A Containment Result on Points and Circles

JORGE URRUTIA
Instituto de Matemáticas, Universidad Nacional Autónoma de México.

Abstract

Let P_{n} be a collection of n points on the plane. For any $x, y, z \square P_{n}$ let $C(x, y, z)$ be the number of elements of P_{n} contained in the circle through x, y and z. Let $A\left(P_{n}\right)$ be the average value of $C(x, y, z)$ over all triples of points $\{x, y, z\}$ contained in P_{n}. In this paper we prove that for any collection of points $P_{n}, A\left(P_{n}\right) \geq \square(n-3) / 3.33 \ldots \square$, that is the expected number of elements of P_{n} contained in any circle through three points in P_{n} is at least $[(n-3) / 3.33 \ldots \square$ For the case when the elements of P_{n} are the vertices of a convex polygon, $\mathrm{A}\left(\mathrm{P}_{\mathrm{n}}\right)=\square(\mathrm{n}-$ $3) / 2 \square$ In this case our bound is tight.

1. Introduction

Let P_{n} be a collection of n points on the plane, no three of which are aligned, nor any four of which are cocircular. The following result was proved in [NU]: For any P_{n} there are two points $x, y \square P_{n}$ such that any circle containing x and y contains at least $\square(n-2) / 60 \square$ points in P_{n}. This result has been subsequently improved in a sequence of papers; to $\lceil\mathrm{h} / 27 \square+2$ in [HRW], to $\lceil\mathrm{n} / 30 \square \mathrm{in}[\mathrm{BSSU}]$, to $\lceil\overline{\mathrm{F}}(\mathrm{n}-2) / 84 \square$ in $[\mathrm{H}]$ and most recently to $[\mathrm{h} / 4.7 \square \mathrm{in}[\mathrm{EHSS}]$. In this paper, we prove the following related result. For any P_{n} on the plane and $x, y, z \square P_{n}$ the expected number of points of P_{n} contained in the circle through x, y and z is at least $\square(n-3) / 3.33$.. \square For the convex case, i.e. when the points in P_{n} are vertices of a convex polygon, our result can be improved to $\square(n-3) / 2 \square$ For this case, this bound is optimal.

2. Preliminary Results

Consider any collection P_{n} of n points on the plane. Recall that for the rest of this paper we will assume that no three elements of P_{n} are aligned, nor four of them are cocircular. For any subset $\{x, y, z\}$ of P_{n} let $C(x, y, z)$ be the number of points of P_{n} contained in the circle through x, y and z (see Figure 1).

(a)
$\mathrm{C}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)=1, \mathrm{C}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{4}\right)=0$

(b)
$\mathrm{C}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)=1, \mathrm{C}\left(\mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right)=0$

Figure 1
Denote by $A\left(P_{n}\right)$ the average value of $C(x, y, z)$ taken over all $\{x, y, z\}$ contained in P_{n}. The main objective in this section is to prove the following result:

Theorem 1: $A\left(P_{n}\right) \geq \square(n-3) / 3.33$.. \square

Some preliminary results will be needed to prove Theorem 1.

Consider a subset of P_{n} with exactly four elements $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Two possibilities arise for the convex closure conv $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$ of $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$; either $\operatorname{conv}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a triangle or $\operatorname{conv}\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a quadrilateral. Consider the four circles C_{i} determined by $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}-\left\{\mathrm{u}_{\mathrm{i}}\right\}, \mathrm{i}=1, \ldots, 4$.

Observation 1: If conv $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$ is a triangle, exactly one of the four circles $\mathrm{C}_{\mathrm{i}}, \mathrm{i}=1, \ldots, 4$, will contain the four points in $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$ (see Figure 1 (b)). If $\operatorname{conv}\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$ is a quadrilateral, then exactly two of the four triangles C_{i}, $\mathrm{i}=1, \ldots, 4$, will contain the four points in $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}\right\}$ (see Figure 1 (a)).

In the second case, if u_{2} and u_{4} are opposite to each other and the sum of the angles at u_{2} and u_{4} is at least 180° then the circle through u_{1}, u_{2} and u_{3} contains u_{4} in its interior and the triangle through $\mathrm{u}_{1}, \mathrm{u}_{3}$ and u_{4} contains u_{2} in its interior (see Figure 1 (b)).

Construct a bipartite graph $B\left(P_{n}\right)$ whose vertex set consists of the three and four subsets of P_{n}. A three subset S of P_{n} is adjacent to a four subset S^{\prime} of P_{n} iff S is contained in S^{\prime} and the circle through the points in S contains the four points in S^{\prime} (see Figure 2).

Observation 2: In $B\left(P_{n}\right)$ any vertex representing a four set S^{\prime} has degree one or two, depending on whether conv(S^{\prime}) is a triangle or a quadrilateral.

Figure 2

Lemma 1: If the degree $\operatorname{deg}(S)$ of a three set $S=\{x, y, z\}$ in $B\left(P_{n}\right)$ is k, then $\mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{k}$, i.e. the number of points in P_{n} contained in the interior of the circle through the points in S is exactly k .

Proof: Let S be a three subset of P_{n} and $\mathrm{H}(\mathrm{S})$ the circle through the points in S . For every point x in the interior of $H(S)$, the sets S and $S^{\prime}=S \square\{x\}$ are adjacent in $\mathrm{G}\left(\mathrm{P}_{\mathrm{n}}\right)$. The result now follows easily.

Let a_{1} be the number of four subsets S^{\prime} of P_{n} whose convex closure conv(S^{\prime}) is a triangle and a_{2} the number of four subsets S^{\prime} of P_{n} for which $\operatorname{conv}\left(S^{\prime}\right)$ is a cuadrilateral.

Lemma 2: The sum of the degrees of all the vertices of $B\left(P_{n}\right)$ representing three subsets S of P_{n} equals $a_{1}+2 a_{2}=\left[4\left[\begin{array}{l}\square \\ 4\end{array}+\right.\right.$

Proof: By Observation 2, each four subset S^{\prime} of P_{n} contributes one or two to the
sum of the degrees of the vertices of $B\left(P_{n}\right)$ representing three subsets of P_{n}, depending on whether $\operatorname{conv}\left(\mathrm{S}^{\prime}\right)$ is a triangle or a quadrilateral.

For example in Figure 2, $\operatorname{conv}\left(\mathrm{P}_{5^{-}}\left\{\mathrm{u}_{1}\right\}\right)$ and $\operatorname{conv}\left(\mathrm{P}_{5^{-}}\left\{\mathrm{u}_{2}\right\}\right)$ are both triangles and $\operatorname{conv}\left(\mathrm{P}_{5^{-}}\left\{\mathrm{u}_{3}\right\}\right), \operatorname{conv}\left(\mathrm{P}_{5^{-}}\left\{\mathrm{u}_{4}\right\}\right)$ and $\operatorname{conv}\left(\mathrm{P}_{5^{-}}\left\{\mathrm{u}_{5}\right\}\right)$ are 4-gons. Then for this case $\mathrm{a}_{2}=2$ and $\mathrm{a}_{2}=3$. Then the number of edges in $\left.\mathrm{G}\left(\mathrm{P}_{5}\right)=\mathrm{a}_{1}+2 \mathrm{a}_{2}=2+3 * 2={ }_{4}\right]_{4}\left[+\mathrm{a}_{2}=8\right.$. Also the degree in $B\left(P_{5}\right)$ of each vertex representing a three S subset of P_{5} is the number of points contained in the circle through S.

It now follows that the average value $A\left(P_{n}\right)$ we are trying to determine is the average degree in of the vertices $B\left(P_{n}\right)$ representing three subsets of P_{n}. Then we can obtain the following equality for $\mathrm{A}\left(\mathrm{P}_{\mathrm{n}}\right)$:

Corollary 1:

3. The Convex Case

We now proceed to prove our first result for the case when the elements of P_{n} are the vertices of a convex polygon. A set of points P_{n} will be called convex if the elements of P_{n} are the vertices of a convex polygon.

Theorem 2: If P_{n} is a convex set of points, $\mathrm{A}\left(\mathrm{P}_{\mathrm{n}}\right)=\square(\mathrm{n}-3) / 2 \square$

Proof: If P_{n} is a convex set, for any 4-subset S^{\prime} of $\mathrm{P}_{\mathrm{n}} \operatorname{conv}\left(\mathrm{S}^{\prime}\right)$ is a cuadrilateral.

4. The General Case

We now proceed to obtain a lower bound for the value of $\mathrm{A}\left(\mathrm{P}_{\mathrm{n}}\right)$ for the general case when P_{n} is not necessarily convex. Notice that Theorem 2 gives us an upper
bound for the value of $A\left(P_{n}\right)$ for the general case when P_{n} is no necessarily convex.
To obtain a lower bound for $\mathrm{A}\left(\mathrm{P}_{\mathrm{n}}\right)$, by Corollary 1 , all we need to do is to establish a lower bound for the value of a_{2}, i.e. a lower bound on the number of four subsets of P_{n} whose convex closure is a quadrilateral.

To do this let us construct a graph $G\left(P_{n}\right)$ from P_{n} as follows. The vertices of $G\left(P_{n}\right)$ are all the two subsets of P_{n}. Two subsets $\{u, v\},\{x, y\}$ are adjacent in $B\left(P_{n}\right)$ iff the line segments $l(x, y)$ and $l(u, v)$ joining x to y and u to v intersect (see Figure 3). Let $I\left(P_{n}\right)$ be the number of edges in $G\left(P_{n}\right)$.

$$
\begin{array}{cc}
\left\{\mathrm{u}_{4}, \mathrm{u}_{5}\right\} & \left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\} \\
\mathrm{o} & \mathrm{o}
\end{array}
$$

$G\left(P_{5}\right)$
Figure 3

Lemma 3: $a_{2}=I\left(P_{n}\right)$.

Proof: If $\{u, v\},\{x, y\}$ are adjacent in $I\left(P_{n}\right)$, then (x, y) and $l(u, v)$ intersect and $\operatorname{conv}(u, v, x, y)$ is a quadrilateral. Conversely each subset S^{\prime} of P_{n} whose convex closure is a quadrilateral determines exactly one edge in $I\left(P_{n}\right)$.

The following result was proved in [NU].

Lemma 4: $\mathrm{I}\left(\mathrm{P}_{\mathrm{n}}\right)$ is at least $\frac{\text { P }}{n \square 4}$.

4. The Main Result

We are now ready to prove our main result.

Proof of Theorem 1

As a consequence of our results we can easily prove the following result:

Theorem 3: Let P_{n} be any collection of points on the plane, $u, v \square P_{n}$ and C any circle through u and v containing at least a third point x in P_{n}. Then the expected number of points of P_{n} contained in C is at least $\left[(n-3) / 3.33\right.$.. \square If P_{n} is convex the above bound can be improved to $\square / 2 \square$

Proof: Let C ba a circle through u and v containing a subset H of P_{n}. Then it is easy to verify that one of the following two possibilities holds:
a) there is a third point $w \square P_{n}-H$ such that the circle C^{\prime} throuh u, v and w contains in its interior the same set of points in P_{n} as C .
b) there is a third point $w \square H$ such that the circle through u, v and w contains in its interior exacly the elements in $\mathrm{H}-\mathrm{w}$.

Our result now follows in a similar way as Theorem 1.
[]

5 Conclusions

As we pointed out in the introduction of this paper, it is known that for any collection of points on the plane there are $u, v \square P_{n}$ such that any circle through u and
v contains at least $\left[\mathrm{h} / 4.7 \square\right.$ points in P_{n}. On the other hand, the results presented in this paper tell us that for any three points $\mathrm{u}, \mathrm{v}, \mathrm{w} \square \mathrm{P}_{\mathrm{n}}$ the expected number of points of P_{n} contained in the circle through them is at least $[(n-3) / 3.33$.. \square We also show that for any two points $\mathrm{u}, \mathrm{v} \mathrm{P}_{\mathrm{n}}$ the expected number of points contained in any circle through u and v (containing at least a third point x in P_{n}) is at least $[n-3) / 3.33$.. \square For the convex case, the both bounds are improved to $\square \mathrm{h} / 2 \square$

References

[BL] Bárány, I. and Larman, D. G., "A combinatorial property of points and ellipsoids".
Preprint (1987).
[BSSU] Bárány, I., Schmerl, J.H., Sidney, S.J. and Urrutia J., "A combinatorial result about points and balls in Euclidean space". To appear in Discrete and Computational Geometry.
[EHSS] Edelsbrunner, H., Hasan, N., Seidel, R. and Shen, J. "Circles through two points that always enclose many points". Preprint University of Illinois at Urbana, January 1988.
[H] Hayward, R., "A note on the circle containment problem". To appear in Discrete and Computational Geometry.
[HRW] Hayward, R., Rappaport, D. and Wegner, R.,"Some extremal results on circles containing points". To appear in Discrete and Computational Geometry.
[NU] Neumann-Lara, V. and Urrutia, J., "A combinatorial result on points and circles on the plane". To appear in Discrete Mathematics.

