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MOTION PLANNING, TWO-DIRECTIONAL POINT REPRESENTATIONS, AND
ORDERED SETS

by

Fawzi Al-Thukair, Andrzej Pelc, Ivan Rival and Jorge Urrutia

How may a robot arm be moved in order to grasp a delicate object from a crowded shelf without
unwanted collisions?

How may a cluster of figures on a computer screen be shifted about to clear the screen without
altering their integrity and without collisions?

These questions highlight instances of the recent and rapidly growing theme of 'motion planning'.
Rival and Urrutia (1987) initiated the study of motion planning using a computational model based
on the theory of ordered sets.  Subsequently, Nowakowski, Rival and Urrutia (1987) proposed the
problem to characterize the ordered sets here called 'two-directional orders'.
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For our purposes we cast the problem as follows.  Given a finite collection of disjoint figures in the
plane, is it possible to assign to each a single direction of motion so that this collection of figures may
be separated, through an arbitrarily large distance, by translating each figure one at a time, along its
assigned direction?  In this model we have considered only convex figures in the plane.  Indeed,
given a collection of disjoint, convex figures, the separability problem always has a positive solution.
Loosely speaking, at least one of the convex figures is on the 'outside' or 'boundary' of the collection,
and therefore it may be removed.

To make the mathematical matter more definite, we shall here idealize each robot as a point (a
circle of negligible radius) on the plane.  Suppose that each point is assigned a single direction of
motion not necessarily all the same.  For points  A  and  B  we say that  B  obstructs  A  if there is a



line joining a point of  A  to a point of  B  which follows the direction assigned to  A.  We write  A  ~
B.  More generally, we write  A < B  if there is a sequence  A = A1 ~ A2 ~ ... ~ Ak = B.  This relation
<  is transitive.  It is appropriate to call this binary relation  <  a blocking relation.  If the blocking
relation has no directed cycles then it is antisymmetric too.  In that case the blocking relation  <  is a
(strict) order on the set of these figures.  If each of the points is assigmed the same direction, we call
the relation one-directional.  In that case, any maximal figure (with respect to <) is on the 'outside'.

We say that a collection of points, each assigned one of  m  directions, is an m-directional point
representation of an ordered set  P,  if its blocking relation is identical to the ordering of  P.

Nowakowski, Rival and Urrutia (1987) considered ordered sets, each of whose points is assigned
one of  m  directions,  m  a positive integer, and called these m-directional point orders  (see Figure
1).  Indeed, we may even imagine such point representations as models for an assembly line based on
a many machine scheduling environment, in which the robots correspond to machines or machine
parts.

Nowakowski, Rival and Urrutia showed there are ordered sets with no m-directional  point
representation, for any positive integer  m,  yet every finite ordered set has a subdivision with such an
m-directional point representation, for some  m.  This subdivision consists precisely of the original
ordered set with an extra element adjoined along some of the (covering) edges (with just the
comparabilities induced, in each case, by just this edge).

We shall use throughout the customary order diagram of an ordered set in which the y-coordinate
of a point  b  is larger than that of another point  a  if  a < b  and an edge joins them just if  b  is an
upper cover of  a.  (Say that  b  is an upper cover of  a  (b  covers  a  or  a  is a lower cover of  b  or  a
is covered by  b)  if  a < b  and if  a < c ≤ b  implies  b = c.)  Thus, an ordered set which contains an
element with  m  lower covers requires at least  m  directions in its point representation — if it has
one.  We usually use upper case characters  A, B, C,…  to stand for the robots in the point
representations and lower case characters  a, b, c,…  for the elements of ordered sets and the same
symbol  <  for the order relation in both contexts.

An alternate, perhaps more suggestive, interpretation of subdivision is this.  Let  b  cover  a  and
suppose a subdivision point  (a,b)  is placed along the corresponding covering edge.  In a
corresponding two-directional point representation a robot  A  may itself be assigned two directions,
in succession, the first followed until a junction corresponding to the subdivision point  (a,b)  and the
second followed from this junction to  B  (see Figure 2).
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Notice that, by transitivity, it may be that  A < B  and  B < C,   that is,  A < C,  yet  C  is not
'visible' from  A  along either a horizontal eastward or a vertical upward path.  At the same time,
although  D  covers  A  it may be that  B  lies along the line of sight from  A  to  D,  apparently
'obstructing the visiblity' between them (see Figure 3).
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From the viewpoint of motion planning we may suppose that once  B  begines to move along its
intended direction of motion there is an unobstructed path from  A  to  D.  In the interest of continuity
we shall insist, too, that all elements be assigned directions, including, in particular, the maximal
elements, even though a maximal element is not constrained to precede any other.

Our leading problem is to characterize two-directional point orders among all orders.  Here are our
main results.  The first highlights a class of ordered sets, each of whose members has a two-
directional point representation.  Call an ordered set a tree if its covering graph contains no cycle (a
subset  a1, a2,…, am  of distinct points,  m ≥ 4, such that  ai  covers  ai+1  or  ai+1  covers  ai  for each
i = 1, 2,…, m-1  and  a1  covers  am  or  am  covers  a1).  A simple cycle in an ordered set is a cycle
a1, a2,…, a2k,  k ≥ 2,  such that  a2j  covers  a2j-1  for each  j = 1, 2,…,k,  and  a2k  covers  a1.
Moreover, we shall call a cycle  a1, a2, a3, a4,  in which  a1 < a2 < a4  and  a1 < a3 < a4  a simple cycle



too (cf. Figure 4).
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THEOREM 1.  Every tree in which each element has at most two lower covers has a two-directional
point representation, yet an ordered set which contains a simple cycle has no two-directional point
representation at all.

On the positive side we shall also show that any 'lexicographic sum' of ordered sets, with top and
bottom, has a two-directional point representation, provided that both the index set and the blocks do
too.

How many subdivision points along any covering edge ensure that an ordered set has a two-
directional point representation?  Or, in the language of motion planning, how many changes of
direction for any robot guarantee that an order has a two-directional point representation?

THEOREM 2.  For any ordered set in which each element has at most two lower covers, at most one
subdivision point along some of its covering edges ensures that it has a two-directional point
representation.

In some sense this result is best possible.

THEOREM 3.  There exist ordered sets in which each element has at most two lower covers such
that almost half of its covering edges need be subdivided to ensure a two-directional point
representation. Moreover, there are ordered sets in which each element has at most two lower covers
with no two-directional point representation even  if every covering edge is subdivided.

Notice that while Theorem 2 ensures a two-directional point representation by subdividing some
covering edges of P, according to Theorem 3 too many subdivisions may spoil the two-directional
point representation.



We are still unable to characterize the ordered sets which have a two-directional point
representation.  Nevertheless, it seems to us that the solution to the bipartite case would shed light on
the general problem.

TREES AND CYCLES

It is easy to see that an ordered set with a two-directional point representation also has one in
which the two directions are perpendicular.  We shall suppose throughout that these directions are
northward  (n)  and eastward  (e).

Our aim first of all is to show that no simple cycle has a two-directional point representation.
Suppose that  P  is an ordered set with a two-directional point representation.  Let  a  and  b  be
distinct elements of  P.   If both  a  and  b  point northward and lie on the same vertical line in the
representation of  P  then they must be comparable.  For, if the y-coordinate of  a  is below the y-
coordinate of  b  in this representation then, as  a  points northward,  a < b;  if the y-coordinate of  b
is below that of  a  then  b < a.  Now, let  a,  b  be distinct lower covers of  c  in  P.  In the
representation,  c  must be located along the 'line of sight' of  a  and of  b.  Thus, if  a  and  b  had the
same direction, then each would be along the line of sight of the other and, according to our
observation above,  a  and  b  would be comparable.  Therefore, we may suppose that  a  points
northward and  b  eastward, say, and that, therefore,  c  lies at the point of intersection of the
northward and eastward lines from these points.  It follows, of course, that every element in  P  has at
most two distinct lower covers.

From these preliminary remarks it is an easy matter to deduce that no simple cycle  a1, a2,…, a2k,
k ≥ 3  and  k  odd, has a two-directional representation.  Suppose one did.  As  a1, a3  are lower covers
of  a2  they have different directions  n,  e,  respectively, say.  Then,  a5  has direction  n,  a7  e,  and
so on, alternately, which, of course, is impossible as  k  is odd.

We claim that no simple cycle at all has a two-directional point representation.  The cases  a1 < a2
< a4  and  a1 < a3 < a4  as well as  a1 < a2,  a4  and  a3 < a2,  a4  can be checked directly to have none,
as a simple longhand effort shows.  For the remaining cases another remark is handy.  Let  c1, b1, c2,
b2, …, cm, bm,  cm+1,   be a 'zigzag', that is,  c1  covers  b1  and  ci  covers  bi-1  and  bi,  for  2 ≤ i ≤ m,
and  cm+1  covers  bm,  and consider a two-directional point representation of it.  We may suppose that
its minimal elements  b1, b2,…, bm  alternate in direction  n,  e, ….  As each  bi,  1 ≤ k ≤ m,  is
covered by two of the cj's, then both of them, namely  ci-1  and  ci,  lie along the line of sight of  bi.
As  ci-1  and  ci  are noncomparable, neither can be along the line of sight of the other.  It follows that
in the representation, successive triples of the ci's follow either an upward staircase pattern or a
downward staircase pattern in which an upward staircase may meet a downward staircase with
increasing subscript, yet a downward staircase continues only downward (see  Figure 5).
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Let  a1, a2,…, a2k,  k ≥ 3, be an arbitrary simple cycle, that is,  a2j  covers  a2j-1,  j=1,2,…,k, and
a2k  covers  a1.  Suppose that it has a two-directional point representation.  Then its maximal elements
must follow the staircase pattern indicated above.  Since the sequence  a2, a4,…   of maximal
elements will repeat following the enumeration of the cycle, at least one portion must be a downward
staircase, and, in that case, must continue as a downward staircase throughout — which is impossible.
Thus, no simple cycle at all has a two-directional point representation.

We now show by induction on  |P|  that any ordered set  P  which is a tree does have a two-
directional point representation.  Let  a  be an endpoint of the covering graph of  P,  that is, either a
maximal element of  P  with precisely one lower cover or else a minimal element with precisely one
upper cover.  Suppose that  a  is maximal, that  b  is its unique lower cover and that a two-directional
point representation of  P – {a}   is given.  We may assume that  b  has direction  n.  We shall locate
a  along the vertical from  b  above it.  We may choose its y-coordinate less than any other point
already on this vertical yet larger than  b,  and distinct from the y-coordinate of any other point.
Assign  a  the direction  e.  This constitutes a two-directional point representation of  P.

Suppose now that  a  is minimal with unique upper cover  b  and that  P – {a}   has a two-
directional point representation.  There is no loss in generality to assume that  b  has direction  n.  By
hypothesis  b  has at most one lower cover  c,  besides  a.  Suppose  c  has direction  e.  Then we may
locate  a  on the vertical below  b  with y-coordinate distinct from the y-coordinate of any other point
and above any point already on this vertical yet lower than  b.  We may assign  a  the direction  n  to
obtain a two-directional point representation of  P.  Now, suppose that  c  has direction  n,  in which
case  c  lies on the vertical through  b  beneath it.  Before locating  a  we make a small change to the



representation of  P – {a}   by shifting the location of  b  just an 'epsilon' northward so that its y-
coordinate is distinct from the y-coordinate of any other point.  In this case we may locate  a  on the
horizontal through  b  anywhere to the left of it and assign it the direction  e.  This gives a two-
directional point representation of  P.

Actually we can say somewhat more, for ordered sets constructed as a 'lexicographic sum'.  For an
ordered set  P  and a family  (Qp | p Œ P)  of ordered sets, indexed by  P  itself, the lexicographic sum
∑pQp  is the ordered set whose underlying set is the union of the Qp's  and in which  x < y  if  x, y  Œ
Qp, for some  p Œ P, and  x < y  in  Qp  or, if  x Œ Qp,  y Œ Qr  and  p < r  in  P.

PROPOSITION.  Let   ∑pQp be a lexicographic sum of ordered sets.  If  P  as well as each  Qp  has a
two-directional point representation, and if each  Qp  has a top and a bottom, then   ∑pQp itself has a
two-directional point representation.

Proof.  Suppose a two-directional point representation of  P  is given.Let  p  Œ P  with coordinates
(x,y), let  p  be directed northward, and suppose that p', with coordinates (x',y'), is the first vertex on
this vertical northward path from  p.  If  Qp  is a chain then we may take a two-directional point
representation of it in which each vertex is directed northward.  Then if we contract the total vertical
distance between the bottom vertex and the top vertex of  Qp  to a total distance less than  y'–y, we
may insert this representation of  Qp  into the vertical between  p  and  p',  replacing  p  by the bottom
of  Qp  and avoiding all y-coordinates already occupied by existing points.

Suppose that  Qp  is not a chain.  In this case we construct another two-directional point
representation of  P,  by shifting each vertex  r  on the vertical along  p  by a small horizontal distance
e > 0  to the right less than the horizontal distance between  p   and any other vertex in its
representation.  We now contract the region occupied by the representation of  Qp  into the  e  by
y'–y  rectangle from  p  to  p',  again replacing  p  by the bottom vertex of  Qp  avoiding all y-
coordinates already occupied.

In this way we may successively add the blocks to produce a two-directional point representation
of the lexicographic sum itself.

It is not clear to us at this writing how we may naturally extend the class of ordered sets with a
two-directional point representation.  Lattices with at most two lower covers, even planar ones, need
not have a two-directional point representation (see Figure 6).



Figure 6

Elsewhere (cf. Czyzowicz, Pelc and Rival) we have studied ordered sets, and especially lattices, with
a diagram using only two different slopes for its edges.  For instance, the lattice diagram of Figure 6
uses five different slopes for its edges, although it is easy to draw another diagram of the same lattice
using only two.  On the other hand, there are ordered sets with no two-slope diagram (for nontrivial
reasons) yet, which have a two-directional point representation (see Figure 7).
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Still, there is an obvious connection between two-slope diagrams and point representations.  If each
vertex is allowed not just one of two directions, but both of the two directions, then it is easy to verify
that there is a two-slope diagram.  The converse, too, is obviously true.

SUBDIVISION



Let  P  be an ordered set in which each element has at most two lower covers.  Even if P itself has
no two-directional point representation, we shall show that there is an ordered set obtained from  P
by subdividing some edges of the diagram of  P  at most once which, in turn, has a two-directional
point representation.

Before we do this, let us record a rather simple transparent construction which, however, proves
less.  We show that there is an ordered set  P'  constructed from  P  by adjoining at most two
subdivision points along every covering edge which itself has a two-directional point representation.

An example of this construction is illustrated in Figure 8.

F

d e f

a b c

d e f

a b c

A
B

C

D

E

P P'

A two-directional 
point representation

 of P'.

Figure 8

Although we have adjoined two subdivision points along just one edge of  P  and just one along the
others, we may, of course, have introduced more along any other edge too with corresponding points
in the representation using the same direction for them as used for the incoming edge.  Thus any
subdivision of an ordered set with an m-directional point representation also has an m-directional
point representation.

Let  L  be a linear extension of  P  and arrange the elements of  P  as points at unit intervals along
the  y = x  line on the plane in the same increasing order as they occur in  L.  We proceed by
induction on the height of an element in  L  (that is, the size of the longest chain in  L  from it to the
bottom of  L)  to assign it successive directions changing at most twice in order to produce a two-
directional point representation.  Suppose that the elements of  L  labelled  A1, A2, …, Am-1  are
already directed.  Suppose that  An  is an upper cover of  Am.  As  An  has at most two lower covers in
P  either the eastward direction to  An  is available or else the northward direction to  An  is available.
Suppose then that the eastward direction is available and is chosen from a single subdivision point on



the  (Am, An)  edge (cf. Figure 9).  In fact, for any upper cover  An'  of  Am  for which this eastward
direction is available we may choose a single subdivision point and direct  Am  northward, as before,
and the subdivision point eastward.  Now, let  C  be an upper cover of  Am  for which there already
exists a point directed eastward toward it.  In this case two subdivision points along the  (Am, B)
edge suffice:  the first located north of  Am  at a point whose y-coordinate is distinct from the y-
coordinate of any other point already constructed; the second located along the horizontal east from
the first subdivision point and along the vertical below  C.
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Then direct the first eastward and the second northward.  The same construction can be carried out
for any upper cover  D  of  Am  whose incoming northward direction is available.

We turn now to the proof of Theorem 2.  We first treat the special case that every chain in  P  has
at most two elements, that is,  P  has  'height' at most two.  Moreover, let us assume that  P  has a
quite specific structure.  Indeed, suppose that  P = P(G)  is constructed from a graph  G  on the  n
vertices  v1, v2,…, vn  with the minimal elements of  P  corresponding to these  n  vertices of  G  and
the maximal elements of  P  corresponding precisely to those pairs   wij = (vi, vj)  of vertices of  G,
joined by an edge in  G.  Then put  vi < wij  and  vj < wij.  Evidently each element of  P(G)  has at
most two lower covers.

We shall now make  P  even more particular.  Let  P = P(Kn),  where  Kn  stands for the complete
graph on  n  vertices, that is, every pair of vertices is joined by an edge.  We shall show that there is
an ordered set obtained from  P(Kn)  by subdividing at most half of its edges which has a two-



directional point representation.  To begin with select locations  p1, p2,…, pn  for the vertices  v1,
v2,…, vn  on  n  horizontal lines with equations  y=y1, y=y2,…, y=yn,  say  pi  has coordinates (xi, yi),
i = 1, 2, …,n.  We locate the vertices  wij  beyond (that is, to the right of) the vertical line
x = max{xi | i = 1,2,…,n} .  For each  wij,  satisfying  i < j,  choose a location  pij  on  y=yj  with
coordinates  (xij, yj)  and define another location pij'  on  y=yi  at  (xij, yi).  We may suppose that all of
these x-coordinates  xij  are distinct.  Now, for each  pi  assign it the horizontal direction to the right
and, for each  pij  and  pij'  the vertical upward direction.  The vertices of  pij'  correspond to
subdivisions of the corresponding edges from  vi  to  wij   (see Figure 10).  In this way half of the
edges of  P(Kn) are subdivided and this resulting subdivision has a two-directional point
representation.
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It is an easy consequence that, actually, for any graph G, the ordered set  P = P(G)  also has a two-
directional point representation.  To see this, just erase the points  pij, pij'  from the representation of
P(Kn),  n  the number of vertices of  G,  whenever  vi, vj  are not joined by an edge in  G.

We may now extend this idea to supply a two-directional point representation for any ordered set
P  in which each maximum chain has at most two elements.  Indeed, just like the case for  P(Kn),
subdividing at most half of the edges is enough.  Locate the minimals of  P,  each on a different
horizontal line.  For each maximal element with two lower covers we proceed as for the
representation of  P(G).  In fact, if all the maximals of  P  have two lower covers then  P = P(G),
where possibly  G  has some multiple edges (see Figure 11).
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If, on the other hand, there are maximals with just one lower cover, then it suffices to locate these
on the horizontal line corresponding to its unique lower cover and direct it upward (see Figure 12).
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For this 'bipartite' case, we have consistently directed the minimals horizontally and the maximals,
together with all subdivision points, vertically.  Of course, we could have interchanged the two
directions, with an appropriate change to all locations (a reflection along the diagonal  y = x).

We are now ready to treat the general case.  First, we partition  P  into 'levels':
L1 = min (P);

for  i > 1, Li = min (P—ªj<i Lj),
where  min (P)  stands for the minimals of  P.  Notice that consecutive pairs  Li, Li+1  determine
bipartite orders, each of which does have a two-directional point representation.  In fact, as long as
there are no covering relations between pairs of elements  x Œ Li, y Œ  Lj,  j≥ i+2,  then we may



successively locate positions for the elements of the levels, alternating directions for the levels.  Thus,
for  L1 ª L2  all vertices associated with  L1  are directed horizontally, then the vertices of  L2,  as
well as subdivision points are directed vertically.  At the next step in  L2 ª L3  each vertex in  L3  is
directed horizontally just as the subdivision points in  L2 ª L3, and so on.  Note that not all edges are
subdivided;  for instance, no edge associated with the lower cover of an element with only one lower
cover is itself subdivided.

Let a two-directional point representation of a subdivision of the ordered set  (L1 ª L2) ª (L3 ª L4)
ª …  be given.  We suppose now that there are, however, covering edges joining elements in levels
two or more apart.  To this end let us suppose that xŒLi, i odd say, and yŒLj, j≥i+2.  Let px , py  stand
for the corresponding points in the representation of  (L1 ª  L2) ª (L3 ª  L4) ª  … .  Then each
coordinate of  py  is larger than the corresponding coordinate of  px.  By hypothesis,  y  can have
precisely one other lower cover    z ≠ x  and  z Œ Lj–1,  and, by construction, the covering edge  y
above  z  is not subdivided.  Now,  pz  is directed either horizontally or vertically.  If  horizontally,
like  px,  then we insert a point  pxy,  directed upward, at the intersection of the horizontal through  px
and the vertical through  py  (see Figure 13).
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Figure 13
Now, if there is a point already located on the vertical between  pxy  and  py  it cannot be comparable
to  py.  As no point in the representation of the subdivision can be directed upward to it, we may shift
it slightly to the right.  This results in a representation of the subdivision again, along with the
required comparability of  x < y  using a single subdivision.  Otherwise,  pz  is directed upward.  As  z
is not itself a subdivision point,  py  must be directed horizontally.  Then move  py  slightly to the
right, say a distance  e > 0.  Insert a point  pzy,  directed horizontally, at the intersection of the vertical
through  pz  and the horizontal through  py,  that is, at the former location of  py  itself.  Also insert a
point  pxy,  directed vertically at the intersection of the horizontal through  px  and the vertical through
py,  (now shifted a distance  e > 0  horizontally).  We may suppose that no other points lie on the
segment between  pxy  and  py  (else shift it horizontally by a small distance).
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In this fashion we can produce a two-directional point representation of a subdivision of  P.  This
completes the proof of Theorem 2.

We turn now to the proof of Theorem 3.  We first prove the second part.  We construct a family
(Pn | n ≥ 7)  of ordered sets, each member of which has no two-directional point representation.  We
will also prove that ifpof the diagram of Pn is subdivided, the ordered Qn thus obtained, has no two
directional point representation .  Indeed, let  Pn = P(Kn).

uv uw ux vw vx wx

u v w x

uv uw ux vw vx wx

u v w x

(u,uv) (x,wx)

K4 P4 Q4

x w

u v

Figure 15

Of course, this bipartite order  Pn,  itself has no two-directional point representation, for any n ≥ 3, as
it certainly contains a simple cycle.  We shall show that even adding at most one subdivision point
along each edge of  Pn,  n ≥ 7, cannot produce an ordered set with such a representation.  Notice that
if an ordered set has such a representation  then it still has one with any number of subdivision points
along any of its edges.  So, for purposes of our argument, suppose, for contradictions, that every
ordered set  Qn,  n ≥ 7,  obtained from  Pn  by adding precisely one subdivision point  (u, uv) along
every covering edge  u  to  uv  does have a two-directional point representation.

Our aim is to construct a particular two-colouring of the edges of  Pn  based on the representation
of  Qn.  Let  u  be an arbitrary vertex of  Kn.  Note that, in the representation of  Qn,  all, but at most
one, of the upper covers of  u,  have direction different from that assigned to  u.  Colour the edge
from  u  to  uv  1  if  (u, uv)  is directed eastward, otherwise colour the edge  0.  Notice that the two
incident edges of each maximal vertex  uv  of  Pn  carry distinct colours.
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A two-directional point representation of Q4
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Edge-colouring of P4

uv
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Figure 16
On the other hand, among the  n  incident edges of each minimal vertex  u,  all, but at most one,
receive the same colour.  Now, orient the edges of  Kn  according to this rule:  u∅v  if the edge  u  to
uv  in  Pn  has colour  1;  v∅u  if this edge  u  to  uv  in  Pn  has colour  0.

x w

u v

x w

u v
Orientation of K   Bipartite subgraph

4

Figure 17
Then, for any vertex u  of  Kn,  either all, but at most one, of the  edges are directed away from  u  or,
all, but at most one, of the edges are directed into  u.  For each vertex  u  delete from  Kn,  n ≥ 4,  the
minority edge, if it exists.  Then, for every vertex  u  of the induced subgraph, either every edge is
directed away from  u  or every edge is directed into  u, that is, the induced subgraph must be
bipartite.  In summary, we have shown that the removal of at most  n  edges from  Kn  produces a



bipartite graph.  If  n ≥ 7  then one of the two parts of the bipartition contains at least four vertices
whose six edges must have been removed, according to the construction.  This is impossible if only  n
edges are removed in all, each one incident to a distinct vertex.

To prove the first part of Theorem 3, we will show that in any two directional representation of
P(Kn) there are at most n-1 vertices wi,j such that neither of the two edges vi to wi,j  or vj to wi,j  is
subdivided. Let us consider any two directional representation of P(Kn) in which the vertices v1,
v2,…, vn  of P(Kn) are represented by points  p1, p2,…, pn .Suppose that  p1,…, pk  move northward
and pk+1,…, pn move eastward. Let L1,…, Lk be the vertical lines through  p1,…, pk  and Lk+1,…, Ln
the horizontal lines through  pk+1,…, pn, respectively.  In any such representation of P(Kn) in which
neither of the two edges vi to wi,j  or vj  to wi,j  is subdivided, the directions of pi and pj are different.
Suppose that pi moves upwards and pj moves eastward. Then it is easy to see that the point pi,j
representing wi,j is the intersection point of Li and Lj (see Figure 18). Moreover, in each vertical
(horizontal ) line Li there is at most one point wi,j  moving northward (eastward).It follows that at
most n-1 different points pi,j representing distinct vertices wi,j of P(Kn) can be placed in the
intersection points of L1,...,Li with Li+1,...,Ln without blocking each other.

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
 

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
-

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
 

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
-

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
 

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
-

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
 

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
-

- - - - - - - - - - - - - - - - - - - - - - - - - --

- - - - - - - - - - - - - - - - - - - - - - - - - --

- - - - - - - - - - - - - - - - - - - - - - - - - --
- -

 - 
- -

 - 
-

 - 
- -

 - 
- -

 
- -

 - 
- -

 - 
-

 - 
- -

 - 
- -

-
- - - - - - - - - - - - - - - - - - - - - - - - - --

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
 

- -
 - 

- -
 - 

-
 - 

- -
 - 

- -
-

- - - - - - - - - - - - - - - - - - - - - - - - - --

pn-1

pk+1
p    k-1 pkpi

p2p1

p k+2

pn

pj

w i,j

Figure 18.
REFERENCES
Czyzowicz, J., A. Pelc, I. Rival and J. Urrutia, "Crooked diagrams with few slopes", ORDER

(1990) 7: 133-143.
R. J. Nowakowski, I. Rival and J. Urrutia,  Representing orders on the plane by translating points

and lines, Discrete Math (1990) 27, no. 1-2, pp. 147-156.
I. Rival and J. Urrutia  (1987)  Representing orders on the plane by translating convex figures,

Order 4.


