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Abstract
Let Pn be a collection of n points on the plane. For any x,y,z Œ Pn let
C(x,y,z) be the number of elements of Pn contained in the circle
through x, y and z. Let A(Pn) be the average value of C(x,y,z) over
all triples of points {x,y,z}  contained in Pn. In this paper we prove
that for any collection of points Pn, A(Pn)≥È(n-3)/3.33...˘ , that is the
expected number of elements of Pn contained in any circle through
three points in Pn is at least È(n-3)/3.33...˘.  For the case when the
elements of Pn are the vertices of a convex polygon, A(Pn)= È(n-
3)/2˘. In this case our bound is tight.
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1. Introduction
Let Pn be a collection of n points on the plane, no three of which are aligned, nor

any four of which are cocircular.  The following result was proved in [NU]:  For any
Pn there are two points x,yŒ Pn such that any circle containing x and y contains at
least È(n-2)/60˘ points in Pn.  This result has been subsequently improved in a
sequence of papers; to În/27˚+2 in [HRW], to Èn/30˘ in [BSSU], to È5(n-2)/84˘  in
[H] and most recently to Èn/4.7˘ in [EHSS].  In this paper, we prove the following
related result.  For any Pn on the plane and x, y, z Œ Pn the expected number of
points of Pn contained in the circle through x, y and z is at least  È (n-3)/3.33..˘.  For
the convex case, i.e. when the points in Pn are vertices of a convex polygon, our
result can be improved to È (n-3)/2˘.  For this case, this bound is optimal.

2. Preliminary Results

Consider any collection Pn of n points on the plane.  Recall that for the rest of this
paper we will assume that no three elements of Pn are aligned, nor four of them are
cocircular.  For any subset {x,y,z}  of Pn let C(x,y,z) be the number of points of Pn

contained in the circle through x,y and z (see Figure 1).
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Figure 1
Denote by A(Pn) the average value of C(x,y,z) taken over all {x,y,z}  contained in

Pn.  The main objective in this section is to prove the following result:



Theorem 1:  A(Pn)≥ È (n-3)/3.33..˘.

Some preliminary results will be needed to prove Theorem 1.

Consider a subset of Pn with exactly four elements {u1, u2, u3, u4} .  Two
possibilities arise for the convex closure conv{u1, u2, u3, u4 }  of {u1, u2, u3, u4} ;
either conv{u1, u2, u3, u4 }  is a triangle or conv{u1, u2, u3, u4 }  is a quadrilateral.
Consider the four circles Ci determined by  {u1, u2, u3, u4} -{ui} ,  i=1,...,4.

Observation 1: If conv {u1, u2, u3, u4}  is a triangle, exactly one of the four
circles Ci, i=1,...,4, will contain the four points in {u1, u2, u3, u4}  (see Figure 1 (b)).
If conv{u1, u2, u3, u4}  is a quadrilateral, then exactly two of the four triangles Ci,
i=1,...,4, will contain the four points in {u1, u2, u3, u4}  (see Figure 1 (a)).

In the second case, if u2 and u4 are opposite to each other and the sum of the
angles at u2 and u4 is at least 180˚ then the circle through u1, u2 and u3 contains u4 in
its interior and the triangle through u1, u3 and u4 contains u2 in its interior (see Figure
1 (b)).

Construct a bipartite graph B(Pn) whose vertex set consists of the three and four
subsets of Pn.  A three subset S of Pn is adjacent to a four subset S' of Pn iff S is
contained in S' and the circle through the points in S contains the four points in S'
(see Figure 2).

Observation 2: In B(Pn) any vertex representing a four set S' has degree one or
two, depending on whether conv(S') is a triangle or a quadrilateral.
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Lemma 1:  If the degree deg(S) of a three set S={x,y,z}  in B(Pn) is k, then
C(x,y,z)=k, i.e. the number of points in Pn contained in the interior of the circle
through the points in S is exactly k .

Proof: Let S be a three subset of Pn  and H(S) the circle through the points in S.
For every point x in the interior of H(S ), the sets S and S'=S»{x}  are adjacent in
G(Pn).  The result now follows easily.

[]
Let a1 be the number of four subsets S' of Pn whose convex closure conv(S') is a

triangle and a2  the number of four subsets S' of Pn for which conv(S') is a
cuadrilateral.

Lemma 2:  The sum of the degrees of all the vertices of B(Pn) representing three

subsets S of Pn  equals a1+2a2=
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Proof:  By Observation 2, each four subset S' of Pn contributes one or two to the



sum of the degrees of the vertices of B(Pn ) representing three subsets of Pn,
depending on whether  conv(S') is a triangle or a quadrilateral.
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For example in Figure 2, conv(P5-{u1} ) and conv(P5-{u2} ) are both triangles and

conv(P5-{u3} ), conv(P5-{u4} ) and conv(P5-{u5} ) are 4-gons. Then for this case

a2=2 and a2=3. Then the number of edges in G(P5)= a1+2a2=2+3*2=
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the degree in B(P5) of each vertex representing a three S subset of P5 is the number
of points contained in the circle through S.

It now follows that the average value A( Pn) we are trying to determine is the
average degree in of the vertices B(Pn) representing three subsets of Pn.  Then we
can obtain the following equality for A(Pn):

Corollary 1:  A(Pn)=
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3. The Convex Case

We now proceed to prove our first result for the case when the elements of Pn are
the vertices of a convex polygon.  A set of points Pn will be called convex if the
elements of Pn are the vertices of a convex polygon.

Theorem 2:  If Pn is a convex set of points, A(Pn)=È(n-3)/2˘.

Proof:  If Pn is a convex set, for any 4-subset S' of Pn conv(S') is a cuadrilateral.

Then a2=
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= (n-3)/2.

[]
4. The General Case

We now proceed to obtain a lower bound for the value of A(Pn) for the general
case when Pn is not necessarily convex.  Notice that Theorem 2 gives us an upper



bound for the value of A(Pn) for the general case when Pn is no necessarily convex.
To obtain a lower bound for A(Pn), by Corollary 1, all we need to do is to

establish a lower bound for the value of a2, i.e. a lower bound on the number of four
subsets of Pn whose convex closure is a quadrilateral.

To do this let us construct a graph G(Pn) from Pn as follows.  The vertices of
G(Pn) are all the two subsets of Pn.  Two subsets {u,v} , {x,y}  are adjacent in B(Pn)
iff the line segments l(x,y)  and l(u,v) joining x to y and u to v intersect (see Figure
3).  Let I(Pn) be the number of edges in G(Pn).
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Lemma 3:  a2=I(Pn).

Proof:  If {u,v} , {x,y}  are adjacent in I(Pn), then (x,y)  and l(u,v) intersect and
conv(u,v,x,y) is a quadrilateral.  Conversely each subset S' of Pn whose convex
closure is a quadrilateral determines exactly one edge in I(Pn).

 []
The following result was proved in [NU].

Lemma 4:  I( Pn) is at least 
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4. The Main Result

We are now ready to prove our main result.

Proof of Theorem 1

By Corollary 1, A(Pn)=
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.  Using Lemmas 3 and 4, we obtain that
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=6(n-3)/20 = (n-3)/3.33... .

[]
As a consequence of our results we can easily prove the following result:

Theorem 3:  Let Pn be any collection of points on the plane, u,v ŒPn and C any
circle through u and v containing at least a third point x in Pn.  Then the expected
number of points of Pn contained in C is at least È(n-3)/3.33..˘.  If Pnis convex the
above bound can be improved to Èn/2˘.

Proof:  Let  C ba a circle through u and v containing a subset H of Pn. Then it is
easy to verify that one of the following two possibilities holds:
a) there is a third point wŒPn-H such that the circle C' throuh u, v and w contains in
its interior the same set of points in Pn as C.
b) there is a third point wŒH such that the circle through u,v and w contains in its
interior exacly the elements in H-w.

Our result now follows in a similar way as Theorem 1.
[]
5 Conclusions

As we pointed out in the introduction of this paper, it is known that for any
collection of points on the plane there are u,vŒ Pn such that any circle through u and



v contains at least  Èn/4.7˘ points in Pn.  On the other hand, the results presented in
this paper tell us that for any three points u,v,wŒ Pn the expected number of points
of Pn contained in the circle through them is at least  È(n-3)/3.33..˘.  We also show
that for any two points u,v Pn the expected number of points contained in any circle
through u and v (containing at least a third point x in Pn) is at least È(n-3)/3.33..˘. For
the convex case, the both bounds are improved to Èn/2˘.
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