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Abstract

In this paper we study several problems concerning the guarding of a polygon or a z-
monotone polygonal chain P with n vertices from a set of points lying on it. Our results
are: (1) An O(nlogn) time sequential algorithm for computing the shortest guarding boundary
chain of a polygon P. (2) An O(nlogn) time sequential algorithm for computing the smallest set
of consecutive edges guarding a polygon P. (3) Parallel algorithms for each of the two previous
problems that run in O(logn) time using O(n) processors in the CREW-PRAM computational
model. (4) A linear sequential algorithm for computing the smallest left-guarding set of vertices
of an z-monotone polygonal chain P. (5) An optimal O(nlogn) sequential algorithm for com-
puting the smallest guarding set of relays of an z-monotone polygonal chain P. (6) Finally, we
consider the problem of finding the problem of placing on a z-monotone polygonal chain P one
or several vertex guards which collectively cover the entire surface and show that this problem
is NP-complete. The previously best known sequential algorithms for problems (1) and (2) take
O(n?logn) time.

TOPICS: COMPUTATIONAL GEOMETRY, VISIBILITY

1 Introduction

In this paper we consider the variety of 2-D visibility problems mentioned in the abstract, and
develop efficient techniques for their solution as outlined above. This problems are motivated by
applications of the notion of visibility in polyhedral terrains. These applications include the con-
figuration of line-of-sight transmission networks for TV and radio broadcasting, cellular telephony,
micro-wave relays, and other telecommunication technologies [5]. Moreover, government agencies
and private institutions are providing data with increased precision. The opportunities for the
industries mentioned above to optimize their coverage, minimize the number of stations or relays,
or reduce their probability of disconnection are in proportion to the development of algorithms
for these tasks [21, 28]. However, applications of polyhedral terrains like planning of micro-wave
links, TV-broadcasting relays and telecommunications relays require that a communication path
is established between two points p; and py of the terrain (two cities, two satellite-antennas, etc).
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Consideration of the problem in the vertical plane F defined by the line joining the two points
p1 and py reduces the problem back to two dimensions (because a skyline of the terrain is now
considered). This approach is a common heuristic used in the applications mentioned above to
simplify the original problem [5].

Figure 1: A model of the earth’s surface obtained from a polyhedral terrain representing 3600km?.
The digital terrain is a grid of altitude measurements that are 60m apart in latitude and longitude.

A polyhedral terrain T' (also referred to as a monotone polyhedral surface; i,e., a polyhedral
surface having exactly one intersection with each vertical line) is the model of the earth surface
(see Figure 1). Since the intersection of 7" and F is a monotone polygonal chain, we first consider
the problem of guarding an z-monotone polygonal chain. Computing the smallest vertex set (SVS)
guarding a polyhedral terrain is known to be NP-complete [14] as well as the (SVS) guarding a
polygon [30]. We demonstrate that finding the SVS covering an z-monotone polygonal chain is
NP-complete for general visibility. However, we demonstrate that minimizing the number of 7-
floodlights to cover a monotone chain is linear. A a-floodlight at a point p is guard where the
visibility rays at p are constrained to shine in a wedge of angle a [6].

We also provide an optimal ©(nlogn) algorithm for finding the station of broadcasting among
two points that minimizes the number of links and covering the monotone chain.

We generalize the techniques of this later algorithm to study two problems on the weakly visibilily
of simple polygons. Let P be an n-vertex simple polygon. For a point p and an object C'in P, p is
said to be weakly visible from C iff p is visible from some point on C' (depending on p). Polygon P
is said to be weakly visible from C' iff every point p € P is weakly visible from C'. Many sequential
algorithms [1, 2, 3, 4, 8, 12, 15, 16, 17, 18, 20, 23, 24, 26, 29, 31, 33, 34, 35, 36] and parallel
algorithms [9, 10, 11, 12, 13, 22, 25] for solving various weak visibility problems on simple polygons
have been discovered.

We consider the problem of computing the shortest weakly visible chain of a simple polygon
(called it the SWVC problem) and the problem of computing a chain on the polygonal boundary



Figure 2: Points z and y are to the left of z. Point y is left-visible from z, but point z in not left-
visible from z. A guard at z left-covers the subchain (v3, vs, v4, vs, v6, 2). The segment (vq, vz, v3)
has a right turn at vy, while the segment (vy, vs, vg) has a left turn at vs.

that contains the minimum number of consecutive edges and from which the polygon is weakly
visible, also called the consecutive edge guards (CEG) problem [1]. Assuming that the exterior of
polygon P is “opaque”, we would like to find a chain C on the boundary of P such that (i) P is
weakly visible from C', and (ii) for the SWCV, the length of C' is the shortest among all such chains
on the boundary of P, while for CEG, the number of edges in C' is the smallest. Intuitively, if
P represents a house whose interior is that of a simple polygon, then (' is the contiguous portion
along the walls of P by which a mobile guard has to patrol back and forth in order to keep the
inside of P completely under surveillance and satisfies a minimality condition.

For these two problems, we provide sequential algorithms that run in O(nlogn) time, and paral-
lel algorithm that run in O(logn) time using O(n) processors in the CREW PRAM computational
model. Our sequential solutions to these problems improve the previously best known sequential
O(n*logn) time algorithms [1]. Section 7 provides some final remarks.

2 Minimum Cover with Links from the Left

Let P = (vy,vg,...,v,) be a sequence of points in the plane defining an z-monotone polygonal
chain; that is, the orthogonal projections of vq,...,v, onto the z-axis are in the same order as
in the chain. We say that a point v is to the left of a point w if the z-coordinate of v is smaller
than the z-coordinate of u (see Figure 2). In particular, in the z-monotone chain P, v; is to the
left of v;, for all © < j (4,5 € {1,...,n}). We say that a point v is under the line defined by
v;0;41 if the 2-line path v;v;1;v makes a right turn at v;44'. A point p = (z,y) is under the

polygonal chain P = (v, v3,...,v,) if thereis ¢ € 1,...,n — 1 such that # < z coordinate of v;11;
x > x coordinate of v;, and p is under v;v141. We say that a point v to the left of a point « is
left-visible in the terrain defined by the polygonal chain P = (v1,v3,...,v,) if the line vu never

intersects the set of points under the polygonal chain P.

A set of points GG in the z-monotone chain P, such that any point v on the chain is left-visible
from at least one point in G is called a left-cover of the chain. We consider the problem of computing
the smallest left-cover of an z-monotone polygonal chain. Clearly, the set of vertices {vg, v3,...,v,}
is a left-cover of size n — 1. Thus, the smallest cover has a finite set of points. The points of a cover
will be called guards.

!Note that to decide whether an angle(py, p2, pa) is a right turn or a left turn corresponds to evaluating a 3 x 3
determinant in the points’ coordinates [32].



Figure 3: Guards in a minimal cover can be placed at vertices that are right turns: (a) any point
visible from a point ¢ properly in an edge can be seen from the right vertex; (b) any point visible
from a guard on a vertex that is a left turn can be seen from the left most vertex to its right that
is a right turn.

Before we give an algorithm for computing a minimum cover we present some properties of
covers.

Proposition 2.1 There is an minimum cover thal consists of guards placed only at vertices of the
polygonal chain P.

Proof: Let G be an minimum cover that has guards on edges of the polygonal chain. For each
guard ¢ in an edge v;v;41, replace g with the right endpoint v;41. The new set of points N has the
same cardinality as G. We will show that the portion of P left-visible from ¢ is contained in the
portion of P left-visible from v;41. Thus, N will be the cover claimed in the proposition.

Let v be a point on P left-visible from ¢. If the line gv is collinear with v;v;41, clearly, v is
left visible from v;41. Otherwise, the polygonal chain P is to the left of v, under the segment vg,
and to the right of v;4;, because P is z-monotone (see Figure 3 (a)). Thus, the line v;41v does not
intersect points under the chain P. a

Proposition 2.2 There is an minimum cover where all guards are atl vertices that are a right turn
of the polygonal chain.

Proof: By Proposition 2.1, let G be a minimum cover with guards only at vertices. For each
guard g = v; such that v;_yv;v;41 is a left turn, replace g with the left most vertex ¢’ that is a right
turn and is to the right of g (see Figure 3 (b)). It is not hard to see that the new set is also a cover. O

Note that, in any cover G = (g1,92,...,9m), the guard g; (¢ € {1,...,m — 1}) is always left
visible from a guard g; with ¢ < j. Thus, guards form a link of visibility from right to left.

Let LV (g;) be the set of points on the polygonal chain left-visible from g;. Observe that, for all
minimum covers G = (g1, ..., ¢m), the set of points LV (g;) is not contained in the set LV (g;), for
all ¢+ < j. Otherwise, we could remove g; from G to obtain a smaller cover.

We are now ready to present an overview of an algorithm for computing the minimum left-cover.
The algorithm works incrementally, traversing the polygonal chain from left to right, starting with
v1. The algorithm repeatedly finds the next vertex v; that is a right turn, and places a guard g
at v;. It analyzes all previously placed guards. If there is a previous guard ¢’ such that LV (g') is
contained in LV(g), then the algorithm removes ¢’ from the set of guards. The algorithm terminates



when it reaches v, and in this last step, v, is added to the set of guards and also, previous guards
that guard regions guarded by v, are removed from the set of guards. We call this algorithm the
Army-Withdraw algorithm.

Theorem 2.3 The Army-Withdraw algorithm computes a minimum left-cover of an z-monotone
polygonal chain.

Proof: Let G = (g1, 92, - - -, gm) be a minimum left-cover such that g; is a right turn of the polygonal
chain P, for ¢ = 7,...,m — 1. Moreover, with out loss of generality, we may assume that, for each
g; there is no right turn vertex v such that v is to the right of g; and LV (g;) is contained in LV (v).
Clearly, the set computed by the Army Withdraw algorithm is a left cover R = (r1,...,7m),
with m’ > m. We now probe that m’ = m. We probe this by contradiction. We assume that
m’ > m, and since 7,,; = ¢, = v,, there must be a ¢ such that r; # g;. Let iy be the first ¢ with
this property. Since 7, and gy, are right turn vertices on the polygonal chain, we have two cases:
Case 1: The guard gy, is to the left of r,. Since g;, is a right turn vertex, the Army Withdraw
algorithm must have placed a guard »' at g;, at some stage (at least to cover the edge of the
polygonal chain with right endpoint at g;). Moreover, at a later stage, the Army Withdraw
algorithm must have found a right turn vertex r to the right of »" and such that LV (') is contained
in LV(r) (to remove r/, since 7’ is not r4,). But this contradicts the choice of (7, since this implies
that there is a right turn vertex to the right of g;, that covers at least what g;, covers.
Case 2: The guard ry, is to the left of g, . In this case, the region LV (ry) must be covered by
two or more guards of G (if LV (r4,) was covered by only one guard g € G to the right of ry, the
Army Withdraw algorithm would have found g and removed r;,). Thus, there must exists different
points w and v in LV (ry) and guards g; and g; in G to the right of r4, such that:

e point v is in LV(g;) and not in LV(g;), and
e point u is in LV (g;) and not in LV (g;).

Without loss of generality assume g; is to the left of g;.

Subcase 2a: Point v is to the left of . In this case, we have visibility rays as in Figure 4 (a),
because v € LV(g;) and u € LV(g;). This implies that the polygonal chain is under the line
segment vg; and under the line segment ug;. Therefore, v is left visible from g;. This contradicts
v ¢ LV(g).

Subcase 2b: Point u is to the right of v. Since w and v are in LV (r,) we have visibility rays as
in Figure4 (b). But then, v € LV(g;), a contradiction.

This completes the proof. a

We now show how to carry out the Army Withdraw algorithm in O(n) time. The idea for a linear
algorithm starts by characterizing those guards ¢’ that the Army Withdraw algorithm will remove
at a later step because it finds a right turn vertex ¢ to the right of ¢’ and such that LV (g) contains
LV (g"). We call these guards removable guards. The algorithm will preprocess the polygonal chain
P to obtain the necessary information, such that, in the left to right pass over the polygonal chain
P, the Army Withdraw algorithm will identify removable guards in constant time, thus the Army
Withdraw algorithm will not have to insert them just to remove them later. The Army Withdraw
algorithm reduces to a scan from left to right that requires linear time.

First, note that a removable guard ¢’ is left visible from the replacement g. This is the main
observation in the proof of the following proposition.
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Figure 4: Subcases for proof of correctness of Army Withdraw algorithm.

Proposition 2.4 If ¢’ at v; is a removable point, the right most point that causes the removal of
g' is the first point, from left to right, in the upper chain on the convex hull of the sel of points

Vis Vig1s 045 Up

Proof: Let ¢’ be a removable guard at v; and let g be the right most point that covers LV (g’).
A guard at g must see ¢g’. If the line segment ¢’¢g is not the first edge of the upper chain of the

convex hull of {v;,...,v,}, then there is a vertex v; to the right of ¢ and that sees ¢’. But, then
is not hard to see that LV (g’) C LV(v;) which contradicts that ¢ is the right most point with this
property. O

We are now ready to present the main result of this section.

Theorem 2.5 An optimum left-cover for an x-monotone polygonal chain P = (vy,...,v,) can be
computed in O(n) time.

Proof: That any algorithm requires to examine all vertices of the chain trivialy gives a lower bound
of Q(n) time. An O(n) time algorithm is now obtained by an O(n) preprocessing step for the Army
Withdraw algorithm. Before performing the left to right scan of the Army Withdraw algorithm,
perform a right to left Graham scan [32] recording, for each vertex v; (with ¢ = n,n —1,...,v1),
the vertex v; to the right of v; such that the line segment v;v; is the first edge of the upper chain
of the convex hull of the set {v;,...,v,}. The vertex v; associated in this way to a vertex v; will
be called its remover. This preprocessing will require linear time.

The Army Withdraw algorithm is performed next. Fach vertex v; that is a right turn of the
polygonal chain will be added to the set of guards only if the remover of v; is above the line that
includes the line segment v;_yv;. This test can be performed in constant time, thus the Army
Withdraw scan requires also linear time. a

3 Cover with One Station and Minimum Number of Links

We now consider the following problem, given a polygonal chain that is the intersection of a
vertical plane and a polygonal terrain, we are required to find the position on the polygonal chain
of a broadcasting station such that the polygonal chain is covered and the number of relays is
minimized. However, we have the restriction that no relay can broadcast towards the station, since
this would create interferencing signals.



To solve this problem we first establish some properties of the solution. Again, let P =
(v1,v2,...,v,) be the sequence of points in the plane that defines the z-monotone chain that
represents the skyline of the terrain. Let s be the point where the broadcasting station minimizes
the number of relays. If we were given s, the relays can be computed in linear time by covering
the chain vy, vq,...,s from the left as in the previous section and covering the chain s,..., v, 1, v,
from the right by a symmetric algorithm. Thus, the problem reduces to finding s.

Note that if the station s is to the right of a vertex v;, and the y-coordinate of v; is larger than
the y-coordinate of v;_1, then a relay will be forced at v; if the ray that extends the edge v;_1v;
does not intersect P; that is, if v; is the highest point in P to the right of v;_; that sees v;_4.

Moreover, if the ray that extends the edge v;_yv; intersects P at a point « to the left of s, there
is no need for a relay at v; because the relay that covers u also covers the edge v;_1v; and anything
that v; covers. If w is to the right of s, then v; will require a relay.

Now we are ready for the description of out algorithm. For each vertex v; = (a;,y;) (with
y-coordinate larger than v;_1) we associate an interval in the real line. The interval associated with
v; has lower end point the z-coordinate of v; and upper endpoint the z-coordinate of u (the first
intersection of P with the extension of the edge v;_1v;), and +oo if this extension does not intersect
P.

Note that the number [(s) of relays required to the left of a point s in the z-monotone polygonal
chain P is the number of intervals that contain the z-coordinate of s. Applying the argument
symmetrically (reversing left for right), we can compute the number 7(s) of relays required to the
right of a point s in the z-monotone polygonal chain P. The station that minimizes the total
number of relays can be placed in any vertex s such that I(s) + r(s) is minimum.

We require O(nlogn) time to compute all the intervals and to sort their endpoints as to compute
I(s) and r(s) for all vertices. All other steps require linear time; thus, we have the following result.

Theorem 3.1 Finding the position of a broadcasting station on a x-monotone polygonal chain with
n vertices representing the intersection of a polyhedral terrain and a vertical plane, such that the
chain is covered, the relays are minimized and there is no interference can be done in ©(nlogn).

Proof: The proof of the lower bound is based on a reduction from integer sorting to the broad-
casting station placement problem. The details are left to the full paper. a

4 Minimum Cover of a Monotone Chain is NP-Complete

In the full paper we present a polynomial reduction from 3SAT [19] to the problem of finding a
minimum cover of a z-monotone polygonal chain. The guards must be on vertices of the polygonal
chain, but the orientation of the visibility rays is not restricted in any way; thus, this is the general
visibility case.

The proof follows the lines of Lee and Lin’s proof [30] for smallest cover of a polygon. A clause
junction consists of three literal patterns. A literal pattern is shown in Figure 5 (a). Each literal
pattern has three distinguished vertices p, ¢ and r, so that the literal patter is minimally covered
by special sets of two vertices. The valley (prong) at r is deep enough that only vertices ¢/, f’ of r
itself can cover this valley. The valley at p is such that f, ¢ can cover it while f’, and ¢ can not.
Symmetrically, the valley at ¢ is such that f’ and ¢ can cover it while ¢’ and f can not. Possible
covers of size two are {{,t'}, and {f’, f}. As the labels suggest, the set {{,¢'} will be assigned
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Figure 5: A literal pattern is illustrated in part (a): the minimal sets of guards that cover this
pattern are {¢,¢'} and {f, f'}. The clause junction is illustrated in part (b): a minimal set of guards
has size 3, and at least one is in the set of vertices {t1,12,13}.

guards when the truth value of the corresponding literal is true, while {f, f'} will be assigned a
guard when the corresponding literal is false. A clause junction is shown in Figure 5 (b). Minimal
coverage of a clause junction is achieved with a set of six guards. A clause junction requires that
each literal junction is covered with two guards. Moreover, in order to cover the edges adjacent to
vertex 7’ (in Figure 5!(b)), at least one of {{1,1;,%3} must be assigned a guard. Since the point ¢;
correspond to points ¢ of the literal pattern, at least one literal must be true for coverage of the
clause junction.

Two types of variable patterns are used to force all truth assignments of literals of a particular
variable to be consistent with one another.

Theorem 4.1 Computing the smallest sel of verlex guards of an x-monotone polygonal chains in
NP-complete.

5 Computing Shortest Weakly Visible Chains of Polygons

The problems in Sections 2 and 3 are closely related to visibility and stationary guarding. Essen-
tially, the algorithm in Section 3 for finding an optimal placement for the broadcasting station s
is based on the following framework: (1) Perform ray-shooting to obtain a set of “pockets” on the
input polygonal chain, (2) define an interval corresponding to each “pocket”, (3) from the set of
intervals, find an optimal solution to the problem. In this section, we show how to generalize this
framework to solve several other visibility and guarding problems.

We present geometric observations that are useful for solving the SWVC problem. Based on
these geometric observations, we obtain eflicient sequential and parallel algorithms for the SWVC
problem. Our sequential algorithm runs in O(nlogn) time, and our parallel algorithm runs in
O(logn) time using O(n) CREW PRAM processors.

Suppose polygon P is defined by a sequence of its vertices (v1, vz, ..., v,) in the counterclockwise
order along the boundary B(P) of P. A vertex v; of P is said to be reflex if the path v;_1v;v;11



makes a right turn at v; (with the convention that v,41 = v1 and vy = v,,). Our algorithms crucially
rely on the notion of polygon “pockets” which are defined with respect to reflex vertices.

Definition 5.1 Let v; be a reflex vertex of P. The clockwise (resp., counterclockwise) pocket of
v; is defined as follows: Shool a ray starting at v;_y (resp., viy1) and passing v;, and let the ray
hit B(P)— v;_qv; (resp., B(P) — v;v;41) at a point p; then the chain along B(P) from v; clockwise
(resp., counterclockwise) to p is called the clockwise (resp., counterclockwise) pocket of v; and is
denoted by PK.(v;) (resp., PK .(v;)).

Proposition 5.1 Polygon P is weakly visible from a chain C on its boundary if and only if C
intersects every pocket of P.

Proof: If the chain C' does not intersect a pocket of a vertex v; (say, its clockwise pocket PK.(v;)),
then C N PK.(v;) is empty and clearly the vertex v;_; cannot be weakly visible from C. If C
intersects every pocket of P, then we show that every point of P is weakly visible from €. This
is proved by contradiction, as follows. Suppose there is a point p in P that is not weakly visible
from C'. Then for any point ¢ on C, the shortest path from p to ¢ inside P consists of at least two
line segments. Let pp’ be the first segment on the shortest p-to-¢ path inside P, and assume that
the shortest path makes a right turn at p’ (the other case is proved similarly). Now shoot a ray
starting at p and passing p’, and let the ray hit B(P) — pp’ at a point h. Then the segment p'h
partitions P into two subpolygons P, and P,, with p € P; and C' C P;. The fact that the shortest
p-to-¢q path makes a right turn at p’ implies that the chain C' is completely contained in the interior
of the chain along B(P:) from p' counterclockwise to h, and that p’ is a reflex vertex of P. It is
now easy to see that the pocket PK.(p’) is completely contained in P; and hence PK.(p') N C is
empty, contradicting that C' intersects every pocket of P. a

The two corollaries below follow immediately from Proposition 5.1.

Corollary 5.2 The shortest weakly visible chain of P must intersect every pocket of P.

Corollary 5.3 For two distinct pockets PK' and PK" of P, if PK" C PK', then PK' can be
removed from the set of pockels of P withoul affecting the structure of the shortest weakly visible
chain of P.

Proof: This is because any chain on B(P) intersecting PK" must also intersect PK’. O

Based on the observations discussed above, we can map the points on B(P) to points on a unit
circle C'ircle (a bijection function for such a mapping can be defined trivially). Hence, every pocket
of P is mapped to an arc on Circle. Because P has O(n) pockets, there are O(n) corresponding
arcs on Circle to consider. Let A denote the set of arcs so obtained. Hence the SWVC problem
is reduced to the problem of first eliminating the arcs in A that contain some other arcs of A
(Corollary 5.3) and then finding an arc a* on C'ircle (a* is not necessarily in A) that intersects all
the remaining arcs of A and has the shortest length.

Proposition 5.4 Both endpoints of an arc a* on Circle that intersects all the arcs of A and has
the shortest length can be chosen to be endpoints of some arcs in A.



Proof: If a* consists of only a single point, then we can easily let a* coincide with an endpoint of
an arc in A. When ¢* has two distinct endpoints, if one endpoint of ¢* were not an endpoint of
some arc in A, then a¢* could have been made shorter, a contradiction. a

We are now ready to present the algorithm for finding the shortest weakly visible chain of P.

(1) For every reflex vertex of P, compute its two pockets. This can be done in O(nlogn) time by
using ray shooting algorithms in simple polygons [7, 8, 23].

(2) Map the set of pockets of P to a set A of arcs on a unit circle C'ircle, and sort the endpoints
of the arcs in A.

(3) Eliminate the arcs in A that contain some other arcs in A. Let A’ be the set containing the
remaining arcs in A.

(4) Compute an arc ¢* on Circle that intersects all the arcs in A’ and has the shortest length,
based on Proposition 5.4. Map «* back to B(P).

The correctness of the SWVC algorithm follows from the observations given above. The time
complexity of the algorithm is O(nlogn) because Steps (3) and (4) can be performed in O(n) time.

A parallel implementation of the sequential SWVC algorithm takes O(logn) time using O(n)
CREW PRAM processors. The details of this parallel algorithm are left to the full paper.

6 Computing Smallest Weakly Visible Chains of Polygons

Our techniques can be used to solve the related problem of computing a chain on the polygon
boundary that contains the minimum number of edges and from which the polygon is weakly
visible (called the consecutive edge guards problem [1]). Our sequential and parallel solutions to
this problem have the same complexity bounds as those for the SWVC problem, improving the
previously best known sequential O(n?log n) time algorithm for the consecutive edge guards problem
[1]. The details are left to the full paper.

7 Final Remarks

The general visibility art gallery theorem corresponding to z-monotone polygonal chains is not very
interesting, since a chain of reflex vertices shows that |n/2] vertices are sometimes necessary while
placing a guard every other vertices shows that [n/2] guards are always sufficient. Similarly, the
minimum covering partition can be computed by dynamic programming in polynomial time by a
modification of Keil algorithms [27] (in this case, a point in the monotone chain must be covered
by one and only one guard).

We believe that the interesting open problems are covering of a z-monotone chain with more
than one station and minimizing links. Also, algorithms for optimizing metrics that balance number
of links and distance from a relay or station. Finally, we conjecture that our algorithms for finding
covering chains in polygons are optimal, but we have no proof.
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