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On the O-hull of planar point sets
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Abstract

Let P be a set of n points in the plane and O be a
set of k, 2 ≤ k ≤ n, different orientations in the plane
sorted in counterclockwise circular order, such that
the biggest angle defined by two consecutive orienta-
tions is at most π

2 . We show: (1) How to compute
the oriented O-hull of P in optimal Θ(n log n) time
and O(n) space, (2) how to compute the unoriented
O-hull of P in O(kn log n) time and O(kn) space, and
(3) how to solve the problem of computing an ori-
entation of the plane for which the O-hull of P has
minimum area in O(kn log n) time and O(kn) space.

1 Introduction

Let P be a set of n points in the plane, in general
position. In [1] the authors solved the problem of
computing the orientation of the plane such that the
rectilinear convex hull of P , denoted by RH(P ), has
minimum area (or perimeter) in optimal Θ(n log n)
time and O(n) space.

In this paper we will extend those results for
RH(P ) to theO-hull of the set P , denoted byOH(P ),
where the horizontal and vertical lines are replaced by
a set O of k different lines, with 2 ≤ k < n. Due to
the lack of space, we will omit some of the details.

1.1 O-convexity

A set of orientations O is given by a set of k lines,
passing through a fixed point and such that each line
defines the two corresponding orientations. Thus, in
fact, we have 2k different orientations in the inter-
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val [0, 2π). In this work we assume that the largest an-
gle between two consecutive orientations is at most π

2 .
If an O-line is a translation of an element of O, a

region R in the plane is said to be O-convex if the
intersection of R with any O-line is either empty or
connected. This notion, introduced by Rawlins [11] to
generalize the orthoconvexity studied by Ottmann et
al. [9], was later considered by Rawlins and Wood [12],
Martynchik et al. [7], and Fink and Wood [5]. Also
by Matoušek et al. [6, 8], whose definitions seem not
to be completely equivalent.

1.2 O-hull of a planar point set

The usual convexity, defined requiring the intersec-
tion with any line of the plane to be either empty or
connected, leads to a number of equivalent definitions
of the usual convex hull of a point set, CH(P ). On
the contrary, Ottmann et al. [9] observed that three
different definitions (r-, cr-, and mr-hull) can be con-
sidered for the orthoconvex hull of a point set.

Here we will use the following definition for the O-
hull of P .

Definition 1 OH(P ) is the intersection of all the
connected supersets of P which areO-convex (see Fig-
ure 1).

(a) Set O with
k = 3.

(b) CH(P ) and OH(P ).

Figure 1: Example of O and OH(P ).

First, we characterize this definition in terms of
wedges, showing its correspondence to the mr-hull
used in [1, 3]. This will allow us to use the tech-
niques based on Θ-maximal elements of P (see Avis
et al. [2]) for computing the unoriented OH(P ), in a
similar way as for RH(P ) in [1].
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Consider two consecutive orientations o2 � o1 in
the circular counterclockwise order ofO. Assume that
P is located on the intersection of the two right half-
planes defined by o1 and o2. When sweeping to the
right the lines supporting these orientations, we want
the intersection of OH(P ) with any o1-line to be con-
nected, as well as the intersection with any o2-line.

Suppose that during this sweeping the o1-line
bumps a first point p ∈ P and the o2-line bumps a
first point q ∈ P , and p 6= q. After that, the process
of maintaining connected the intersection of OH(P )
with both sweeping oriented lines implies that the
“boundary limit” of OH(P ) between p and q has to be
formed by a staircase polygonal chain with alternat-
ing constant turn angle π− (o2 − o1). This motivates
the following definition.

Definition 2 Let o1 and o2 be two consecutive ori-
entations in O. The stabbing wedge associated to
]o1o2, denoted by wo1o2 or just w when clear enough,
is defined by rays parallel to −o1 and o2, hence hav-
ing size π − (o2 − o1). In other words, it is the wedge
supplementary to ]o1o2. See Figure 2.

We call stabbing O-wedges those associated to pairs
of consecutive orientations in O. By our assumption,
all the angles of the stabbing wedges are at least π

2 .

(a)

(b)

(c) (e)

(f)

(d)

(a) (b) (c)

(d) (e) (f)

Figure 2: Top: Pairs of consecutive orientations in O.
Bottom: Associated stabbing wedges.

In the case p = q, the corresponding part of the
boundary of OH(P ) is just the point p. This happens
for the topmost point in Figure 1b with the directions
o1 and o2, so that the stabbing wedge (f) in Figure 2
is not acting. The above process leads to this result:

Proposition 1 The O-convex hull of P , OH(P ), is

OH(P ) = R2 −
⋃
w∈W

w,

where W is the set of all stabbing O-wedges free of
elements of P .

2 Computing the oriented and unoriented OH(P )

From Proposition 1 we get an algorithmic method to
compute OH(P ), by computing all the O-wedges free
of elements of P . Let h be the number of edges (or
vertices) of CH(P ), let V = {p0, . . . , ph−1} be the
vertex set in the boundary of CH(P ) sorted counter-
clockwise, and let E = {e0, . . . , eh−1} be the edge set,
where ei = pipi+1 and the addition in the sub-indices
is taken modulo h.

2.1 Computing the oriented OH(P )

To see where a stabbing O-wedge wo1o2 can penetrate
in CH(P ), we compute the supporting directed line of
CH(P ) parallel to o1 such that CH(P ) is on its right
side and look for the tangent point pi of this support-
ing line. We also compute the tangent point pj of the
supporting directed line of CH(P ) parallel to o2. Since
o2 � o1, we have that pj � pi in the counterclockwise
order of V . The stabbing interval of the stabbing O-
wedge wo1o2 is then the interval [i, j], 0 ≤ i, j < h.
Figure 3 shows an example. When pj = pi, the wedge
does not stab CH(P ) and the stabbing interval is {i}.

p0

p1

p2

p3

p4
p5

p6

−o1

o2

Figure 3: The stabbing interval of the stabbing
wedge (a) in Figure 2 is [1, 4].

Observation 1 If j belongs to the stabbing inter-
val of woioi+1

, then the orientation of the edge ej
of CH(P ) belongs to the interval (oi, oi+1) inO. Thus,
when O contains the h supporting lines of the edges
in E, the stabbing interval of all stabbing O-wedges
is a point and therefore CH(P ) = OH(P ).
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Note that, as in the orthoconvex case, OH(P ) can
be disconnected. Actually, only opposite stabbing O-
wedges can overlap, generating a disconnected O-hull:
In any pair of non-opposite stabbing O-wedges, one
of them contains a bounding ray of the other one. As
every wedge in the boundary of OH(P ) is supported
by at least two points in P , two non-opposite wedges
that intersect would inevitably leave one of them non
P -free, contradicting Proposition 1. Clearly, this is
not the case with opposite wedges. See again Figure 2.

With this information we can compute the points
of P which are θi-maxima, for θi = π− (oi+1− oi), in
the orientation δi defined as the bisector of woioi+1

.

First, compute the stabbing interval for each pair
of consecutive orientations in O, and keep only those
stabbing intervals which have at least 2 points of
CH(P ). In each of these different and consecutive
stabbing intervals we will have different stabbing
staircases. Each of these staircases is formed by stab-
bing wedges with aperture angle θi and oriented bi-
sector δi. (Notice that, as in [4], we can also apply the
technique by Avis et al. [2] selecting the points inside
the arcs of circle with angle θi ≥ π

2 corresponding to
the edges of CH(P ) with the corresponding stabbing
intervals and compute which of them are θi-maxima.)
We compute their corresponding maxima points as
the points whose angular intervals are pierced by the
vertical lines δi in the table of orientations, so there
will be at most 2k vertical lines piercing angular in-
tervals.

So, we compute the θi-maxima points and their cor-
responding wedge given by two rays with aperture an-
gle α ≥ θi; this wedge is translated into an angular
interval of angle α. Recall that since θi ≥ π

2 , then,
a point pi ∈ P has at most 3 disjoint angular inter-
vals with angles denoted by αi, βi and γi. Thus, in
the table of Figure 4 each interval has a pointer to
its aperture angle value αi, βi or γi. Then, when a
vertical line δj pierces an angular interval, to select
this angular interval it has to be checked (in constant
time) whether the aperture angle of the angular in-
terval is bigger than or equal to the aperture angle
corresponding to δi.

0

p1

pn

...

2πδ1 δ2 δ2k

. . .

δ2k−1

Figure 4: The table with the angular intervals and
the 2k vertical lines δi.

Thus, we just have to arrange the angular intervals
in a table as in Figure 4. Knowing the angular in-
tervals corresponding to points of P pierced by the
2k vertical lines, we know which are the points at
the steps of the staircases formed with the stabbing
wedges wi. Using standard techniques [10], we can
compute these staircases and join them in O(n log n)
time and O(n) space to form the boundary of OH(P ).

Once we have computed OH(P ) in O(n log n) time
and O(n) space, it remains to show optimality of the
time complexity: Given OH(P ), we can compute in
linear time CH(OH(P )) = CH(P ), and it is known
that computing the convex hull of a set of points in
the plane has an Ω(n log n) time [10]. We get:

Theorem 1 The oriented OH(P ) can be computed
in Θ(n log n) time and O(n) space.

Observation 2 The complexities of the computation
of the oriented OH(P ) are independent of the num-
ber 2k of orientations.

2.2 Computing the unoriented OH(P )

Notice that OH(P ) changes if we rotate the coor-
dinate system, being orientation-dependent. Never-
theless, we can update the at most 2k staircases in
O(log n) time per insertion or deletion of a point in
some of the staircases. For this operation we need
to maintain the (at most) 2k staircases into the (at
most) 2k different information structures (balanced
trees), one for each staircase. Notice that some of the
staircases may appear and/or disappear during the ro-
tation. The total insertion or deletion operation can
be done in O(kn(log k + log n)) = O(kn log n) time.

We only have to sweep the table of angular intervals
with the 2k vertical lines stopping at any event (inser-
tion or deletion of a point in some staircase), since the
number of angular intervals for a point is at most 3,
but it can be appearing into any of the 2k staircases
during the rotation. Therefore, there are at most kn
events, and each of them has to be updated or deleted
from the corresponding possible staircase where it can
appear or disappear. We get the following result:

Theorem 2 To compute and maintain the unori-
ented OH(P ) during a complete rotation of the co-
ordinate system can be done in O(kn log n) time and
O(kn) space. If the number k of orientations is a con-
stant, the time and space complexities are O(n log n)
and O(n).

Corollary 1 To compute the orientation of the co-
ordinate system such that the unoriented OH(P ) has
minimum number of steps or minimum number of
staircases, can be done in O(kn log n) time and O(kn)
space.
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3 Maximizing the area of the unoriented OH(P )

Using techniques similar to those in [1], we can com-
pute the orientation of the coordinate system where
OH(P ) has minimum (or maximum) area, given the
set of orientations O as above, and (this is rele-
vant for the algorithmic result) the assumption that
θi ≥ Θ = π

2 .
This condition allows us to compute the set of an-

gular intervals of all the Θ-maxima points of P , and
also, the essential properties that imply at most a
linear (in n) number of intersections between arcs of
circumferences of the different angles θi for all the
possible steps of the staircases in a complete rotation
of the coordinate system. We need this for the com-
putation of the start and stop events of the overlaps
between opposite stairs. The list of these events gen-
erate a set of orientation intervals, in which the set of
vertices and overlaps in OH(P ) remains unchanged.

The last ingredient needed to mimic the tech-
niques in [1] is to adapt, using only basic trigonom-
etry, the formulas from [3] in order to express the
area of OH(P ) in terms of the rotation angle θ, as
area(P)−∑

i area(4i(θ))+
∑
j area( j(θ)), where P

is the simple polygon obtained joining counterclock-
wise consecutive vertices of OH(P ) by joining consec-
utive maxima, the overlaps are parallelograms j , in-
stead of rectangles, and the triangles 4i are no longer
right triangles. See Figure 5.

Figure 5: Expressing the area of OH(P ): A triangle
and a parallelogram are shaded.

As for the perimeter, the maintenance of the cur-
rent perimeter is just given by the maintenance of all
the current staircases, since the sum of the length of
their steps gives the current perimeter.

Altogether, we obtain our final results:

Theorem 3 To compute the orientation of the coor-
dinate system such that the unoriented OH(P ) has
minimum (or maximum) area or perimeter can be
done in O(kn log n) time and O(kn) space.

Corollary 2 To compute the orientation of the coor-
dinate system such that the unoriented OH(P ) is con-
nected or it has the minimum (or maximum) number
of connected components, can be done in O(kn log n)
time and O(kn) space.
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