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Abstract

Let Pn be a collection of n  points on the plane.  For a pair of points u  and v Pn let C(u,v) be
the minimum number of points of Pn contained in any circle contaning u and v.  In this paper we
prove the result that there exist two points uo and vo Pn such that any circle containing uo  and
vo contains at least È(n-2)/60˘ elements of Pn  (other than uo  and vo). We also prove that the
average value of C(u,v) over all pairs {u, v} Pn  is ≥ È(n-2)/60˘. For the case when Pn are the
vertices of a convex polygon, we prove that there exist two vertices u, v of Pn such that any
circle containing them contains at least È(n-2)/4˘ elements of Pn.
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Introduction

Geometry is one of the most interesting and important branches of
mathemat-   ics.  The origins of geometry can be traced back to many ancient
cultures, such as that of the Greeks.  Some of the most important studies in
geometry, such as the famous Elements of Euclid, deal simply with properties of
collections of points, lines and circles on the plane.  With the advent of
combinatorics, new types of results in geometry are being obtained,  results
which involve the combinatorial properties of sets of points, lines and circles on
the plane.  See for example, [2], [5], [6], [11].  The interested reader can find
an excellent source of results of this nature in Hadwiger, Debrunner and Klee's
book  Combinatorial  Geometry on the Plane  [10]  and Grunbaum's
Arrangements and Spreads  [7].

In this paper, we prove the following result:  Given a collection Pn of n points
on the plane, there exist two points u, v of Pn such that any circle containing
them contains at least Èn-2/60˘ points in Pn. Furthermore let C(u,v) be the
minimum number of points of Pn contained in any circle containing u and v; u,v
Œ Pn. Then we prove that the average value of C(u,v) over all pairs {u,v} Ã Pn is
at least Èn-2/60˘. The proof of this result uses basic results in combinatorics
and graph theory.

For the sake of clarity, all collections Pn of points considered in the rest of
this paper do not contain any three aligned points.  This restriction can be easily
lifted, leaving the results of this paper unchanged.

Preliminaries
A graph G = (V(G), E(G))  consists of a collection of points V(G) called the

vertices of G and a set E(G) of unordered pairs of elements of V(G) called the
edges of G.  If the pair {u, v} belongs to E(G), we say that u and v are adjacent.
An edge {u, v} will be denoted by u—v.  We say that u—v joins u to v.  In this
paper, we will deal with representations of graphs on the plane.  In these
representations, the vertices of G are represented by points on the plane, and
the edges u—v of G by open segments of lines joining the points u and v. Let
Bin(r,s) denote the binomial coefficient of r and s.

A complete graph Kn is a graph with n vertices such that for any pair of



vertices u, v of V(Kn),  u—v is an edge of Kn.  The following well-known result
of graph theory will be used:

Theorem 0: Any planar representation of K5 contains two edges which
intersect at a point p not a vertex of K5.

For a pair of points u and v on the plane let l(u,v) be the open segment of
line joining u to v.  The following lemma will prove useful in the proof of our
main result.

Lemma 1: Let u, v, x, y be points in the plane such that l(u,v) and l(x,y)
intersect. Then any circle containing u and v contains at least one end
point of l(x,y) or any circle containing x and y contains at least one end
point of l(u,v).

Proof: It is easy to see that u, v, x and y form the vertices of a convex
quadrilateral.  (See Figure 1.)

Figure 1.
In any such quadrilateral there exist two internal opposite angles such that
their sum is greater than or equal to 180°. Without loss of generality let us
assume that it is the angles of u and v that satisfy this property. Then any
circle containing x and y contains at least one of u or v.

˙
Let Pn be a collection of n points on the plane. An imbedding of Kn on the

plane can be obtained by representing the vertices of Kn with the points of Pn
and the edges of Kn with the segments l(u,v), u≠v,  u, v Œ Pn.

Let us define I(Pn), the intersection number of Pn as follows: I(Pn) is the
number of different segments l(u,v), l(x,y) such that l(u,v) « l(x,y)≠Ø; u, v, x, y
Œ Pn.

Lemma 2: I(Pn) ≥ Bin(n,5)/(n-4).



Proof: By Theorem 0, for each subset S of Pn with exactly five elements,
there exist four points u, v, x, y Œ S such that
l(u,v) «l(x,y)≠Ø.  Furthermore, the subset {u, v, x, y} appears in exactly
n-4 subsets of Pn with five elements.

˙
Finally, let us define a graph G(Pn) (the intersection graph of Pn) as follows:

V(G(Pn)) = {l(u,v);  u, v Œ Pn,  u≠v}   and two vertices l(u,v), l(x,y) of G(Pn) are
adjacent if l(u,v) « l(x,y)≠Ø.  See Figure 2.

Figure 2.

Clearly G(Pn) has exactly I(Pn) edges, one for each  pair of intersecting
segments l(u,v), l(x,y).

Corollary 1: |E(G(Pn))| ≥ Bin(n,5)/(n-4).

We now obtain an orientation G*(Pn) of G(Pn) as follows: An edge l(u,v)—l(x,y)
is oriented l(u,v)—>l(x,y) if any circle containing u and v contains x or y,
otherwise we orient l(x,y)—>l(u,v).  This orientation is consistent because of
Lemma 1. We should notice that if u, v, x and y lie on a circle, then we could
choose either orientation;  l(u,v)—>l(x,y) or l(x,y)—>l(u,v).

Let d+(u) be the out-degree of a vertex u in a directed graph D, ie. the
number of vertices x such that u—>x Œ E(D).

Lemma 3 :  There exists a vertex l(uo,vo) of V(G*(Pn))  such that



d+(l(uo,vo)) ≥ È(n-2)(n-3)/60˘.
Proof: From Corollary 1, |E(G*(Pn))| ≥Bin(n,5)/(n-4).
We also know that

∑d+(l(u,v)) = |E(G*(Pn))| .
Then

∑d+(l(u,v)) ≥Bin(n,5)/(n-4).
Since we have exactly Bin(n,2) vertices in G*(Pn), there exists a vertex
l(uo,vo) with

d+ (l(uo,vo)) ≥ [Bin(n,5)/(n-4)]/Bin(n,2)  =  (n-2)(n-3)/60.
˙

Results
We are now ready to prove our main result.

Theorem 1: For any collection Pn  of n points on the plane, there exists
a pair of points uo, vo such that any circle containing them contains at

least |n-2/60|  points of Pn.

Proof: By Lemma 3, there exist two points, uo, vo Œ  Pn such that
d+(l(uo,vo)) ≥ (n-2)(n-3)/60. This means that there exist at least
È(n-2)(n-3)/60˘ segments l(x,y), x, y Œ Pn such that any circle containing
uo and vo contains one end point of each one of these
(n-2)(n-3)/60 segments. Eliminating redundancies (each point could
appear in at most n-3 such segments), we have that any circle containing
uo and vo contains at least È(n-2)/60˘ points of Pn different from uo and
vo .

˙
In Lemma 3, we showed that there exists a vertex l(u,v) in G(Pn) with

d+(l(u,v)) ≥ (n-2)(n-3)/60. Using the same arguments as for Lemma 3, we can
obtain the following corollary.

Corollary 2: The average out-degree d+(l(u,v)), l(u,v) Œ V(G(Pn)) is
greater than or equal to (n-2)(n-3)/60.

For a pair of points u, v Œ Pn , let C(u,v) be the minimum number of points of



Pn that are contained in any circle containing u and v.  Let A(Pn) be the average
over all C(u,v),  u, v Œ Pn. A result which is much stronger than Theorem 1 now
follows:

Theorem 2: A(Pn) ≥ (n-2)/60.

For the special case when Pn are the vertices of a convex polygon, we can
prove the following result:

Theorem 3: Let P be a convex polygon. Then there exist two vertices u
and v of P such that any circle containing them contains at least
È(n-2)/4˘ vertices of P.

Proof: We prove the theorem for the case when n=2k; the case n=2k+1
can be proved in a similar way.  Let us label the vertices of P by 0,1,…,n-
1 by tracing the boundary of P in the clockwise direction (see Figure 3).

Figure 3.
Let G be the intersection graph of the segments of lines joining opposite
pairs of vertices of P, ie. V(G)={l(i,i+1); i+k mod n}. Let G be the
orientation obtained from G by orienting the edges of G using the same
rules as in Theorem 1. Then the average outdegree in G is (k-1)/2 = (n-
2)/4. The result now follows as in Theorem 1.

˙
     However this bound is not very tight. For all polygons P we have tried, we
have been able to find two opposite vertices such that any circle containing



them contains at least half of the vertices of P. This suggests the following
problem:

Problem 1: Show that in any convex polygon P with n vertices, there
exist two opposite vertices u and v such that any circle containing them
contains at least half of the vertices of P.

Final Remarks
An interesting problem is to study how tight the bounds proved in Theorems

1, 2 and 3 are.  For example, for small values of n  (namely n < 60), the results
proved in Theorem 1 are far from optimal.  In fact, if Pn contains five points, we
can always find two elements of Pn such that any circle containing them
contains at least a third point in Pn.  However, for large values of n, the bound
of Theorem 3 may not be far from optimal.  Blazek and Koman [1] and Guy [9]
have shown that there exist collections of points Pn such that
I(Pn)≤1/4Èn/2˘È(n-1)/2˘È(n-2)/2˘È(n-3)/2˘  which is approximately three times
as large as Bin(n,5)/(n-4). This suggests that for some collections, we could
have A(Pn) less than or equal to n/20.

We should also mention that Theorem 1 is not valid if Pn is a collection of
points in the 2d-dimensional space R2d.

Let ß(t) = (t, t2,…,t2d) and Pn={ß(ti); 0<t1<t2<…<tn}. This curve, called the
momentum curve, was first discovered by Carathéodory [3], [4]. In [8] (pages
61-62) the following result is proved:

Theorem 4: For any k-pointed subset A of Pn,  k ≤ d  there exists a
supporting hyperplane H of the convex hull of Pn such that H«Pn = A.

As a consequence of this result, we can easily prove the following:

Theorem 5: For any subset A of Pn with |A| ≤ d, there exists a 2d-
dimensional sphere S(A) containing all elements of A such that
S(A)«Pn= A .
This suggests the following problem:

Problem 2: Find f(d) and g(d) such that the following holds:



For any collection Pn of n points in Rd there exists a subset S of Pn with
f(d) points such that any d-sphere containing S contains at least n/g(d)
elements in Pn.
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