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Abstract

Let S be a bicolored set of n points on the plane. A subset I ⊆ S is called an island of S,
if I is the intersection of S and a convex set C. In this paper we give an O(n3)-time algorithm
to find a monochromatic island of maximum cardinality. Our approach also optimizes other
parameters and gives an approximation to the class cover problem.
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1 Introduction

Given a set of points S on the plane, the convex hull of S, denoted as CH(S), is the smallest convex
set of the plane containing S. Let S be a set of n points on the plane in general position such that
its elements are classified into two classes or colors, say red and blue. A subset I of S is called an
island if there is a convex set C such that I = S ∩ C. An island of S is monochromatic if all of
its elements have the same color. A monochromatic island is called red or blue depending on the
color of its elements.

In this paper we study the problem of finding a largest monochromatic island of a bicolored point
set S, that is a monochromatic island of S with maximum cardinality. We will refer to this
problem as the LMI-problem. An O(n3)-time algorithm to solve the LMI-problem is presented,
improving on the O(n3 log n)-time algorithm presented in [14]. Our algorithm is simple and easy
to implement and it can be easily generalized to solve a collection of maximization or minimization
problems involving so-called decomposable functions. In the rest of this paper, S will always denote
a bicolored point set, and will assume without loss of generality that the largest monochromatic
island of S is blue. By running our algorithm twice, first finding the largest blue island, and then
the largest red island we will obtain the optimal solution to our problem. Thus from now on, we
consider only the problem of finding the largest blue island of S.

With minor modifications, our algorithms can solve weighted versions of our main problem. In
these versions, the elements of S have been assigned weights (usually integral values), and our
objective is that of finding islands of S with maximum weight. We observe that when the labels
or weights of the elements of S are chosen carefully, we can solve problems apparently unrelated.
For example, finding an island of S with maximum discrepancy, that is, an island in which the
absolute value of the difference between the number of blue points and the number of red points
is maximized [9], can be obtained by solving two instances of the maximum weight problem as
follows: First assign weight 1 (resp. −1) to all blue points (resp. red points), and find an island of
maximum weight. Then assign weight −1 (resp. 1) to all blue points of S (resp. red points in S),
and find an island of maximum weight. The solution with maximum weight to both problems will
produce the island of S with maximum discrepancy.

1.1 Related work

In recent years, there has been a lot of work on geometric and algorithmic problems on bicolored
point sets on the plane. Two of the first problems studied here concern the existence of simple
alternating paths in bicolored point sets [3], and that of finding monochromatic spanning trees with
few intersections [19]. Since then, different problems on bicolored point sets have been studied.
Many of these problems can be cast as partitioning problems of point sets into sets of disjoint
islands with specific properties, e.g. if a point set S contains kn red and n blue points, partition
S into a set of n disjoint islands such that together they cover all of S, and each island contains k
red and one blue point. The interested reader can find a good survey on some of these problems
in [16].

Several papers have studied the algorithmic aspects of problems of this kind, for example in [4] it
is studied the problem of finding a largest empty convex subset of a point set, that is, a largest
subset of a point set P , such that its elements are the vertices of a convex polygon Q containing
no element of P in its interior. Algorithms are also known for finding subsets of points with k
elements that minimize parameters such as the diameter, the perimeter, or the number of vertices
of their convex hull. For relevant results see [2, 13].

Our motivation to study the LMI-problem arises from applications in data mining, statistical
clustering, pattern recognition or data compression. In data mining and classification problems,
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a natural method for analyzing data is to select prototypes representing different data classes. A
standard technique for achieving this is to perform cluster analysis on the training data [10]. In
this paper we propose the use of convex polygons. In pattern recognition, the convex hulls have
been considered to measure the separability among classes [17]. Indeed, the relationship between
those convex hulls and support vector machines (SVMs) have been well studied [5].

2 The largest monochromatic island

In this section we present an O(n3)-time algorithm to solve the LMI-problem. To start, we note
that there are configurations of red and blue points for which there are an exponential number of
solutions to the LMI-problem. For example take a regular k-gon Pk with vertices v1, . . . , vk. For
each vertex vi of Pk place a set Si with 2k points on a convex curve C such that every second point
on C is blue, see Figure 1. It is easy to see that any largest monochromatic blue island of the point
set thus obtained, has exactly k elements. Moreover these islands can be obtained by choosing a
blue point from each Si, or all the blue points of some Si. Thus there are kk + k of such islands.

Sk

S1

S2

S3

Figure 1: There are k groups S1, . . . , Sk of 2k points each. There are kk + k solutions.

We give now some terminology and definitions that will be useful to us. From now on we will
assume, without loss of generality, that no two elements of S have the same y-coordinate. Denote
by p− q the line segment joining the points p and q. Given a line segment p− q and a point r not
in p− q, ∆(r, p− q) will denote the triangle whose vertices are p, q, and r. For a set X, Blue(X)
denotes the number of blue points in X. Thus Blue(∆(r, p − q)) will denote the number of blue
points in the triangle ∆(r, p− q).

Given a point p and two segments e = q − r and e′ = r − s with blue endpoints, we call e and e′

p-compatible if the following conditions hold:

1. ∆(p, e) and ∆(p, e′) contain no red points in their interiors,

2. ∆(p, e) and ∆(p, e′) have disjoint interiors, and

3. ∆(p, e) ∪∆(p, e′) is a convex polygon, see Figure 2 a).

Let P be a convex polygon with vertices in S, and p the vertex of P with the largest y-coordinate.
We call p the anchor of P, and say that P is anchored at p. Our objective is now to find, for
each blue point p ∈ S the largest blue island B of S such that the anchor of the convex polygon
determined by the convex hull of B is p, that is the largest blue island of S anchored at p.
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Figure 2: a) The edges e and e′ are p-compatible. b) CH(B) is the union of blue triangles anchored at p.

Let B be a blue island of S anchored at p. Assume that the vertices on CH(B) are labelled
p, pσ1 , . . . , pσk

in the counterclockwise order along the boundary of CH(B). We will say that B ends
at pσk−1

− pσk
.

Let hp be the horizontal line through p, and pi and pj two blue points of S lying below hp. Observe
that if ∆(p, pi − pj) contains red elements of S, pi − pj will never be an edge of a blue island
anchored at p. Thus in the following, we will deal only with segments pi−pj such that ∆(p, pi−pj)
contains no red points. We associate a weight w(pi − pj) to edge pi − pj as follows: w(pi − pj) is
equal to the weight Blue(B) of the largest blue island B of S anchored at p that ends at pi − pj.

Thus finding a maximum blue island of S anchored at p reduces to finding an edge pi − pj with
maximum weight. The following observation suggests a dynamic programming approach to solve
LMI-problem:

Observation 1. Let B be a blue island anchored at p, and let p, pσ1 , . . . , pσk−1
, pσk

be the vertices
of CH(B) labeled in counterclockwise order. Let B(i) (1 ≤ i ≤ k) be the island such that the
vertices of CH(B(i)) are p, pσ1 , . . . , pσi . Observe that pσi − pσi+1 and pσi+1 − pσi+2 are p-compatible,
i = 1, . . . k − 2, and Blue(B(k)) satisfies the following formula:

Blue(B(i)) =
{

2 if i = 1
Blue(B(i−1)) + Blue(∆(p, pσi−1 − pσi))− 2 if 1 < i ≤ k.

The additive property in Observation 1, allows us to solve the problem of finding the largest
monochromatic island anchored at a point p by performing a radial sweep of the blue points
below hp in the counterclockwise order around p by joining sets of p-compatible edges, i.e. sets
of triangles with blue vertices (one of which is p) such that they have disjoint interiors, do not
contain red points, and their union forms a convex polygon anchored at p, see Figure 2 b). The
bottleneck of the sweeping approach proposed in [14] is the joining process. The prefix-maximum
data structure used in that paper does not avoid performing a binary search to select the best
solution in each step. In the next section, we give a simple data structure that allows to compute
the largest blue island anchored at a point p in O(n2) time and space, thus obtaining an overall
O(n3)-time algorithm to solve the LMI-problem.

2.1 Computing the weights of edges pi − pj

The following result presented in [13] will be useful to us:
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Figure 3: a) ∆(p, pi − pi+1) contains a red point, and thus edge pi − pi+1 is discarded. b) Ordering of the
edges of pi.

Theorem 1 Let P be a set of n points in the plane in general position. Then it is possible to
preprocess P in O(n2) time and space such that for any triangle T with vertices in P we can, in
constant time, determine the number of points of P in T .

Straightforward modifications to their algorithm can be used to solve the following problems:

• For each triangle T with vertices in P , find the number of red and the number of blue points
contained in T in constant time.

• If the elements of P have weights assigned to them, calculate the sum of the elements of P
contained in T in constant time.

Let Sp be the set of blue points in S below hp. Suppose that the elements of Sp are labeled p1, . . . , pk

from left to right according to the slope of the line segments joining them to p. By Theorem 1, we
can discard, in constant time per edge, all edges pi − pj such that ∆(p, pi − pj) contains at least
one red point, see Figure 3 a). We process all remaining edges as follows:

First, and for the sake of clarity if i < j, we will orient the edge pi − pj with the orientation
pi → pj , thus obtaining an oriented acyclic graph Gp with vertex set Sp, 1 ≤ i < j ≤ k. For every
1 < i ≤ k relabel the sets of incoming and outgoing edges of pi with La,i = {a1,i, . . . , aq,i} and
Lb,i = {b1,i, . . . , br,i} respectively, such that La,i and Lb,i are radially sorted with respect to pi as
shown in Figure 3 b). For all the points p ∈ S, the corresponding ordering p1, . . . , pk, as well as
the sorted sets La,i and Lb,i, i = 1, . . . , k can be obtained overall in quadratic time and space [12].

We show next how to calculate w(pi − pj) recursively for all 1 ≤ i < j ≤ k. Recall that for the
calculation of w(bm,i), 1 ≤ m ≤ r, we must find an edge as,i which is p-compatible with bm,i such
that w(as,i) is as large as possible. The idea is to handle the lists La,i and Lb,i in such a way all
outgoing edges can be weighted in linear time. We elaborate on this:

We assign to all edges pi − pj a pointer prev(pi − pj) initially set to null. Each edge p1 − pj has
now assigned the weight w(p1 − pj) = Blue(∆(p, p1 − pj)). Suppose that all edges pα − pβ have
been assigned weights, 1 ≤ α < β ≤ k, α < i < k. We now show how to assign weights to all edges
pi − pj , i < j ≤ k.

For 1 ≤ ` ≤ q, let h(`) be the smallest integer such that w(ah(`),i) = max{w(a1,i), . . . ,w(a`,i)}.
The values h(1), . . . , h(q) can be calculated in O(q) time as follows: h(1) = 1 and for ` = 2, . . . , q
applying the following formula:
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h(`) =
{

` if w(a`,i) > w(ah(`−1),i)
h(`− 1) if w(a`,i) ≤ w(ah(`−1),i)

The following observation will be useful:

Observation 2: Let s be the largest index such that as,i is p-compatible with bm,i, then ah(s),i is
p-compatible with bm,i, and has maximum weight over all the edges in La,i compatible with bm,i.

Therefore we set w(bm,i) = w(ah(s),i) + Blue(∆(p, bm,i))− 2 and prev(bm,i) = ah(s),i.

The following procedure computes w(·) and prev(·) for all bm,i in the list Lb,i:

For m = 1, . . . , r find the largest index sm such that asm,i and bm,i are p-compatible. If no incoming
edge to pi is p-compatible with bm,i, set sm = 0. If sm = 0 then w(bm,i) = Blue(∆(p, bm,i)), else
w(bm,i) = w(ah(sm),i) + Blue(∆(p, bm,i)) − 2. Since s1 ≥ s2 ≥ . . . ≥ sr, it follows that we can
compute the weights and prev(·) of all of the elements of Lb,i in a single pass over La,i and Lb,i. It
is clear that the procedure above runs in O(n) time. Thus we have:

Lemma 1 The weights of all edges pi − pj lying below hp can be calculated in O(n2) time.

To obtain a largest blue island B anchored at p, find an edge pi − pj with maximum weight, and
to calculate the convex hull of B, simply follow the pointers prev(·) recursively. By repeating the
above procedure for all the blue elements of S we obtain:

Theorem 2 Let S be a bichromatic point set in general position on the plane. The largest mono-
chromatic blue island can be found in O(n3) time, by using a preprocessing of O(n2) time and
space.

3 Generalizations

The algorithm presented in the previous section can be used to solve a collection of optimization
problems. To this end suppose we have a function f : P → IR, where P is a set of convex polygons.

Definition 1 [13] We say that a function f on P is decomposable iff for any polygon P =
{p1, p2, . . . , pk} ∈ P and any index 2 < i < k,

f(P ) = g(f({p1, . . . , pi}), f({p1, pi, . . . , pk}), p1, pi)

where g can be calculated in constant time.

Roughly speaking, a function f is decomposable if, when a polygon P is cut into two subpolygons
P1 and P2 along a diagonal e joining vertices p1 and pj of P , f(P ) can be calculated in constant
time from f(P1), f(P2), and some information on e. For example, the function H that counts the
number of points of S contained within or on the boundary of a convex polygon P is decomposable,
H(P ) = g(x, y, p1, pi) = x + y − 2, where H(P1) = x and H(P2) = y.

A key observation is that if we change the function Blue(·) in Observation 2, by any decomposable
function f , the method we developed to calculate the weights of the edges pi − pj , will instead
calculate (within the same complexity) the function f for islands ending at pi − pj .
Since functions such as the area or perimeter of a convex polygon are decomposable, it follows that
by changing Blue(·) by above functions, we can calculate in O(n3) time a blue island of S with
maximum area, or perimeter.
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Suppose now that we assign weights to the elements of S, for our current purposes usually integral
values. Observe that the function that calculates the sum of the elements of S within a polygon
is decomposable, and this allows us to calculate islands of maximum weight. As mentioned in the
introduction of this paper, if we choose the weights of the elements of S carefully, we can solve
problems such as that of finding an island of S with maximum discrepancy. Moreover if we label
the blue points with 1, and the red points with −∞, the maximum weight island is the largest
monochromatic blue island.

We conclude this section by mentioning some generalizations of our problems on bicolored point
sets, to sets of points whose elements are colored with k colors. To this end, let S′ be a k-colored
point set. Let P be a convex polygon with vertices in S′. We say that P is a hole of S′, if P
contains no element of S′ in its interior. Straightforward modifications of our algorithm allow us to
solve, in O(n3) time, the problem of finding a monochromatic hole P of S′ with the largest number
of vertices, or with maximum area or perimeter.

An interesting open problem in this scenario is that of finding, if it exists, a heterochromatic island of
S′ with k elements, that is, an island of S′ with k elements such that all of its elements have different
color. Another open problem is that of finding, if it exists, a convex heterochromatic polygonal
chain, or a monotone heterochromatic polygonal chain of minimum length, see [8]. However, if we
restrict the elements of our convex chain, or monotone path to appear in a predetermined order,
e.g. the colors appear in order 1, 2, . . . , k, then the monotone chain can be computed in O(n log2 n)
time [8] and the convex chain, using the procedure of this paper, in O(n3) time.

4 The Class Cover Problem with Convex Sets

In this section we propose the use of the Largest Monochromatic Island’s algorithm to approximate
a class region by a small collection of convex sets. Several geometric objects as rectangles or circles
have been used in machine learning and recognition to separate a bicolored set of points [10, 11, 9].
However, as pointed out in [17], the number of convex hulls needed to approximate a class region is
less than, for instance, that of rectangles needed to approximate the same class region. Thus, the
use of a set of islands instead of a set of rectangles to approximate a class region seems adequate.

Given a set S of two classes, say red and blue points, a problem with application to classification
is the so-called the Class Cover problem. This problem is the one of finding a small number of sets
covering (containing) points from one class without covering any points from a second class. The
problem was introduced in [6] and consists of computing a set of circles C of equal size, and with
minimum cardinality such that the elements of C contain no red point, and every blue element of
S is contained in at least one element of C. We consider here a variant of this problem, named
the Convex Polygon Class Cover problem, in which we want to cover the blue points by using
(non-necessarily) disjoint convex polygons. Firstly, we show the hardness of this problem and
then an approximation solution is proposed. In [1], it is proved the NP-hardness of the following
problem: given n red and m blue points in the plane, find a minimum number of pairwise disjoint
triangles such that each blue point is covered by some triangle and no red point lies in any of the
triangles. The reduction is from the planar 3SAT-problem [15]. It is straightforward that we can
use the same construction as in [1]. In fact, we can reduce any instance of the planar 3SAT-problem
to an instance of the Convex Polygon Class Cover Problem in which the only possible solutions
consist of sets of pairwise disjoint triangles. Hence our problem is also NP-hard. Next we show an
approximation algorithm based on the Largest Monochromatic Island problem.

Let us consider the O(log n)-approximation greedy approach for the more general Set Cover Prob-
lem [15]. It can easily be applied to our problem and works as follows: recursively compute the
maximum blue island of S, remove it and repeat until there are no more blue points left in S.
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Figure 4: a) Separating the classes by using big islands. b) Disjoint and non-disjoint covering set.

Observe that the convex hulls of the blue islands obtained by the process may intersect. This
approach requires O(n) iterations in the worst case and this will happen when all resulting islands
have constant cardinality. Thus the complete algorithm takes O(n4) time and produces a collection
of convex sets with cardinality within a O(log n) factor from the optimal one. An illustrative exam-
ple is given in Figure 4 a). Notice that a more efficient O(n3)-time randomized greedy heuristic can
be useful in practical applications. In order to do this, we compute for each iteration the maximal
blue island anchored at a random blue point.

We note that in data mining and machine learning applications, the main goal is to separate blue
from red points. Thus it is possible that overlapping islands may appear and the above method
can be applied. In other applications, as visualization and computer graphics, the computation of
disjoint pieces is of interest. A similar greedy method works to approximate a class region by using
pairwise-disjoint convex sets. Once a blue island has been obtained, simply recolor all of its elements
red, and proceed with the next iteration. With this process it may occur that the cardinality of
the solution obtained could be arbitrarily large compared with the obtained by allowing the islands
to intersect. For example, let S be the point set with 2k points (k blue and k red) as shown in
Figure 4 b). We observe that k blue points, k ≥ 4, can be covered with at most three islands which
intersect (two islands if k is even). However, if we require blue islands with disjoint convex hulls,
we cannot cover the k blue points with less than bk

3c + 1 disjoint islands. From above discussion
we get the following.

Theorem 3 There is an O(n4)-time algorithm with approximation ratio log n for the Convex Poly-
gon Class Cover problem both for disjoint or non-disjoint convex sets.
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