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Ramsey numbers for empty convex polygons
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Abstract

We study a geometric Ramsey type problem where
the vertices of the complete graph Kn are placed on a
set S of n points in general position in the plane, and
edges are drawn as straight-line segments. We define
the empty convex polygon Ramsey number REC(k, k)
as the smallest number n such that for every set S
of n points and for every two-coloring of the edges
of Kn drawn on S, at least one color class contains
an empty convex k-gon. A polygon is empty if it
contains no points from S in its interior. We prove
17 ≤ REC(3, 3) ≤ 463 and 57 ≤ REC(4, 4). Further,
there are three-colorings of the edges of Kn (drawn
on a set S) without empty monochromatic triangles.
A related Ramsey number for islands in point sets is
also studied.

1 Introduction

Ramsey’s theorem ensures that for every two-coloring
of the edges of the complete graph Kn on a large
enough number n of vertices, at least one of the two
color classes contains a clique of a given size. The
Ramsey number R(s, t) is the smallest number n such
that every two-coloring of the edges of Kn contains
a clique on s vertices from the first color class or a
clique on t vertices from the other color class. Geo-
metric variants of Ramsey’s theorem have been stud-
ied, see e.g. [9]. When the vertices of Kn are drawn on
a set of n points in the plane, and edges as straight-
line segments, geometry comes into play by consid-
ering crossings of edges. Throughout, we only con-
sider point sets S in general position, meaning sets
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tially supported by Conacyt of Mexico, grant 179867.
‖Department of Mathematics, School of Science, Tokai Uni-

versity, Japan. Research supported by JSPS KAKENHI Grant
Number 24540144.
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without three collinear points. For example, in [11]
it was shown that for every set S of n points and
for every two-coloring of the edges of Kn drawn on
S, one color class has non-crossing cycles of lengths

3, 4, . . . ,
⌊√

n/2
⌋
. In this work we consider another

geometric constraint, namely emptyness. A simple
polygon is empty if it has no points of S in its inte-
rior. The number of empty convex polygons in Kn

drawn on sets S of n points have been estimated, see
e.g. [1, 2, 7, 10]. We define the empty convex poly-
gon Ramsey number REC(s, t) as the smallest num-
ber n such that for every set S of n points and for
every two-coloring of the edges of Kn drawn on S,
the first color class contains an empty convex s-gon
or the second color class contains an empty convex
t-gon. For the case of empty triangles, the bounds
17 ≤ REC(3, 3) ≤ 463 are shown. We also prove that
there are three-colorings of the edges of Kn, drawn on
some point set S, without empty monochromatic tri-
angles; in other words REC(3, 3, 3) = 0. For the case
of empty convex quadrilaterals we can show the lower
bound REC(4, 4) ≥ 57. We were not able to prove an
upper bound. Finally we consider a Ramsey number
for islands in point sets. An island of a point set S
is a subset I of S such that Conv(I) ∩ S = I. Islands
in point sets were also studied in [3, 4, 6]. In our
context, an island is a clique formed by a subset of
vertices of Kn drawn on S which contains no further
point of S in its interior. We remark that the Ram-
sey number R(s, t) equals the smallest number n such
that every two-coloring of the edges of Kn drawn on
a set of n points in convex position contains an island
on s points in one color class or an island on t points
in the other color class. This is, because there, all
islands are in convex position. In [13] it was shown
that for every set S of n points, the edges of Kn,
drawn on S, can be two-colored such that there is no
monochromatic island on four points with triangular
convex hull. We prove that there are point sets S and
a two-coloring of the edges of Kn, drawn on S, such
that there is no monochromatic island on four points
(regardless of the form of the convex hull). That is,
the island Ramsey number for four points RI(4, 4) is
zero.
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2 The empty triangle Ramsey number

Theorem 1 The empty triangle Ramsey number
satisfies 17 ≤ REC(3, 3) ≤ 463.

Proof. For the upper bound, we use the fact that
every sufficiently large point set in general position
contains an empty convex hexagon [8, 14]. Koshelev
obtained the current best bound, 463, on the number
of points needed to guarantee such an empty convex
hexagon [12]. Consider only the complete graph on
six vertices K6 formed by the vertices of this hexagon.
Ramsey’s theorem tells us that every two-coloring of
K6 contains a monochromatic triangle. Since the
hexagon is empty, the monochromatic triangle is so
as well. For the lower bound, a two-colored com-
plete geometric graph on 16 vertices without an empty
monochromatic triangle is shown in Figure 1.

Figure 1: A two-coloring of the edges of K16 without
an empty monochromatic triangle. Only the edges of
one color class are drawn.

�

Theorem 2 The empty triangle Ramsey number for
three-colored complete graphs REC(3, 3, 3) is zero.

Proof. We have to present a three-coloring of the
edges of the complete geometric graph Kn drawn on
a set S of n points. The point set S is the so-
called Horton set H(n), see e.g. [1, 2, 5, 10], de-
fined recursively as follows: H(1) = {(1, 1)} and
H(2) = {(1, 1), (2, 2)}. When H(n) is defined, set

H(2n) = {(2x− 1, y) | (x, y) ∈ H(n)}

∪ {(2x, y + 3n) | (x, y) ∈ H(n)}.

In this construction H(2n) is obtained by taking H(n)
and a copy of H(n) which is slightly shifted to the
right and placed far above the other set H(n). To
define an edge-coloring of the complete graph drawn
on H(n) we use an auxiliary three-coloring of the ver-
tices of H(n): vertex (x, y) gets color x mod 3. This
three-coloring for H(8) is shown in Figure 2. In [5],
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Figure 2: A three-coloring of the vertices of the Hor-
ton set H(8).

Theorem 3.3, it was proved that this coloring admits
no empty triangles with its three vertices from the
same color class. The three-coloring for the edges
of Kn is now defined as follows: an edge connecting
points (x1, y1) and (x2, y2) gets color x1 + x2 mod 3.
Then, a triangle formed by points (x1, y1), (x2, y2)
and (x3, y3) is monochromatic if and only if x1, x2

and x3 belong to the same congruence class modulo
three. Thus, the vertices of a monochromatic triangle
have the same color and from [5] we know that these
triangles are not empty. �

3 The empty convex quadrilateral Ramsey num-
ber

Theorem 3 The empty convex quadrilateral Ram-
sey number satisfies 57 ≤ REC(4, 4).

Proof. Figure 3 shows a two-coloring of the edges
of K11 in convex position without an empty convex
monochromatic quadrilateral. A drawing of K56 (in-
dicated in Figure 4) and a two-coloring of its edges
without an empty convex monochromatic quadrilat-
eral is obtained by placing five groups of 11 points
(with two-coloring as in Figure 3) in such a way that
the 55 points lie on five small semi-circles with centers
the vertices of a regular pentagon. Then the last point
is placed in the center of this pentagon and connected
to the 55 points with the same color as the drawn
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Figure 3: A two-coloring of the edges of K11 without
an empty convex monochromatic quadrilateral. Only
the edges of one color class are drawn.

Figure 4: Schematic drawing of K56 without an empty
convex monochromatic quadrilateral. Only the edges
of one color class are indicated.

edges in Figure 3.

�

4 The Ramsey number for islands

Theorem 4 The island Ramsey number RI(4, 4) is
zero.

Proof. We present a two-coloring of the edges of Kn

drawn on the Horton set H(n) without an empty
monochromatic K4. As in the proof of Theorem 2, we
start with the auxiliary three-coloring of the vertices
of H(n) where vertex (x, y) gets color x mod 3. Now
we define a two-coloring for the edges of Kn as fol-
lows: an edge connecting points (x1, y1) and (x2, y2)
gets color 0 if x1 − x2 mod 3 = 0 and gets color 1
otherwise. In other words, an edge gets color 0 if and
only if its two vertices have the same color in the aux-
iliary vertex coloring. Then, a complete subgraph K4

is monochromatic if and only if its four vertices have
the same color in the auxiliary vertex coloring. Thus,
if a K4 is monochromatic, then from [5] Theorem 3.3,
we know that none of its triangles is empty, which
implies that this K4 is not an island.

�

5 Concluding Remarks

An obvious problem left open is to close the gap be-
tween lower and upper bound for REC(3, 3). Very
interesting would be to prove an upper bound on the
empty convex quadrilateral Ramsey number. Com-
puter experiments suggest that it is finite and proba-
bly not too large.
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