A Containment Result on Points and Circles

JORGE URRUTIA

Instituto de Matemáticas, Universidad Nacional Autónoma de México.

Abstract

Let P_n be a collection of n points on the plane. For any $x,y,z \in P_n$ let C(x,y,z) be the number of elements of P_n contained in the circle through x, y and z. Let $A(P_n)$ be the average value of C(x,y,z) over all triples of points $\{x,y,z\}$ contained in P_n . In this paper we prove that for any collection of points P_n , $A(P_n) \ge [(n-3)/3.33...]$, that is the *expected* number of elements of P_n contained in any circle through three points in P_n is at least [(n-3)/3.33...]. For the case when the elements of P_n are the vertices of a convex polygon, $A(P_n) = [(n-3)/2]$. In this case our bound is tight.

This research was supported by CONACY of México, grant 37540A and PAPIIT UNAM.

1. Introduction

Let P_n be a collection of n points on the plane, no three of which are aligned, nor any four of which are cocircular. The following result was proved in [NU]: For any P_n there are two points $x,y \in P_n$ such that any circle containing x and y contains at least $\lceil (n-2)/60 \rceil$ points in P_n . This result has been subsequently improved in a sequence of papers; to $\lfloor n/27 \rfloor + 2$ in [HRW], to $\lceil n/30 \rceil$ in [BSSU], to $\lceil 5(n-2)/84 \rceil$ in [H] and most recently to $\lceil n/4.7 \rceil$ in [EHSS]. In this paper, we prove the following related result. For any P_n on the plane and x, y, $z \in P_n$ the expected number of points of P_n contained in the circle through x, y and z is at least $\lceil (n-3)/3.33.. \rceil$. For the convex case, i.e. when the points in P_n are vertices of a convex polygon, our result can be improved to $\lceil (n-3)/2 \rceil$. For this case, this bound is optimal.

2. Preliminary Results

Consider any collection P_n of n points on the plane. Recall that for the rest of this paper we will assume that no three elements of P_n are aligned, nor four of them are cocircular. For any subset $\{x,y,z\}$ of P_n let C(x,y,z) be the number of points of P_n contained in the circle through x,y and z (see Figure 1).

(a) (b) $C(u_1, u_2, u_3)=1, C(u_1, u_2, u_4)=0$ $C(u_1, u_2, u_3)=1, C(u_2, u_3, u_4)=0$

Figure 1

Denote by $A(P_n)$ the average value of C(x,y,z) taken over all $\{x,y,z\}$ contained in P_n . The main objective in this section is to prove the following result:

Theorem 1: $A(P_n) \ge [(n-3)/3.33..]$.

Some preliminary results will be needed to prove Theorem 1.

Consider a subset of P_n with exactly four elements $\{u_1, u_2, u_3, u_4\}$. Two possibilities arise for the convex closure conv $\{u_1, u_2, u_3, u_4\}$ of $\{u_1, u_2, u_3, u_4\}$; either conv $\{u_1, u_2, u_3, u_4\}$ is a triangle or conv $\{u_1, u_2, u_3, u_4\}$ is a quadrilateral. Consider the four circles C_i determined by $\{u_1, u_2, u_3, u_4\}$ - $\{u_i\}$, i=1,...,4.

Observation 1: If conv $\{u_1, u_2, u_3, u_4\}$ is a triangle, *exactly one* of the four circles C_i , i=1,...,4, will contain the four points in $\{u_1, u_2, u_3, u_4\}$ (see Figure 1 (b)). If conv $\{u_1, u_2, u_3, u_4\}$ is a quadrilateral, then *exactly two* of the four triangles C_i , i=1,...,4, will contain the four points in $\{u_1, u_2, u_3, u_4\}$ (see Figure 1 (a)).

In the second case, if u_2 and u_4 are opposite to each other and the sum of the angles at u_2 and u_4 is at least 180° then the circle through u_1 , u_2 and u_3 contains u_4 in its interior and the triangle through u_1 , u_3 and u_4 contains u_2 in its interior (see Figure 1 (b)).

Construct a bipartite graph $B(P_n)$ whose vertex set consists of the three and four subsets of P_n . A three subset S of P_n is adjacent to a four subset S' of P_n iff S is contained in S' and the circle through the points in S contains the four points in S' (see Figure 2).

Observation 2: In $B(P_n)$ any vertex representing a four set S' has degree one or two, depending on whether conv(S') is a triangle or a quadrilateral.

Figure 2

Lemma 1: If the degree deg(S) of a three set $S = \{x,y,z\}$ in B(P_n) is k, then C(x,y,z)=k, i.e. the number of points in P_n contained in the interior of the circle through the points in S is exactly k.

Proof: Let S be a three subset of P_n and H(S) the circle through the points in S. For every point x in the interior of H(S), the sets S and S'=S \cup {x} are adjacent in $G(P_n)$. The result now follows easily.

Let a_1 be the number of four subsets S' of P_n whose convex closure conv(S') is a triangle and a_2 the number of four subsets S' of P_n for which conv(S') is a cuadrilateral.

Π

Lemma 2: The sum of the degrees of all the vertices of B(P_n) representing three subsets S of P_n equals $a_1+2a_2 = \binom{n}{4} + a_2$.

Proof: By Observation 2, each four subset S' of P_n contributes one or two to the

sum of the degrees of the vertices of $B(P_n)$ representing three subsets of P_n , depending on whether conv(S') is a triangle or a quadrilateral.

Π

[]

For example in Figure 2, $\operatorname{conv}(P_5 - \{u_1\})$ and $\operatorname{conv}(P_5 - \{u_2\})$ are both triangles and $\operatorname{conv}(P_5 - \{u_3\})$, $\operatorname{conv}(P_5 - \{u_4\})$ and $\operatorname{conv}(P_5 - \{u_5\})$ are 4-gons. Then for this case $a_2 = 2$ and $a_2 = 3$. Then the number of edges in $G(P_5) = a_1 + 2a_2 = 2 + 3 * 2 = \binom{5}{4} + a_2 = 8$. Also the degree in $B(P_5)$ of each vertex representing a three S subset of P_5 is the number of points contained in the circle through S.

It now follows that the average value A(P_n) we are trying to determine is the average degree in of the vertices B(P_n) representing three subsets of P_n . Then we can obtain the following equality for A(P_n):

Corollary 1:
$$A(P_n) = \frac{\left(\binom{n}{4} + a_2\right)}{\binom{n}{3}}.$$

3. The Convex Case

We now proceed to prove our first result for the case when the elements of P_n are the vertices of a convex polygon. A set of points P_n will be called convex if the elements of P_n are the vertices of a convex polygon.

Theorem 2: If P_n is a convex set of points, $A(P_n) = \lceil (n-3)/2 \rceil$.

Proof: If P_n is a convex set, for any 4-subset S' of P_n conv(S') is a cuadrilateral.

Then
$$a_2 = \binom{n}{4}$$
 and by Lemma 2 and Corollary 1 A(P_n) = $\frac{2\binom{n}{4}}{\binom{n}{3}} = (n-3)/2.$

4. The General Case

We now proceed to obtain a lower bound for the value of $A(P_n)$ for the general case when P_n is not necessarily convex. Notice that Theorem 2 gives us an upper

bound for the value of $A(P_n)$ for the general case when P_n is no necessarily convex.

To obtain a lower bound for $A(P_n)$, by Corollary 1, all we need to do is to establish a lower bound for the value of a_2 , i.e. a lower bound on the number of four subsets of P_n whose convex closure is a quadrilateral.

To do this let us construct a graph $G(P_n)$ from P_n as follows. The vertices of $G(P_n)$ are all the two subsets of P_n . Two subsets $\{u,v\}$, $\{x,y\}$ are adjacent in $B(P_n)$ iff the line segments l(x,y) and l(u,v) joining x to y and u to v intersect (see Figure 3). Let $I(P_n)$ be the number of edges in $G(P_n)$.

Figure 3

Lemma 3: $a_2 = I(P_n)$.

Proof: If $\{u,v\}$, $\{x,y\}$ are adjacent in $I(P_n)$, then (x,y) and l(u,v) intersect and conv(u,v,x,y) is a quadrilateral. Conversely each subset S' of P_n whose convex closure is a quadrilateral determines exactly one edge in $I(P_n)$.

[]

The following result was proved in [NU].

Lemma 4: I(P_n) is at least
$$\frac{\binom{n}{5}}{n-4}$$
.

4. The Main Result

We are now ready to prove our main result.

Proof of Theorem 1

By Corollary 1,
$$A(P_n) = \frac{\binom{n}{4} + a_2}{\binom{n}{3}}$$
. Using Lemmas 3 and 4, we obtain that
 $a_2 = I(P_n) \ge \frac{\binom{n}{4}}{(n-4)}$. Then $A(P_n) \ge \frac{\binom{n}{4} + \binom{\binom{n}{5}}{(n-4)}}{\binom{n}{3}} = 6(n-3)/20 = (n-3)/3.33...$.

As a consequence of our results we can easily prove the following result:

Theorem 3: Let P_n be any collection of points on the plane, $u, v \in P_n$ and C any circle through u and v containing at least a third point x in P_n . Then the expected number of points of P_n contained in C is at least $\lceil (n-3)/3.33. \rceil$. If P_n is convex the above bound can be improved to $\lceil n/2 \rceil$.

[]

Proof: Let C ba a circle through u and v containing a subset H of P_n . Then it is easy to verify that one of the following two possibilities holds:

a) there is a third point $w \in P_n$ -H such that the circle C' throuh u, v and w contains in its interior the same set of points in P_n as C.

b) there is a third point $w \in H$ such that the circle through u,v and w contains in its interior exactly the elements in H-w.

Our result now follows in a similar way as Theorem 1.

Π

5 Conclusions

As we pointed out in the introduction of this paper, it is known that for any collection of points on the plane there are $u,v \in P_n$ such that any circle through u and

v contains at least $\lceil n/4.7 \rceil$ points in P_n . On the other hand, the results presented in this paper tell us that for any three points $u,v,w \in P_n$ the expected number of points of P_n contained in the circle through them is at least $\lceil (n-3)/3.33.. \rceil$. We also show that for any two points $u,v P_n$ the expected number of points contained in any circle through u and v (containing at least a third point x in P_n) is at least $\lceil (n-3)/3.33.. \rceil$. For the convex case, the both bounds are improved to $\lceil n/2 \rceil$.

References

- [BL] Bárány, I. and Larman, D. G., "A combinatorial property of points and ellipsoids". Preprint (1987).
- [BSSU] Bárány, I., Schmerl, J.H., Sidney, S.J. and Urrutia J., "A combinatorial result about points and balls in Euclidean space". To appear in *Discrete and Computational Geometry*.
- [EHSS] Edelsbrunner, H., Hasan, N., Seidel, R. and Shen, J. "Circles through two points that always enclose many points". Preprint University of Illinois at Urbana, January 1988.
- [H] Hayward, R., "A note on the circle containment problem". To appear in *Discrete and Computational Geometry*.
- [HRW] Hayward, R., Rappaport, D. and Wegner, R., "Some extremal results on circles containing points". To appear in *Discrete and Computational Geometry*.
- [NU] Neumann-Lara, V. and Urrutia, J., "A combinatorial result on points and circles on the plane". To appear in *Discrete Mathematics*.