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Abstract

Consider a set of mobile clients represented by n points in the plane moving at constant
speed along n different straight lines. We study the problem of covering all mobile clients using
a set of k disks centered at k fixed centers. Each disk exists only at one instant and while it
does, covers any client within its coverage radius. The task is to select an activation time and a
radius for each disk such that every mobile client is covered by at least one disk. In particular,
we study the optimization problem of minimizing the maximum coverage radius. First we prove
that, although the static version of the problem is polynomial, the kinetic version is NP-hard.
Moreover, we show that the problem is not approximable by a constant factor (unless P=NP).
We then present a generic framework to solve it for fixed values of k, which in turn allows us to
solve more general optimization problems. Our algorithms are efficient for constant values of k.
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1 Introduction

Let S be a set of satellites, each one moving along a different straight line over a region R in the
plane, and let Q be a set of satellite ground stations located within R. In this paper we study the
situation in which a signal alert, that emanates from the ground stations, must be broadcasted to
all satellites. We assume that each ground station has a cost function which is linear on its range
of transmission. Therefore, it is desirable to minimize the maximum power of transmission over all
the stations.

We model this problem as follows: Represent the set of satellites as a set S = {p1, . . . , pn} of n
points in the plane. Each point moves along a different straight line at constant speed –the speeds
of the points are not necessarily the same–. The set of grounds stations is represented by a set
Q = {q1, . . . , qk} of k points in the plane. Our objective is to find transmission times t1, . . . , tk and
broadcast radii r1, . . . , rk for all the ground stations, such that the following happens:

1. Ground station qj broadcasts the alarm signal at time tj, 1 ≤ j ≤ k.

2. Each satellite pi is reached by at least one ground station qj at the moment this one broadcasts.
That is, at time tj , pi must lie within distance rj from qj.

3. The largest rj, 1 ≤ j ≤ k, is as small as possible.

This problem is closely related with the k-center problem, however as we will show later, is not a
particular case. The k-center problem is defined as: given a set P of points (clients) in a metric
space M, a k-center of P is a set of k points (servers) in M such that the maximum distance
between a client and its closest server is minimized. If M is the Euclidean space, then the problem
is known as the Euclidean k-center problem. If in addition, the set of servers is required to be a
subset of P , then the problem is known as discrete Euclidean k-center. In what follows we will
refer to the elements of P alternately as points or clients, and to the elements of the k-center of P
alternately as servers or base stations.

The design and deployment of networks where the set of clients move over time, such as mobile
wireless communication networks, gave origin to many variations of the k-center problem in mobile
environments. We review some results in Section 2. In this context, different scenarios arise
depending on whether or not the clients and servers move. One such posible scenario is the static
client/static server problem. In such a problem, the transmission radii of each base station is given,
and the set of clients is represented by a set of points in the plane. The locations of the servers
must be a subset of the set of points representing clients. The goal is to select a minimum subset
of locations to place base stations, such that each client is covered by at least one base. This is a
well-known NP-hard problem, named the discrete disk cover problem with numerous applications,
in particular in wireless network design [8].

In the opposite scenario, that is, when the set of clients and the set of potential locations move con-
tinuously over time (mobile-client/mobile-server), various results have been obtained. For instance,
in [17], a randomized algorithm that approximates the discrete Euclidean k-center in the case of
mobile-client/mobile-server is presented. Two hybrid scenarios are the static-client/mobile-server
and the mobile-client/static-server. The first scenario is related to travelling salesman problems.
The second scenario, allows the definition of several allocation problems –where each mobile client
must be assigned to a base station–. Recently, Tayi et al. [34] considered the problem of assigning
clients to existing base stations in order to minimize data access costs under base station load
constraints. Contrary to the other scenarios, the mobile-client/static-server one has scarcely been
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considered. The problem we study in this paper can be seen as a variation of the discrete Euclidean
k-center problem for moving clients and fixed servers. Let us introduce the model formally as a
covering problem under the mobile-client/static-server framework.

Let q be a point in the Euclidean two-dimensional space E
2, and let Bq(t, r) be a disk centered at

q representing a server positioned at point q. The server transmits an instant message only once
at time t, and with transmission range equal to r. Let p be a point moving along a straight line
in E

2 and with constant velocity. We say that p receives the message that Bq(t, r) transmits if at
time t (that is when the server sends the message), the point p is within the transmission range of
the server; i.e. if at time t it happens that d(q, p) ≤ r, where d(·) denotes the Euclidean distance.
We call t the activation time of Bq(t, r). Our problem is the following:

Given: a set S = {p1, . . . , pn} of points representing clients moving over straight lines at constant
velocity within an interval of time, and set of servers Q = {q1, . . . , qk} that all transmit the
same message, and that are positioned at given fixed points,

determine: for each server qj an activation time tj and a transmission range rj, such that by
the time the last server has been activated, all clients have received the message and the
maximum transmission range is minimized.

We call this problem minimax anchored covering set problem (minimaxACS-problem). In what
follows we will refer to the elements of S alternately as satellites, clients or moving points, and
to the elements of Q alternately as ground stations or servers. Also, from now on, we denote by
Bj(t, r) the disk centered at qj with activation time t and radius r. In the next paragraphs we
include some observations.

We call C = {B1(t1, r1), . . . , Bk(tk, rk)} an anchored covering set (ACS) if for every pi there is a
qj such that pi is contained in the disk Bj(tj , rj) at time tj. Let C(Bj(tj , rj)) be the set of clients
covered by Bj(tj , rj). We say that two anchored covering sets are equivalent if the mobile clients
are covered by the same disks in both sets. Then the minimaxACS-problem is to find an anchored
covering set (ACS) for a set of moving clients such that its maximum radius is minimized.

For simplicity’s sake, we assume that the points representing clients are in general moving position,
that is, there are no three points in S that are, at the same time, at the same distance from any qj

in Q. Degenerate positions can be removed by using standard techniques.

It is important to clarify that, contrary to classic k-center type problems, in ours the set of k
servers is given. Besides, the fact that each server transmits the message only once and that this is
ephemeral, makes our problem completely different to any k-center variant. Also notice that, if the
clients were static, the solution to our problem would be given by computing the Voronoi diagram
of the k servers. If, on the contrary, the clients were moving but the communication between
clients and servers has to be maintained at all times, then the solution would be again be given
by computing the Voronoi diagram of the servers and changing the server associated with a client
whenever this changes from one Voronoi cell to another. Such problems have been considered in
the server location area [28, 1].

Finally, we would like to point out that the well-known KDS structures [21] cannot be adapted to
our problem. To the best of our knowledge, KDS are used in problems in which one is interested
in maintaining some geometric structure over time, which is not the case in this work.

We do understand that the geometrical model we are proposing may not be valid in some real cases.
However, achieving solutions to simpler models may shed light in the development of methods for
more complex models. In fact, some generalizations are given in Section 6. Let us also note that
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although the centers are given in advance and the minimaxACS-problem can be considered “easier”
than the k-center problem, we prove it is also NP-complete. Moreover, we show that there is no
polynomial-time constant approximation algorithm for the minimaxACS-problem.

The remainder of the paper is structured as follows. Section 2 summarizes previous work on re-
lated problems. Section 3 is devoted to proving the NP-hardness of the minimaxACS-problem.
Section 4 depicts a general framework that is useful for solving several related optimization prob-
lems. Section 5 provides a more specific algorithm for the minimaxACS-problem which runs in
polynomial-time for a constant value of k. Finally, Section 6 concludes with some generalizations
and some directions for future research.

2 Related Work

There exists a vast amount of covering problems, some of which are static and others are mobile.
We outline some known results. Several variants of the disk covering problem have been widely
studied for the cases where sets, the potential locations for base stations, and the clients, are all
static points in the Euclidean plane [29]. In general, the task is to select a number of locations
qj for the base stations, and assign a transmission range rj to each qj such that for a given set
{p1, . . . , pn} of n clients, each client pi is covered. We say that client pi is covered if and only if
pi is within the range of some transmission point qj , that is, d(qj , pi) ≤ rj. The resulting cost
per base station is some known function f , for example f(r) = rα. If the goal is to minimize the
maximum cost over all placements of k servers that cover the set of clients and the base stations can
be located anywhere in the Euclidean plane, then the problem is known as the Euclidean k-center
problem [30], which is NP-hard. It is also NP-hard to approximate it within an error factor of
1.82 [15]. Many heuristics give a 2-approximation, the first of these is in [19]. When k is part of the
input and the transmission ranges are fixed, although the problem is still NP-hard, it is possible
to find polynomial time approximation schemes (PTAS) [20, 24].

On the other hand, if a set of possible locations is given, the problem is known as the discrete
Euclidean k-center problem, which is also NP-complete [16] and it is known to admit a PTAS.

The case when the set of potential base station locations is a subset of the set of clients is studied
in [7]. When points are in R

2, an algorithm that computes a (1+ ǫ)-approximation in time nO(1/ǫ4)

is given for α = 1, and in time nO(α4/ǫ6) for any α. These results are generalizable to higher
dimensions. However, if k is fixed, it is well known that an optimal solution can be found in
polynomial time by enumerating the O(nk) possible solutions. An algorithm for the Euclidean

k-center in the plane that runs in O(nO(
√

k)) time can be found in [27]. For the case when k = 2 a
deterministic near-linear O(n log2 n log2 log n) time algorithm is given in [10]. The discrete problem
is closely related to the discrete unit disk cover problem where a set D of unit disks of fixed location
is given, and the goal is to find a minimum-cardinality subset D′ ⊂ D that cover the set of clients.
This problem is a geometric set cover problem that allows for a constant factor approximation [9].
Recently, a PTAS was also proposed in [31].

In the mobile case, when the set of clients and the set of potential locations move continuously, vari-
ous results have been obtained. A kinetic data structure (KDS) for maintaining an ǫ-approximation
of the Euclidean 1-center of a set of (linearly) moving points in the plane is used in [2]. Such a data
structure uses O(1/ǫ5/2) events (combinatorial changes) and spends a total of O((n/

√
ǫ) log n) time

at those events. In [17], a randomized algorithm to approximate the discrete Euclidean k-center of
a set of moving points in the plane is given for the case when the radii are fixed. This algorithm
chooses and maintains as centers a subset of points such that the number of centers selected is a
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constant-factor approximation of the minimum possible number. This is done by means of a KDS,
which, as the points move, updates the centers as necessary. In [23], given a set of moving points
in R

d, a static k-center is computed such that at any time this static k-center is competitive with
the optimal k-center at that time. That is, if in the optimal solution the number of centers is k
and the points move with degree of motion µ, then this scheme guarantees a 2µ+1-approximation
of the radius with kµ+1 centers chosen from the set of input points before the points start to move.
An efficient and compact KDS for maintaining the diameter, width and smallest area or perimeter
bounding rectangle of a set of moving points in the plane can be found in [2]. This paper includes
a (1 + ǫ)-approximation of the mobile Euclidean 1-center. See [14] for approximation algorithms
to the mobile Euclidean 2-center. Finally, the authors of [6] focus on exact and approximate ver-
sions of the Euclidean 1-center problem for a set of moving points in the plane where the center is
constrained to have bounded velocity. They demonstrate that the velocity of the exact Euclidean
1-center can be arbitrarily high. We also refer to [13] for a study on the behavior of the mobile
1-center problem.

Another variant of the last problem is that of finding flocks in a given set of moving data. In [5]
a flock is a set of m points such that for every discrete time step in a given interval of time, there
is a disk of a given radius that contains all m points. The movement of the points is described by
means of trajectories given as polygonal lines that can intersect themselves. The authors present
various algorithms for reporting flocks.

Unlike some of the papers mentioned above, we refrain from using KDS since the covering disks
may all exist at different times. The approach of maintaining a solution through time does not
seem adequate. Instead, we choose to make the problem somewhat more static. We do this by
translating the problem into a merely combinatorial one. This is described in detail in Section 4.

3 MinimaxACS is NP-hard

In this section we prove that the minimax anchored covering set problem is NP-hard, and moreover,
that there is no polynomial-time constant approximation algorithm for it unless P=NP. Notice that,
since the centers are fixed in our problem, the hardness of the discrete Euclidean k-center problem
does not imply hardness of the minimaxACS-problem. Moreover, the static version of the problem
can be easily solved in polynomial time by using the Voronoi diagram of the k centers, that is,
the optimal allocation is given by the Voronoi regions. It is interesting to observe that the hybrid
version of the mobile-client/static-server minimax problem is NP-hard, and the proof is not a direct
reduction from the static version. We give a proof that uses a static problem for the reduction and
permits to introduce, in some sense, movement into a static scenario. The study of hybrid scenarios
may provide surprising results on the hardness of the problems. See [12] for an example in which
restricted motion is also considered.

For showing the NP-hardness, the reduction is from the p-PairSupplier problem [25], a restricted
version of the p-center optimization problem that can be stated as follows:

Instance: Given a complete weighted bipartite graph G = (V ∪ U,E), where V and U are disjoint
sets of vertices such that |U | = n and V = V1 ∪ . . . ∪ Vp is the union of p pairwise disjoint sets of
vertices, each one with cardinality two. Let wi,j ≥ 1 be the weight of the undirected edge {vi, uj},
where vi ∈ V and uj ∈ U .

p-PairSupplier problem: Select a set C of p nodes, one from each Vi such that the maximum
distance (weight) of any node in U to its nearest neighbor in C is minimized.
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The decision problem associated with the p-PairSupplier problem is NP-complete [25, 26]. Fur-
thermore, there is no polynomial-time α-approximation algorithm for the p-PairSupplier problem
for any constant α, unless P = NP [25].

Theorem 1. The minimaxACS-problem is NP-hard. Furthermore, there is no polynomial-time
α-approximation algorithm for the minimaxACS-problem for any constant α, unless P=NP.

Proof. Consider the decision problem for minimaxACS: Is there an Anchored Covering Set of cost
(maximum radius) less than or equal to w? Clearly this problem is in NP. We now proceed to
prove its completeness.

Given an instance G = (V ∪ U,E) of the p-PairSupplier problem, we construct an instance of the
ACS problem as follows. The key idea is to put the centers both in the vertices of V and U , and
moving clients representing the edges of G in such a way a covering set in an instance implies a
covering set in the other one. The details of the construction are as follows.

Let wmax be the largest weight of the edges of G. We first place the centers and the mobile clients.
The radius and activation time for each disk centered at them will be specified later. Refer to
Figure 1:

• For each vertex vi ∈ V , 1 ≤ i ≤ 2p, place a center qi such that:

qi :=

{

(i · (−3wmax), 0) if i is odd,
(i · (−3wmax), 2wmax) if i is even.

• For each vertex uj ∈ U , 1 ≤ j ≤ n, place 2p − 1 centers q2p+j = (j · (−3wmax), y) (we will
choose an appropriate value for y below). Note that we put 2p + (2p − 1)n centers in total.

• We now place 2pn mobile clients as follows. Let wi,j be the weight associated with the edge
{vi, uj} in G. For every 0 ≤ i ≤ 2p and every 1 ≤ j ≤ n, we place a mobile client ci,j at
distance wi,j from qi at time t = 0 and moving on a straight line from its current position (at
t = 0) towards q2p+j.

To keep the mobile clients in good working order, some details are needed. Firs, take note
that we can choose y big enough so that the distance from every ci,j to every point qk (other
than qi and q2p+j) is always greater than wmax. This can be guaranteed since as y tends to
infinity, the trajectories of the mobile clients tend to vertical lines.

On the other hand, speeds for the mobile clients ci,j can be chosen so that they arrive
sequentially to every q2p+j, that is, at every instant there is at most one mobile client at
distance less or equal to wmax from q2p+j.

• Finally, for each pair of centers (qi, qi+1) (i odd and 1 ≤ i ≤ 2p − 1), we add an extra mobile
client c∗i . The trajectory of c∗i is the directed line passing through qi and qi+1. See Figure 1.
We choose the initial position and velocity of each point c∗i in such a way that, by the time
c∗i reaches qi, all initial mobile clients ci,j have arrived at their respective point q2p+j. The
purpose of considering these extra mobile clients (as we will see later) is to use all centers to
cover all moving clients. Note that we put 2pn + p mobile clients overall.

We are now ready to show the reduction. First, we will prove that for a solution of the p-PairSupplier
problem with cost at most w we can obtain an anchored covering set (ACS) with maximum radius
w. Secondly, we will show that an anchored covering set of radius at most w generates a solution for
the p-PairSupplier problem with cost at most w. Suppose that there is a solution to the instance
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0

y
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Figure 1: Centers, anchored disks and mobile clients for the NP-hardness reduction.
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of the p-PairSupplier problem with a cost less than or equal to w, that is, we have a set C of
selected suppliers (Figure 1 bottom) of V such that the maximum distance to its associated clients
(Figure 1 top) is w. Keep in mind that a supplier vi ∈ C serves a client uj ∈ U if there is not
a supplier vk, k 6= i, such that wk,j < wi,j in G. For every vi ∈ C, let uvi

be the client served
by the vi farthest away from it, and let wvi

be the weight of the edge {vi, uvi
} in G. Thus, let

w = max{wvi
, 1 ≤ i ≤ p} and BV (qi), 1 ≤ i ≤ 2p, be the disk centered at qi with coverage radius

wvi
, and whose activation time is the first instant in which a mobile client is inside its coverage

range.

By construction, we know that at least n mobile clients of the type ci,j are covered by disks BV (qi).
Therefore, there are at most (2p − 1)n mobile clients that are not covered by such disks, all these
of type ci,j. However, this is exactly the number of centers located at vertices of U , and each one
of these mobile clients, by construction, is within the coverage range of at least one disk of type
BU (q2p+j). Therefore, all of the remaining mobile clients ci,j are covered by such disks with radius
0 and activation time whenever they arrive at q2p+j. Finally, the extra mobile clients of type c∗i
are covered later by the non-activated disk BV (qi) (with radius 0). Thus, there exists an Anchored
Covering Set (i.e. a radius and an activation time for every center) that covers all mobile clients
with a maximum radius w.

On the other hand, a solution of radius at most w for the anchored covering set problem activates
at most one supplier disk BV (qi) of each pair, otherwise some extra mobile client c∗i is not covered.
Therefore, such a solution generates a selection of cost w for the p-PairSupplier problem, and the
reduction follows.

Note that there are 2pn mobile clients cij and p extra mobile clients c∗i . Since each of them can
be calculated independently by solving polynomials, the instance of the minmaxACS can be con-
structed and the whole reduction can be done in polynomial time. We also note that this reduction
preserves approximability and therefore there is no constant factor approximation algorithm for
the minimaxACS unless P=NP. This finishes the proof. �

4 Framework

Having established the complexity of the minimaxACS-problem, we now provide a generic frame-
work that will be useful for solving a set of optimization problems. This framework will allow us to
generate all non-equivalent covering sets in a Gray code-like order, in that two consecutive covering
sets differ in exactly one disk. We first give a detailed description of the framework and the ap-
proach to generate it, and then we analyze the complexity of the method. In the following section
we will be able to optimize our framework further in order to solve the minimaxACS-problem more
efficiently.

4.1 Description

Roughly speaking, our framework makes use of arrangements of curves which are defined as follows.
Let dj,i(t) be the function defined by the squared Euclidean distance between the j-th static center
and the i-th mobile client, that is, between qj and σi(t), at time t. We use the squared distance to
simplify our analysis and denote by Aj the arrangement of curves defined by the functions dj,i(t),
1 ≤ i ≤ n (Figure 2). Note that when we refer to a point (t, r) in Aj we actually mean the point
(t, r2), and also that (t, r) can be associated with Bj(t, r), the disk centered at qj at time t with
radius r. Analogously, each disk centered at the point qj can be identified with a point in Aj. Note
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r

t

dj,i(t)

Figure 2: Arrangement of curves Aj and its critical points.

that C(Bj(t, r)), the set of points covered by Bj(t, r), consists of the set of clients represented by
the curves below (t, r).

Let f be a face in Aj. An edge e of f is on the lower boundary of f if and only if there are no other
edges of f below e. From now on, a face f in Aj will be composed of its interior together with its
lower boundary. As a consequence, any two disks represented by two points in f cover exactly the
same clients.

Certain points of these arrangements allow us to discretize the search space of the covering sets.
These points are located either at the minimum of the functions dj,i(t) or at the intersection of two
such functions. We will refer to them as critical points (marked points in Figure 2). The following
lemma shows that every anchored disk can be realized as one of the critical points. Therefore from
now on, we will assume that all disks are given by these points.

Lemma 1. For every Bj(t, r), there exists Bj(t
′, r′) such that r′ ≤ r, (t′, r′) is a critical point in

Aj and C(Bj(t, r)) = C(Bj(t
′, r′)).

Proof. Without loss of generality, suppose that C(Bj(t, r)) is not empty. Let σi(t) in C(Bj(t, r)) be
the point farthest away from qj at time t. Let r′′ be the distance between qj and σi(t). Clearly, both
disks, Bj(t, r) and Bj(t, r

′′), cover exactly the same clients. Let (t∗, r∗) be the minimum of dj,i(t).
From (t, r′′), move continuously along dj,i(t) towards (t∗, r∗) until a critical point (t′, r′) is reached.
Observe that this point may be (t∗, r∗). Therefore C(Bj(t, r)) = C(Bj(t

′, r′)) and r′ ≤ r. �

4.2 Approach

We will now proceed to describe a method that allows the generation of all non-equivalent possible
solutions to a generic optimization problem. In order to find a covering set, k disks must be chosen
(one per arrangement). To preserve the simplicity of the presentation, we first describe how the
k-th disk is selected, assuming that the first k − 1 have already been chosen. We will then present
a procedure to choose these first k − 1 disks.
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Figure 3: The pointer data structure on the arrangement Ak. Edges are represented by dashed
lines.

The strategy for selecting the k-th disk is based on the observation that once the first k − 1 disks
are chosen, the k-th disk must cover all clients not yet covered. Therefore its corresponding point
in Ak must be above the curves representing the clients that have not yet been covered. In other
words, this point must lie in the upper envelope [3] of the subarrangement consisting of such curves.
Since any point in the upper envelope will do, we choose the point with minimum height.

At this point, it would be natural to proceed by dynamically updating the upper envelope of Ak,
as the first k − 1 disks are selected. We refrain from this approach since, as we will show later,
the upper envelope may undergo a change in linear size. Instead, we present a simpler static data
structure that enables us to find the k-th disk in time O(n).

Consider the points in Ak which are of minimum height in their corresponding faces; note that
they must be critical points. We construct a directed graph having these points as vertex set. Let
min(f) be the minimum point of face f . We add a directed edge with label i from min(f) to
min(f ′) for two neighboring1 faces f and f ′ if any disk represented by a point in f covers the i-th
client, and if this cannot be done using a point in f ′, that is, if for every (t, r) ∈ f and (t′, r′) ∈ f ′,
C(Bk(t, r)) = C(Bk(t

′, r′)) \ {σi}. Finally, we add an artificial point representing the possibility of
not placing any disk at the k-th center (that is, considering a disk with radius 0) and we join it
with the other vertices by the same rule as above. Refer to Figure 3.

In order to find the k-th disk, we start from the minimum point of the upper envelope of Ak and
follow a directed edge if its label corresponds to a client that has already been covered. To keep
track of covered clients we maintain an array A which stores in A[i] we store the number of times
the i-th client is inside a disk placed at any of the first k− 1 centers. Eventually we will arrive at a
critical point whose edge we can no longer follow. This point corresponds to the desired k-th disk.

We now describe the Gray code-like order in which we generate the first k − 1 disks. See [35, 22]
for more information on Gray codes in combinatorial algorithms.

Consider two neighboring faces in Aj for 1 ≤ j ≤ k − 1. Note that two disks represented by points
in neighboring faces in Aj differ by only one in the points they cover. For every Aj, let Dj be its

1We say that two faces in an arrangement are neighbors if they share an edge.
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dual graph. Dj is the graph having as vertex set the faces of Aj, two of them adjacent if they are
neighbors in Aj.

The faces of a single Aj can be visited using DFS (Depth First Search) [11] on the dual graph Dj.
Each time a face f is visited in Aj we take its minimum point (t, r) and consider the disk Bj(t, r).
Note that some vertices may be visited more than once. In each step we update the array A.

To generate the set of all possible k − 1 disks, we first run DFS on D1, stopping at each vertex to
recursively visit the faces of D2, . . . ,Dk−1. That is, we will then run DFS on D2 stopping at each
vertex to do a DFS on D3 and so on. Two consecutive sets visited in this order differ in only one
disk. This disk, as noted before, covers one point more or one point less than the previous disk.
For this reason, we mentioned earlier that this visiting is done in a Gray code like manner.

4.3 Complexity

We now analyze the time and space complexity of the construction of the framework that solves a
class of optimization problems in a mobile-client/static-server scenario.

Since distance functions dj,i(t) intersect pairwise at most twice, each arrangement of curves, and
thus its dual graph, can be constructed in O(n2) time and space [3]. For the same reason, there are
O(n2) critical points in each arrangement. Therefore, the number of ways of choosing a disk in each
of the k arrangements is O(n2); hence, there are O(n2k) non-equivalent covering sets. However, for
our purposes, only O(n2(k−1)) non-equivalent covering sets suffice, since we assume that the k-th
disk is defined by the first k − 1 disks.

The traversal of each dual graph Dj takes O(n2) time (Dj is planar) [11]. Thus, it takes O(n2(k−1))
time to traverse all the first k − 1 arrangements.

Let us remember that in order to obtain the k-th disk, we use the directed graph constructed above
on the arrangement Ak, in which we follow a directed edge labeled with i iff A[i] ≥ 1. In this path,
at most n edges are followed since no two edges in the path have the same label. Thus, the k-th
disk is selected in O(n) time.

Given the Gray code property of the traversal of the first k − 1 disks, two consecutive sets of k − 1
disks differ only in one disk. Therefore, the array A can be updated in constant time.

In summary, we have:

Theorem 2. Let C be an ordered collection of non-equivalent covering sets, and let R be a range
assignment cost function on C. If two consecutive covering sets C ′ and C ′′ of C differ in at most
one disk, then R can be optimized in O(n2k−1) time and O(n2(k−1)) space.

As a consequence of this result we have a generic approach for solving a class of combinatorial
optimization problems. For instance, a fundamental problem in Ad-Hoc Wireless Networks is the
so-called minimum energy range assignment problem [33], where the transmission range of a station
depends on the energy invested by the station. In particular, the power required by a station si to
correctly transmit data to another station sj is modeled as d2(si, sj)

α, where d2(.) is the Euclidean
distance and α ≥ 1 is the distance-power gradient. Our approach may be used to discretize the
problem in the mobile-client/static-station version and solve it in O(n2k−1) time. Note also that
this framework would yield a solution to the minimaxACS in O(n2k−1) time. We are able to further
optimize this framework for the minimaxACS problem in the next section.

As we mentioned earlier, instead of using the directed graph we introduced, one could consider
making dynamic updates to the upper envelope in Ak. Such a dynamic data structure for main-
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taining the upper envelope of a set of straight lines does exists [32]. This data structure maintains
the upper envelope of n straight lines under insertions and deletions with a cost of O(log2(n)) per
operation. However, in the case of quadratic functions, such a data structure might unfortunately
need linear time for updating. This is because, after an insertion or a deletion, there could be
a change of linear size in the upper envelope. For instance, take any quadratic polynomial p(x)
with a leading coefficient greater than one. Choose any m real numbers x1 < x2 < · · · < xm. For
every 1 ≤ i ≤ m, let qi(x) = p(x) − (x − xi)

2. Note that qi(x) is a polynomial of degree 2 and
that p(x) − qi(x) = (x − xi)

2. Therefore, the graphs of p(x) and qi(x) only intersect at (x, p(x)).
Choose ǫ > 0 so that the upper envelope of p(x), q1(x) + ǫ, . . . , qm(x)+ ǫ, as seen from left to right,
consists of p(x), q1(x), p(x), . . . , p(x), qm(x), p(x). Note that p(x) intersects the upper envelope of
q1(x), . . . , qm(x) a linear number of times. Thus, the change after an insertion or deletion in the
upper envelope of polynomials of degree 2 can be linear.

Due to previous comment, it seems to be adequate to use our simpler data structure, since it is
easy to implement and the cost for finding the k-th disk is also linear.

5 Algorithm for the minimaxACS-problem

In this section we show an alternative algorithm for the minimaxACS-problem that is efficient for
small constant values of k. The strategy is commonly used to solve optimization problems with the
minimax criterion. The idea is to use the associated decision problem to apply binary searching.

5.1 The Fixed Radius Decision Problem

Consider the the fixed-radiusACS problem: Decide if an anchored covering set exists for a given
fixed radius r.

As we did previously, we discretize the problem as follows. Let d(t) be the constant distance
function with value r. d(t) = r is a horizontal line in the arrangement Aj. For every anchored
covering set with fixed radius C = {B1(t1, r), . . . , Bk(tk, r)} there exists another anchored covering
set C′ = {B1(t

′
1, r), . . . , Bk(t

′
k, r)} such that (t′j, r) is an intersection point of the line d(t) = r and

the function dj,i(t) in Aj, and C(Bj(tj , r)) ⊆ C(Bj(t
′
j , r)). Therefore we will only look at disks

given by these intersection points.

In order to compute the possible covering sets, we proceed as before: first we generate the first k−1
disks in a Gray code like manner, and then we determine if there exists a k-th disk that covers the
remaining clients. To generate the first disks, we visit the intersections of the line d(t) = r with the
distance functions in A1 in time order, stopping at each point to recursively visit the intersection
points for A2, . . . ,Ak−1. Note that two sets of disks visited in this order differ by at most one in
the mobile clients they cover.

Let us assume that the first k − 1 disks have been chosen. We will now proceed to find the last
disk. Since the radius is fixed, there may be clients that can never be covered by a disk centered at
qk, that is, clients that are always at distance greater than r from qk. Let us take note that if these
clients are not covered by the first k−1 disks, no covering set using these k disks exists. Therefore,
it is important to keep track of these clients so that we know in constant time whether the clients
not reachable from qk are covered.

Let us consider the case where all clients unreachable from qk have been covered. In Ak, each client
not yet covered by the first k − 1 disks defines an interval in the horizontal line d(t) = r whose
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distance to qk is less than or equal to r. Thus, a solution exists if and only if the intersection of all
these intervals is non-empty. Every interval has a starting point and an ending point. A solution
then exists if and only if the last starting point lies before the first ending point in time. This can
be easily done and maintained in time O(log n) as points are added or deleted.

Every dj,i(t) intersects line d(t) = r in at most two points in Aj. Therefore, there are at most
2n such intersections in every Aj and all intersections can be found in time O(kn). Sorting the
intersection points in all the arrangements can be done in O(kn log kn) time. Therefore we conclude:

Theorem 3. The fixed-radiusACS problem can be solved in O(nk−1 log n) time.

5.2 The minimaxACS-problem

We use the above approach as a sequential algorithm to solve the minimaxACS-problem. Note that
for every Bj(tj, rj) in an anchored covering set, we have that C(Bj(tj , rj)) ⊆ C(Bj(tj , r)) for any
r > rj. Therefore, we may assume that all the disks in a solution for the minimaxACS-problem
have the same radius r.

As we stated before, the solution must be given by a set of critical points, and since there are
O(kn2) critical points in total, this is also the number of candidates for radius in a solution. By
sorting all these radii in O(kn2 log(kn)) time and running a binary search on them using the fixed
radius decision algorithm, we arrive at the main result of this section.

Theorem 4. The minimaxACS-problem can be solved in O(nk−1 log n log(kn)) time.

6 Conclusions and Future Work

In this paper we studied the complexity of a kinetic constrained covering problem where the centers
are fixed in advance and the points to cover are moving on straight lines at constant velocity. A
specific problem, minimizing the maximum radius, has been studied in detail and a proof of NP-
hardness was provided. We hope the key idea of our proof can be used to prove the NP-hardness
of similar problems whose corresponding static versions are polynomial. A general framework was
developed to enumerate all combinatorially distinct candidate values for a collection of optimiza-
tion problems. Finally, an efficient algorithm for constant values of k was also presented for the
minmaxACS-problem.

Although the geometric model studied in this paper is the simplest one, the same strategy can
be used for more general settings. Let us give some generalizations. Firstly, the problems were
presented in the plane, it is straightforward to use the same techniques to solve them in arbitrary
dimensions. Note that in the more general setting of R

d, the distance functions to a given anchored
point are also quadratic on t and the curve arrangements can be constructed in the same way. Once
the curve arrangements Aj are constructed, the discussion follows exactly as in the plane.

Moreover, no extra difficulty is involved if the anchored points are now allowed to move along
straight lines at constant speed, since the distance functions from the mobile clients to any fixed
(now moving) center are again quadratic.

On the other hand, the complexity of the problem does change if instead of linear motion, an
algebraic motion of degree m is allowed. In this case the position of every moving point set σi(t) is
given by σi(t) = (σ1

i (t), σ
2
i (t)), where σj

i (t) is a polynomial of degree at most m on t. For this case,
a similar approach can be taken by constructing the curve arrangements of the squared distance
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functions to each anchored point. The squared distance functions will now be polynomials of degree
at most 2m. Two squared distance function curves in a given arrangement will intersect at most
2m times, and the curve arrangement of every anchored point has complexity O(mn2). The same
framework can be used by replacing every quadratic term n2 by mn2 in its complexity. It remains
to be seen how much this complexity can be reduced.

Other possible variations rely on the objective function. The optimization problems dealt with
the radii of the covering disks. Another class of problems to be studied is time optimization.
For example, a restriction on the solution (such as fixed radius) might be given and we would be
interested in the first such solution. This problem can also be solved using the general framework,
but a better solution probably exists.

Finally, note that for a fixed k, the exhaustive enumeration of all candidate values of a range
optimization problem provides polynomial-time algorithms. If, instead, k is allowed to vary, the
algorithms become exponential on k. We conjecture that for a varying k, other optimization
problems, such as minimizing the sum of radii, are NP-hard. Another interesting open problem for
future research is to design faster exact exponential algorithms for practical situations in the sense
of [36].
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