersects at most k elements of L.

The k-modem Covering Problem of the Plane: How many k-modems are always sufficient
to cover all the points of the plane in the presence of n obstacles, represented by a set of n disjoint
lines?

In section 3 we review briefly the known results on covering polygons with modems.

In section 4 we study covering problems for polygons, orthogonal polygons, and sets disjoint hori-
zontal or vertical line segments using few modems.

Figura 2: Two 2-modems located at the points shown as small circles are sufficient to cover the plane.

2. Arrangements of Lines

In this section we consider a variation of our problem involving families of lines. LetA = {`1, . . . , `n}
be a set of lines such that no three of them intersect at a point, and containing no parallel lines, see
Figure 10. The elements of A divide the plane into a set of faces bounded by the elements of A. The
set A together with the set of faces they produce is known as an arrangements of lines, and will be
simply denoted as A. For technical reasons we will assume that the faces of A are open.

We say that a k-modem M coves a face F of A if any line joining M to any point in F crosses at
most k elements of A. In this case, we also say thatM is at distance at most k from F . In general we
will assume that the modems are located in the interior of the faces of A. In a few instances we will



allow them to be located on the lines of A. In such case we will assume that a ray emanating from
a point on a line ` does not cross `, and the bounds obtained will drop by one. A set of k-modems
H = {M1, . . . ,Mi} covers an arrangement A if every face of A is covered by at least one of the
modems. In this section we study the following problem:

Arrangement Illumination Problem: How many k-modems are always sufficient to cover any
arrangement A with n lines?

Figura 3: An arrangement of lines.

It is clear that a n-modem M placed anywhere on the plane always covers all the faces of an
arrangement with n lines. It is also easy to see that if a k-modem M covers all the faces of A, then
k ≥ dn2 e. On the other hand, it is easy to construct arrangements with n lines such that no dn2 e-modem
covers them. For example if we have an arrangement A with three lines `1, . . . , `3, then a modem placed
in the interior of the bounded face of the arrangement will necessarily cross two lines to reach some
faces of A. A modem placed in the interior of any other face of A has to cross three lines to reach some
faces of A.

Replace now each of the lines `1, . . . , `3 of A by an arrangement of n lines Ai such that:

1. all the lines of Ai have a slope within ε from that of li, i = 1, 2, 3,

2. all of the elements of Ai pass within an δ distance from the middle point of the segment contained
in `i whose endpoints are the intersection points of `i with the other elements of A, ε and δ small
enough.

It is easy to see that the arrangement A∗ = A1 ∪ . . . ∪ A3 is such that any modem placed in the
interior of any face of A∗ that covers it has power at least d 2n3 e, see Figure 4. In this section we give
a new proof of the next result first proved in [5], we also review their proof.

Figura 4: An arrangement of lines.

Theorem 2.1. [5] For every arrangement of n lines on the plane, there is a point p such that a
d 2n3 e-modem placed at p covers the plane, d 2n3 e power is sometimes necesary.

Let p be a point in the interior of a face of an arrangement A of n lines. The depth of p is the
minimum number of lines in A that we have to cross to reach an unbounded face of A. Rousseew and



Hubert [9] proved that for any arrangement of n lines there is always a point p with depth at least n
3 ,

that is any ray emanating from p crosses at least n
3 lines of A. It is now straightforward to see that if

we place a 2n
3 modem at p, it will cover A.

We develop now some Voronoi-like properties on arrangements of lines that among other things,
will give us a new proof of Theorem 2.1. Some preliminary results will be needed. Let F and F ′ be two
faces of an arrangement A. We say that F ′ is at distance k from F if a line segment joining a point in
F to a point in F ′ crosses k elements of A, the distance from F to F ′ will be denoted as d(F ,F ′). It
is easy to see that d(F ,F ′) is well defined.

Let A be an arrangement of n lines. Observe that A has 2n unbounded faces. Suppose that we
label these faces F0, . . . ,F2n−1 in the clockwise direction starting at any of these faces. Let Fi be an
infinite face of A. We call Fi+n the face opposite to Fi, addition mod 2n. It is clear that Fi and Fi+n

are separated by all the lines of A.

We say that a face Q of A is equidistant to two faces Fi and Fj of A if d(Fi,Q) = d(Q,Fj). Suppose
that the distance between two faces Fi and Fj of an arrangement A is even. We define the bisector of
Fi and Fj , to be the union of the set of faces of A (together with their boundaries) equidistant to Fi

and Fj , call this set by Bis(Fi,Fj), see Figure 5(a).

It is worth noticing that if d(Fi,Fj) is odd, then there is no face of A equidistant to Fi and Fj . In
this case it is easy to see that the set of points equidistant from Fi and Fj are points on a polygonal
line contained in the lines of A, see Figure 5(b). To obtain our results, we will be mainly concerned
with bisectors of faces at even distance, and thus the set of faces equidistant to them will always be
non-empty.

We now study some properties of the bisector of Bis(Fi,Fj).
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Figura 5: The set of faces equidistant to Fi and Fj in (a) are marked with an *.

Let A be an arrangement with an even number of lines, and let Fi and Fj be the unbounded
opposite faces of A such that all the lines in A are above Fi, and all the lines in A are below Fj . In this
case, it is easy to see that Bis(Fi,Fj) contains what is known as the mid-level of the arrangement A,
that is Bis(Fi,Fj) contains all the faces of A such that for any point in a face in Bis(Fi,Fj), there are
exactly half of the lines of A below it, and half of the elements of A above it. For this reason, when Fi

and Fj are infinite and opposite faces of an arrangement A with an even number of lines, the bisector
Bis(F ,F ′) will be refered too as to the mid-level of A with respect to Fi and Fj , see Figure 6.

Suppose now that the unbounded faces of an arrangement A with n = 2m lines are labeled
F0, . . . ,F4m−1, in the counterclockwise order, and that F0 is the region below all the lines of A.
Then faces Fm and F3m are in Bis(F0,F2m). What will be more important to our purposes, is the
fact that there is a simple curve f0,2m (which in fact can be chosen so as to be the graph a real function
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Figura 6: The set of faces equidistant to Fi and Fj are marked with an *.

f : R → R) starting in F3m and ending in Fm contained in Bis(F0,F2m), see Figure 6. Thus any
point on f0,2m is equidistant to F0 and F2m. Clearly for each pair of opposite faces Fi and Fi+2m of
A, we can choose one such a curve, which we will denote as fi,i+2m, addition taken mod 4m.

Suppose now that F and F ′ are faces in A at even distance, but that they are not necessarily
opposite faces in A, nor necessarily unbounded. Split the lines of A into two subsets, S1 containing all
the lines of A that separate F and F ′, and S2 the remaining elements of A. Let A′ be the arrangement
defined by the elements of S1. Clearly F and F ′ are opposite faces in A′. The following lemma describes
the union of the set of faces equidistant from F and F ′.

Lemma 2.2. The union of the faces of A equidistant from F and F ′ is exactly the mid-level of A′
with respect to F and F ′.

Proof: Let `i be an element of S2. When we add `i to S1, it will create some new faces in the arrangement
defined by S1 ∪ {`i}. Let p be a point in one such face Fj . If p belongs to the mid-level of A′ with
respect to F and F ′, then any line segment `′ joining p to a point r in F crosses the same number
of lines in A′ than any line segment `′′ joining p to a point in F ′. Since `i ∈ S2, it does not separate
F and F ′, either both of `′ and `” cross `i, or both of them do not cross `i. It follows that p remains
equidistant to F and F ′. In a similar way, we can prove that if no point in Fj belongs to the mid-level
of A′ with respect to F and F ′, then Fj is not equidistant to F and F ′. It follows easily that when
we add all the elements of S2 to S1 any face equidistant to F and F ′ is contained in the mid-level of
A′ with respect to F and F ′. See Figure 7.

*

*

*

*

F

*

*

*

*

F

* *

F ' F '

Figura 7: The bisector of two faces at evn distance.

As before, let A be an arrangement of n lines with its unbounded faces labelled F0, . . . ,F2n−1,
and consider two unbounded faces Fi and Fj of A at even distance. By using the previous lemma, we



can now define a curve fi,j contained in the mid-level of F and F ′ with respect to the arrangement
A′ defined by the lines of A that separate Fi and Fj . It is easy to see that fi,j start and end in the
unbounded faces Fk and Fk+n of A, were k = i+j

2 , addition taken mod 2n.

Let A′ be an arrangement with 3m lines, and let us assume as before that the unbounded faces of
A are labeled F1, . . . ,F6m−1. Consider now the unbounded faces F0, F2m, and F4m. It is clear that
d(F0,F2m) = d(F2m,F4m) = d(F4m,F0) = 2m.

Consider the curves f0,2m and f2m,4m. It is easy to see that faces Fm and F4m are in Bis(F0,F2m),
and that F3m and F0 are in Bis(F2m,F4m). It follows now that f0,2m start and end in faces Fm and
F4m, and that f2m,4m starts in F3m and ends in F0. Therefore f0,2m and f2m,4m intersect at a point
p, see Figure 8. It could happen that p lies on the intersection of two lines in A, this is the case in
Figure 8. For our purposes, the worst case arises when p belongs to the interior of a face in A, we
analyze only this case. Since p belongs to f0,2m and F2m, it is equidistant to F0, F2m, and to F4m.
Suppose that p is at distance r from F0. Since F0 and F3m are opposite faces, then the sum of the
distances of p to F0 and to F3m equals the number of lines of A′, that is they add to 3m. It now follows
that the distance from p to F3m is 3m− r. Similarly we can prove that the distance from p to Fm and
to F5m is 3m− r, and thus p is also equidistant to Fm, F3m, and F5m.

4
F

0
F

8
F

Figura 8: The curves f0,4 and f4,8 intersect at the point indicated with a small circle.

We now prove:

Lemma 2.3. The distance of p to any face of A′ is at most 2m.

Proof: Take a point qi in Fi, i = 0,m, 2m, 3m, 4m, 5m such that they are the vertices of a convex
hexagon H that contains in its interior all the intersection points of pairs of lines of A′.

We now prove that any point in H is at distance at most 2m from p. Consider the triangle T with
vertices p, q0, and qm. We now prove that exactly 2m lines of A′ intersect the boundary of T . Observe
first that since the distance from F0 to Fm the line segment joining q0 to qm crosses exactly m lines of
A. Since the distance from p to F0 and to Fm are respectively r and 3m− r, then the lines joining p to
q0, and p to qm crossed respectively exactly r and 3m− r lines of A′. Thus the edges of T are crossed
exactly m+ r + (3m− r) = 4m times by the lines of A′. Since each line that crosses the boundary of
T , crosses it twice, it follows that 2m lines of A′ enter T , and thus the distance from any point in T
to p is at most 2m. In a similar way we prove that any point in each of the six triangles formed by p
and each of the edges of H is at distance at most 2m from p. Our result follows.

Theorem 2.1 follows directly from Lemma 2.3.



2.0.1. Two Modems

It is clear the if we place two modems with power dn2 e in two unbounded opposite faces of an
arrangement with n lines, they will cover the whole plane. The natural question now is: By placing
them more carefully, can we improve on the dn2 e previous bound? This is not possible. We now prove:

Theorem 2.4. For every arrangement A of n lines on the plane, two dn2 e-modems are always sufficient
and necessary to cover the plane.

Proof: Let M1 and M2 two k-modems placed on the plane that cover the plane. Suppose that they
are placed at two faces F1 and F2 of A, and that the line joining them is horizontal. Divide the lines
of A into two subsets, S1 containing the lines of A that separate F1 and F2, and S2 the remaining
lines of A. Several cases arise, depending on the number of lines in A, and the distance between F1

and F2. We analyze the case when n = 2m, and the distance between F1 and F2 is even. The other
cases follow in a similar way.

Let A′ be the arrangement induced by S1, and suppose that the distance between F1 and F2 is 2k.
Then S1 has 2k elements, and S2 has 2r elements, k + r = m. Clearly M1 and M2 are in opposite
unbounded faces of A′. Thus there are two unbounded faces H1 and H2 of A′ at distance k from F1

and F2. It is easy to see that one of them, say H1 contains a point p1 below all the lines in S2, while
H2 contains a point p2 above all the elements in S2. Since the lines in S2 do not separate M1 from
M2, for each `i ∈ S2, M1 and M2 are above `i or below it. Then at least half of the elements of S2

have both of M1 and M2 above them, or at least half of them have M1 and M2 below them. Thus

the distance of p1 or p2 to both of M1 and M2 is at least k + |S2|
2 ≥ k + r = dn2 e, see Figure 9.
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Figura 9: The elements of S1 are the solid lines, the elements of S2 are the dotted lines.

Using arguments similar to those used in the proof of Theorem 2.1, we can also prove:

Theorem 2.5. Any arrangement of n lines, can be covered with four 5
12 -modems.

The proof of this result will be given in a forthcoming paper. We believe that this bound is not
tight, and we pose the following open problem:

Problem 2.6. Is it true that any arrangement A with n lines can always be covered with four n
3 + c

modems, c a constant?

3. Covering Polygons

When k = 0, the probelm of covering polygons with k-modem is equivalent to the original Art
Gallery Problem. However for k ≥ 1, the k-modem illumination problem has turned out to be very



difficult to solve. So far we only have significant results concerning x-monotone polygons, that is
polygons such that the intersection of any any vertical line with them is empty or an interval. In [1]
the following result is proved:

Theorem 3.1. [1] Every monotone polygon with n vertices can be covered with at most d n
2k e k-

modems.There are There re monotone n-gons that require at least d n
2k−2e k-modems to cover them.

Figura 10: A monotone polygon that needs d n
2k−2e k-modems to be covered.

The proof of the previous result is based on the following Lemmas which are given without proof.
The interested reader is refered to [1]. Let P be a monotone polygon, and suppose that its vertices are
labelled p1, . . . , pn from left to right. We have:

Lemma 3.2. (The Splitting Lemma) Let P be a polygon with vertices p1, . . . , pn, then for every m < n
there is a vertical line segment ` and two polygons R and L such that L has m vertices, R has n−m+2
vertices, and:

Either ` is a chord of L and an edge of L, or viceversa

pm or pm+1 is an endpoint of `

Let L′ be the polygon containing all the points of L on, or to the left of ` and R′ the polygon
containing all the points of R to the right of `. Then P = L′ ∪R′.

m

m−1

L
R

m−1

m

q q

L
R

q

R
L

q
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m

Figura 11: Illustrating the Splitting Lemma.

Lemma 3.3. Any k + 2 gon can be covered with a k-modem placed anywhere in the interior of P .

Lemma 3.4. Every 2k + 2-monotone polygon can be covered with a k-modem placed at either of its
k + 1-th or k + 2-th vertex.

The proof of Theorem 3.1 follows by applying the Splitting Lemma recursively to P to obtain d n
2k e

2k + 2-monotone polygons, and then applying Lemma 3.4 to each of them.



4. Covering Polygons With Few Modems With High Power

In this section we study the problem of covering simple polygons using few modems with high
power. In a recent paper Fulek, Holmsen, and Pach [5] proved the following result which will prove
useful to us:

Theorem 4.1. Let F be a family of n pairwise convex sets in Rd, then there is a point p in the plane
such that any ray emanating from p intersects at most dn+1

d+1 elements of F .

In the same paper, they proved that for any n, there is a set T3m of 3m disjoint segments such that
for any point p on the plane there is a ray emanating from p that intersects at least 2n − 2 elements
of T3m.

It can be shown that we can add 3m segments to the elements of T3m to obtain a simple polygon
P6m with 6m vertices such that for every point p on the plane, there is a ray emanating from p intersects
at least 4m − c edges of P6m, that is to cover P6m we need a (4m − c)-modem, c a constant. Using
these results we can prove:

Theorem 4.2. Any simple polygon P with n edges can always be covered with a modem of power
d 2n+1

3 e, the bound is tight up to an additive constant.

Proof: The sufficiency follows directly from Fulek, Holmsen, and Pach’s Theorem 4.1. The proof that
sometimes we need a (d 2n+1

3 e− c)-modem, follows from the fact that to cover P6m we need a (4m− c)-
modem.

4.0.2. Orthogonal Arrangements of Lines, Line Segments, and Polygons

In this section we study the problem of covering orthogonal arrangements of lines and orthogonal
polygons, that is simple polygons such that its edges are all horizontal or vertical.

An orthogonal arrangement of lines is defined as in Section 2, except that A is now allowed to
contain parallel lines, and all of them are horizontal and vertical. We prove first:

Theorem 4.3. Let F be a family of disjoint segments, m horizontal, n vertical. Then there is a point
p in the plane such that any ray emanating from p intersects at most dm2 e+ dn2 e elements of F .

Proof: It is easy to see that the worst case happens when no two elements of F are co-linear. Let `1 and
`2 be a horizontal and a vertical line respectively, such that there are exactly dm2 e horizontal elements
of F above `1, and dm2 e vertical elements of F to the left of `1. Let p be the intersection point of `1
with `2. It is straightforward to verify that any ray emanating fromp intersects at most dm2 e + dn2 e
elements of F . The sufficiency of our result follows from a set of lines as shown in Figure 12.

In a similar way we can prove now:

Theorem 4.4. Let A be an orthogonal arrangement of m horizontal and n vertical lines. Then there
is a point p in the plane such that any ray emanating from p intersects at most dm2 e + dn2 e elements
of A.

Given a point p = (a, b) on the plane let C++(p) = {q = (x, y) : a ≤ x, b ≤ y}. When p is the origin,
C(p)++ is the positive quadrant of the plane. Similarly we define C−+ (p) = {q = (x, y) : a ≤ x, b ≥ y},
C−−(p) = {q = (x, y) : a ≥ x, b ≥ y}, and C+−(p) = {q = (x, y) : a ≥ x, b ≤ y} The following lemma will
be used:

Lemma 4.5. Let P be an orthogonal polygon and p be a point on the plane. Suppose that k vertices of
P belong to the interior of C++(p). Then any ray emanating from p contained in C++(p) crosses at most
k edges of P .



Figura 12:

Proof: Suppose that p is the origin, and let P be an orthogonal polygon such that P has k vertices in
C++(p). Let ~p be a ray contained in C++(p) that emanates from p. If ~p intersects a horizontal edge e of
P , charge this intersection to the right endvertex of e. If ~p intersects a vertical edge f of P , charge this
intersection to the top endvertex of f . We can picture this as orienting the horizontal edges of P from
left to right, and the vertical edges from bottom to top. It is now easy to see any ray ~p can charge at
most one intersection to any vertex of P in C++(p).

Clearly this lemma also holds for C−+ (p), C−−(p), and C+−(p). We now prove

Theorem 4.6. Let P be an orthogonal polygon with 2m edges. Then if m is even, P can always be
covered with an m−1 modem located in the interior of P . The bound is tight. If m is odd, an m-modem
is always sufficient. For m even, the bound is tight.

Proof: Let P be an orthogonal polygon with 2m edges. Suppose that m is even. Let ` be a line that
leaves m

2 horizontal edges of P in the interior of each of the half-planes it defines. Thus P has exactly
m vertices above `. Choose a point p on ` and in the interior of P . It is easy to see that since p belongs
to the interior of P , each of C++(p), C−+ (p), C−−(p), and C+−(p) contains at most m− 1 vertices in P . The
upper bound now follows from the previous Lemma. The case when m is odd follows in a similar way.

Examples when an (m− 1)-modem is required are shown in Figure 13.

Figura 13:

When we allow our modems to be anywhere on the plane we can prove:

Theorem 4.7. Any orthogonal polygon P with n edges can be covered with a dn3 e-modem.

We only give a sketch of the proof. Suppose that P is contained in the unit square. Pick a point on
the vertical band above the unit square, and high enough so that any ray emanating from p intersects



at most one vertical edge of P . Let k be the maximum number of horizontal edges of P that any ray
emanating from p intersects. If k ≤ dn3 e we are done as any such ray intersects at most one vertical
edge of P . Suppose then that a ray ~p emanating from p intersects at least k ≥ dn3 e horizontal edges of
P . Assume without loss of generality that ~p is vertical. Then the line ` containing ~p has at least k ≥ n

3
vertices of P on each of its sides. Sweep a horizontal line h` from top to bottom until one of the two
quadrants (above h`) defined by ` and h` contains exactly dn3 e vertices.

It now follows easily that since k ≥ dn3 e, each of the four quadrants defined by ` and h` contains
at most dn3 e vertices of P . Our result now follows from Lemma 4.5.

It is left as an open problem to determine the minimum k such that it is always possible to cover
any orthogonal polygon with n edges with a k-modem. We conjecture that such k is within a constant
factor of n

4 .
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