
Bichromatic separability with two boxes: a general approach

C. Cortés∗ J. M. Dı́az-Báñez† P. Pérez-Lantero‡ C. Seara§ J. Urrutia¶

I. Ventura‖

February 7, 2009

Abstract

Let S be a set of n points on the plane in general position such that its elements are colored
red or blue. We study the following problem: Find a largest subset of S which can be enclosed
by the union of two, not necessarily disjoint, axis-aligned rectangles R and B such that R
(resp. B) contains only red (resp. blue) points. We prove that this problem can be solved in
O(n2 log n) time and O(n) space. Our approach is based on solving some instances of Bentley’s
maximum-sum consecutive subsequence problem. We introduce the first known data structure
to dynamically maintain the optimal solution of this problem. We show that our techniques can
be used to efficiently solve a more general class of problems in data analysis.

Keywords: Discrete optimization, Maximum consecutive subsequence, Dynamic maintenance,
Algorithm design, Classification problems, Bioinformatics.

1 Introduction

In data mining and classification problems, a natural method for analyzing data is to select pro-
totypes representing different data classes. A standard technique for achieving this is to perform
cluster analysis on the training data [8, 11]. The clusters can be obtained using simple geometric
shapes such as circles or boxes. Aronov and Har-Peled [1] and Eckstein et al. [9] considered circles
and axis-aligned boxes for the selection problem. Aronov and Har-Peled [1] studied the following
problem: Given a bicolored point set, find a ball that contains the maximum number of red points
without containing any blue points. This type of classification is asymmetric in the way it treats red
and blue points. The goal is to separate the “red class” from the “blue class”. We are interested
in generalizing to a symmetric two-classes problem by finding a witness set for each color.

∗Departamento Matemática Aplicada I, Universidad de Sevilla, ccortes@us.es.
†Corresponding author: Departamento Matemática Aplicada II, Universidad de Sevilla, Escuela Superior de

Ingenieros, Avda. de los Descubrimientos, s/n, 41092, Sevilla, SPAIN. e-mail: dbanez@us.es, phone: 34-95-4486172,
fax: 34-95-4486165, partially supported by Grant MTM2006-03909.

‡Departamento de Computación, Universidad de La Habana, pablo@matcom.uh.cu, partially supported by Grant
MTM2006-03909.

§Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, carlos.seara@upc.edu, partially
supported by Grants MEC MTM2006-01267 and DURSI 2005SGR00692.

¶Instituto de Matemáticas, Universidad Nacional Autónoma de México, urrutia@matem.unam.mx, partially sup-
ported by Grant MTM2006-03909.

‖Departamento Matemática Aplicada II, Universidad de Sevilla, iventura@us.es, partially supported by Grant
MTM2006-03909.

1

In some cases, as in medical data analysis [10], methods can produce biased classifications due to
the fact that some data may be defective or contain values out of reasonable ranges. In other cases,
we may obtain data which are hard to classify due to strong similarities between subsets of different
classes. A potential way to find a better classification in the former problem is to remove some
data points from the input. Culling the minimum number of such points can be a suitable criterion
for losing the smallest amount of information possible. We will use the following notation. Given
two (possibly unbounded) non-disjoint convex sets X and Y , we denote by |X| the cardinality of
the set X and by X \ Y the set obtained by removing X ∩ Y from X.

In this paper we study the following problem:

The Two Enclosing Boxes problem (2-EB-problem): Let S be a set of n points on the plane
in general position such that the points are colored red or blue. Compute two open axis-aligned
rectangles R and B such that the number of red points in R \ B plus the number of blue points in
B \ R is maximized.

We remark here that in the definition of our problem we require R and B to be open. This will
facilitate our presentation, but in practice we may proceed in a similar way if our boxes are closed.
Observe that R and B may intersect; however any point in R∩ B has to be removed from S. For
example, the solution to the 2-EB-problem for the point set S illustrated in Figure 1 is n−2, where
n is the cardinality of the input set. By removing r1 and b1 from S, we can obtain two rectangles R
and B, each of them containing only red and blue points respectively. Notice that an asymmetric
separation approach as the one used by Aronov and Har-Peled [1] does not give a solution to our
problem, so we must design a procedure which consider R and B simultaneously. Bespamyatnikh
and Segal [4] studied a two-box covering problem but using a different min-max criterion.

b1
r1

R

B

Figure 1: Getting a solution by removing the points r1 and b1.

The 2-EB-problem was first introduced by Cortés et al. [5], solving the problem with an O(n3)-time
and space algorithm. In this paper we show that the 2-EB-problem can be solved in O(n2 log n)
time and O(n) space. We also introduce a new data structure that allows us to dynamically
solve Bentley’s [2] well known Maximum-Sum Consecutive Subsequence problem (MCS-problem
for short) together with some other variants of this problem that have applications, for instance in
sequence analysis in bioinformatics [6]. We also show a generalization of our approach that can be
used to solve a general type of problem of interest in areas such as computer graphics or machine
learning [7].

The outline of this paper is as follows. In Section 2 we introduce a data structure, the MCS-tree,
to dynamically maintain an optimal solution of the MCS-problem. In Section 3 we introduce some
notation and present the first results on the 2-EB-problem. In Section 4 we show our main result,
an O(n2 log n) time and linear space algorithm to solve the 2-EB-problem. In Section 5 we show
how to solve the following related problem: Let S be a set of points on the plane in general position
such that each element of S is colored red, blue, or green. Find three pairwise-disjoint axis-aligned
rectangles R, B, and G such that the total number of red, blue, and green points contained in R,

2

B, and G respectively is maximized. In Section 6 we present a generalization of our technique and
show how to apply it to several variants of the original problem. Finally, in Section 7 we present
the conclusions.

2 The dynamic MCS-problem

In this section we describe the main tool that will allow us to solve the 2-EB-problem in O(n2 log n)
time and O(n) space. Later we show how this technique can be applied to other variants of the
same problem. The key idea for solving the 2-EB-problem is a reduction to the computation of
some dynamic instances of the following one-dimensional Bentley’s problem [2]:

The Maximum-Sum Consecutive Subsequence problem (MCS-problem): Given a se-
quence X = (x1, x2, ..., xn) and a real weight function w over its elements where for each i, w(xi)
is not necessarily positive, compute the consecutive subsequence (xi, xi+1, ..., xj) of X such that
w(xi) + w(xi+1) + · · · + w(xj) is maximum.

Next we show how to construct a binary tree, the MCS-tree, that allows us to solve the MCS-
problem in a dynamic way. Assume that n is a power of two, otherwise add a few elements with
negative weights at the end of the sequence X = (x1, . . . , xn) until we get a sequence of 2k elements,
n < 2k < 2n.

2.1 The MCS-tree

The MCS-tree is a balanced binary tree with n leaves representing the sequence X = (x1, x2, ..., xn).
The k-th leaf (from left to right) represents xk. Each internal node u represents the consecutive
subsequence formed by the descendants of u. At each node u of the MCS-tree, we store some
values, one of which will be the weight of the maximum weight consecutive subsequence contained
in the subsequence of X defined by the descendants of u. The root vertex will have the solution of
the MCS-problem.

Because we focus on the indexes of the first and the last elements of a subsequence, we use the
term interval [xi, xj] to denote the consecutive subsequence (xi, xi+1, ..., xj) (Figure 2).

x1 x2 x3 x4 x5 x6 x7 x8

A

B

Root

Figure 2: The MCS-tree for a sequence of 8 elements. The nodes A, B, and Root represent the
intervals [x1, x2], [x5, x8], and [x1, x8], respectively.

Construction of the MCS-tree. We build the MCS-tree as follows: Each node u stores the following
intervals, as well as their weights, i.e., the sum of their elements:

1. I(u): The interval formed by the descendants of u. If u is a leaf representing xi, I(u) = [xi].

2. L(u): The interval of maximum weight sum contained in I(u) that contains the leftmost
element of I(u). If all the intervals in I(u) containing the leftmost element of I(u) have
negative weight, set L(u) = ∅ and its weight to 0.

3

3. R(u): The interval of maximum weight sum contained in I(u) that contains the rightmost
element of I(u). If all the intervals in I(u) containing the rightmost element of I(u) have
negative weight, set R(u) = ∅ and its weight to 0.

4. M(u): The interval of maximum weight sum that is a subinterval of I(u). If all the intervals
in I(u) have negative weight, set M(u) = ∅ and its weight to 0.

If u is the root of the MCS-tree, then I(u) is [x1, xn]. L(u), R(u), and M(u) are respectively the
intervals of the form [x1, xi], [xj, xn], and [xi, xj] with maximum weight sum. We only store the
indexes of the first and last elements of each of the above intervals.

Let u be an internal node of the MCS-tree, and let v and w be its left and right children, respectively.
It is clear that if we have the values for I(v), I(w), L(v), L(w), R(v), R(w), M(v), and M(w),
then we can calculate in constant time each of the values of I(u), L(u), R(u), and M(u). Notice
that for M(u) we have three possible cases: (i) M(u) is contained in I(v); (ii) M(u) is contained
in I(w); or (iii) M(u) overlaps both of I(v) and I(w). Thus, M(u) = M(v), M(u) = M(w), or
M(u) = R(v) ∪ L(w) respectively. We choose M(u) to be the interval of maximum weight among
M(v), M(w), and R(v) ∪ L(w). The intervals L(u) and R(u) can be computed in a similar way.

If a leaf xi of the MCS-tree has negative weight w(xi), then L(xi) = ∅, R(xi) = ∅ and M(xi) = ∅.
Otherwise L(xi) = [xi], R(xi) = [xi] and M(xi) = [xi]. By using these values for the leaves of the
MCS-tree and a standard bottom-up traversal, we can calculate L(u), R(u), and M(u) for all the
nodes u of the tree in linear time. If the weight w(xi) of a leaf xi changes, then the MCS-tree can
be updated in a bottom-up traversal from xi to the root, and therefore the weight of the maximum
weight consecutive subsequence is recalculated in O(log n) time.

Moreover, for a given xi ∈ X, by traversing from xi to the root, the MCS-tree structure allows us
to obtain in O(log n) time: (i) the optimal interval for the MCS-problem which contains xi, and
(ii) the maximum weight of the interval of X starting, or ending at xi. We leave out the details to
avoid repetitive arguments.

These properties of the MCS-tree structure will be used to solve the 2-EB-problem. From the
discussion above we get the following result.

Theorem 2.1. Given the sequence X = (x1, . . . , xn) with a real weight function w over its elements,
the MCS-tree can be built in O(n) time. Moreover, if any w(xi) is updated, the MCS-tree can
be updated in O(log n). The MCS-tree allows computation, in O(log n) time, of the interval of
maximum weight sum of consecutive elements that includes, starts or ends at a specific element
xk ∈ X.

3 Notation and preliminary results on the 2-EB-problem

An optimal solution to the 2-EB-problem for S consists of two axis-aligned rectangles R and B
and the subset of S containing the red points of S in R \ B together with the blue points of S in
B \ R. For technical reasons which become necessary in Proposition 3.2 we assume that R and B
are open, i.e., they do not include their boundaries, thus we do not count points on the boundaries
of R and B.

Up to symmetry there are three possible relative positions of R and B. A pair (R,B) is called: a
corner-type if R overlaps exactly one corner of B (Figure 3a), a sandwich-type if R intersects only
two parallel sides of B (Figure 3b), and a disjoint-type if R and B are disjoint (Figure 3c). A fourth
type could exist, however it can be reduced to a disjoint-type (Figure 3d).

4

a) b) c)

R

B B

R

R

B

d)

B

R′

B

R

Figure 3: a) Corner-type, b) sandwich-type, c) disjoint-type, and d) getting a disjoint-type.

We show now how to obtain optimal solutions of the corner-type case. In section 4 we describe
briefly how to solve sandwich-type solutions, the remaining cases can be handled in a simpler way.
Thus, from now on (R,B) denotes a corner-type pair of rectangles. We assume without loss of
generality that R always contains the top-right corner of B, as in Figure 4a.

Given Y ⊂ R
2, Red(Y) (resp. Blue(Y)) denotes the subset of red (resp. blue) points of S that

belong to Y . For p ∈ R
2, we respectively denote by SW(p), SE(p), NW(p) and NE(p), the South-

West, South-East, North-West and North-East open quadrants with respect to p, e.g., if p = (a, b),
then NE(p) = {(x, y) | a < x, b < y}. The point p is the apex of SW(p), SE(p), NW(p), and NE(p).

Let (QR,QB) be a North-East and South-West pair of quadrants. We say that (QR,QB) is a
corner-type pair of quadrants if the apex of QR belongs to QB (Figure 4b).

QR

QB

R \ B

R ∩ BB \ R

R

B

a) b)

Figure 4: a) A corner-type pair of rectangles, b) a corner-type pair of quadrants.

Proposition 3.1. If the 2-EB-problem for S has an optimal solution formed by a corner-type pair
of rectangles, then it has an optimal solution formed by a corner-type pair of quadrants, or there is
an optimal disjoint type solution.

Proof. Let (R,B) be an optimal corner-type pair of rectangles for S. Let QR be the North-East
quadrant whose apex is the bottom-left corner of R and let QB be the South-West quadrant whose
apex is the top-right corner of B (Figure 4). Notice that |Red(QR \ R)| = |Blue(QB \ B)| = 0,
otherwise (R,B) would not form an optimal corner-type solution for S. Hence |Red(QR \ QB)| +
|Blue(QB \ QR)| = |Red(R \ B)| + |Blue(B \ R)| and thus, the corner-type pair of quadrants
(QR,QB) is an optimal solution for S.

Proposition 3.2. There exists an optimal corner-type pair of quadrants (QR,QB) of the 2-EB-
problem for S such that the horizontal ray bounding QB contains a red point and the horizontal ray
bounding QR contains a blue point.

5

Proof. Let (QR,QB) be an optimal corner-type pair of quadrants of the 2-EB-problem for S. Let
S′ ⊆ S be the set of points of S in QR \ QB. Translate QB vertically in the upward direction until
its boundary hits a point p ∈ S′. If p is a blue point, ignore it (as it will not change the solution
given by QB and QR). Thus, we can translate QB upwards until its horizontal ray hits a red point
in S′. If no such red point exists, then QB can become a half-plane, say HPB. As no element
of S′ can be in HPB ∩ QR, we can then move QR to the right until it no longer intersects HPB.
Then QR can become a half-plane HPR which is disjoint with HPB. Thus, we obtain an optimal
solution to the 2-EB-problem for S which is not a corner-type quadrant. Analogously, we can prove
that the horizontal ray bounding QB contains a blue point (Figure 4b).

For the sake of clarity, we include here a first approximation to our techniques by using a simple
method to compute a corner-type solution in O(n4) time and O(n2) space. First, observe that the
size of the subset of S, say S′, we are seeking will be equal to |S′| = |Red(QR \QB)|+ |Blue(QB \
QR)|. Consider the orthogonal grid G formed by horizontal and vertical lines passing through
points of S. Using range search techniques as in [3] we can perform a quadratic time preprocessing
on the nodes of G such that for each node p ∈ G we calculate and store the values |Red(SW(p))|,
|Blue(SW(p))|, |Red(SE(p))|, |Blue(SE(p))|, |Red(NW(p))|, |Blue(NW(p))|, |Red(NE(p))|, and
|Blue(NE(p))|.

I1 I2

I4 I3

QR

QB

Figure 5: Looking for a corner-type solution.

Let (QR,QB) be a corner-type pair of quadrants on G. Denote by I1, I2, I3, and I4 the four vertices
of the rectangle QR ∩ QB as in Figure 5. From the following formulas:

|Red(QR \ QB)| = |Red(NE(I1))| + |Red(NE(I3))| − |Red(NE(I2))|,

|Blue(QB \ QR)| = |Blue(SW(I1))| + |Blue(SW(I3))| − |Blue(SW(I4))|,

it follows that |S′| can be computed in constant time. This yields to an O(n4) time and O(n2)
space algorithm to solve the 2-EB-problem.

4 The main result

In this section we describe an efficient algorithm which solves the 2-EB-problem for S in O(n2 log n)
time and O(n) space.

The corner-type solution

First we show how to find a corner-type pair of quadrants (QR,QB) that yields an optimal solution
to the 2-EB-problem for S.

6

Let hp denote the horizontal line passing through a point p ∈ S. We color hp as follows: if p is
red (blue), then color hp blue (red). By Proposition 3.2 we can assume that the horizontal ray
that bounds QB has a red point on it, and that the horizontal ray bounding QR has a blue point.
Thus, for each pair (r, b) of red and blue points of S, w.l.o.g. supposing that the y-coordinate of r

is larger than the y-coordinate of b, we solve the following problem.

Let H be the horizontal strip bounded by the lines hr and hb. Let ℓ be the vertical line passing
through r (Figure 6a). For each red point r′ on the right of ℓ and below hr, let QB(r′) be the South-
West blue quadrant defined by hr and the vertical line passing through r′. Similarly, for each blue
point b′ on the left of ℓ and above hb, let QR(b′) be the North-East red quadrant bounded by hb

and the vertical line passing through b′ (Figure 6b).

hr

r

QR

QB

S1

S2

S3 S4

S5

S6

hb

a)

hr

r

QR(b′)

QB(r′)

S1

S2

S3 S4

S5

S6

hb

b)

v v

ℓ ℓ

r
′

b
′

b b

Figure 6: a) Starting position, b) optimal position.

We consider the following problem for a given input H.

The Horizontal Strip problem (HS-problem): Given H, find (QR(b′),QB(r′)) such that: (i)
the horizontal ray of QB(r′) is contained in hr, (ii) the horizontal ray of QR(b′) is contained in hb

and passes through r, (iii) r belongs to the interior of QR(b′), and (iv) |Red(QR(b′) \ QB(r′))| +
|Blue(QB(r′) \ QR(b′))| is maximized.

By Propositions 3.1 and 3.2, finding an optimal corner-type pair of quadrants for the 2-EB-problem
for S can be done by solving the HS-problem for O(n2) instances, where each instance corresponds
to a pair (r, b) of points of S defining a horizontal strip H. Next we show how to solve the HS-
problem for the O(n2) instances in a dynamic way by solving O(n2) instances of the MCS-problem.

Let v be the intersection point of ℓ and hb, and consider the quadrants NE(v) and SW(r). To solve
the HS-problem for H, we slide NE(v) to the left and SW(r) to the right, until we reach an optimal
solution. To do this task, we assign weights to the points of S as follows: The lines ℓ, hr and hb

divide the plane into six regions S1, . . . , S6 as in Figure 6.

• All the red points in S1 and all the blue points in S2 receive weight 1.

• All the blue points in S3 and all the red points in S4 receive weight −1.

• All the remaining points receive weight 0.

Store in r the number of blue points in SW(r) and in v the number of red points in NE(v). Project
vertically all the red and blue points on hb. The following result is easy to prove.

Lemma 4.1. To find the optimal (QR(b′),QB(r′)) to the HS-problem for H is equivalent to finding
the maximum weight interval I on hb such that I contains r. Moreover, |Red(QR(b′) \ QB(r′))| +
|Blue(QB(r′) \ QR(b′))| = |Red(NE(v))| + |Blue(SW(r))| + w(I) where w(I) is the weight of I.

7

Suppose that hr is fixed. We slide hb down, stopping each time hb meets a point p of S, and
following the rules: (i) if p is a red point in S2, p will enter into S4 and its weight will change to
−1; (ii) if p is a red point in S5, p will enter into S3 and its weight will remain 0; (iii) if p is blue
point and it enters into S4, its weight changes to 0; and (iv) if p is blue point and it enters into S3,
its weight changes to −1. Each time hb hits a blue point, we update the number of red points in
NE(v), and recalculate the optimal solution to the HS-problem for the new H (bounded above by
hr and below by the new position of hb).

This immediately suggests using the dynamic version of the computation of the interval of maximum
weight sum on hb. By using the MCS-tree and Theorem 2.1, the interval of maximum weight sum
containing the current r can be computed in O(log n) time per stop-point of the slide line hb. Thus,
the time cost for the fixed red point r is O(n) + O(n log n) = O(n log n).

Now, for each one of the O(n) red points r in S, we set the horizontal line hr and start again the
process by rebuilding the MCS-tree in linear time, and then dynamically solving the MCS-problem.
Therefore, the overall time complexity of the algorithm is O(n)(O(n) + O(n log n)) = O(n2 log n).

Theorem 4.1. An optimal corner-type solution for the 2-EB-problem for S can be found in
O(n2 log n) time and O(n) space.

The sandwich-type solution

We now give a brief description of how find a sandwich-type solution. The method is similar to the
corner-type solution. The following propositions are given without proof.

Proposition 4.1. There exists a sandwich-type solution (R,B) to the 2-EB-problem if and only if
there exists a pair of strips (SR,SB), one vertical and the other horizontal, that maximize the sum
|Red(SR \ SB)| + |Blue(SB \ SR)|.

Proposition 4.2. There exists a pair of strips (SR,SB), SR vertical and SB horizontal, that max-
imize the sum |Red(SR \ SB)| + |Blue(SB \ SR)| such that there is a red element of S on the top
side of the rectangle determined by their intersection (see Figure 7b).

Therefore, we can proceed in a similar way to the corner-type solution. For each pair of blue lines
hr1

and hr2
(Figure 7a), we consider the blue strip SB bounded by them, plus a starting red strip

SR consisting of the vertical red line ℓ passing through a red point r1 in hr1
(Figure 7a). They form

an initial candidate sandwich-type solution with value |Blue(SB)|. As we widen SR by translating
two vertical lines v1 and v2 to the left and right of r1, respectively, the value of the solution will
change according to the following weight rules applied to the points of S, where regions S1, S2, and
S3 are as in Figure 7b:

• Blue points in S1, S2, and S3 receive weight 0, −1, and 0, respectively.

• Red points in S1, S2, and S3 receive weight 1, 0, and 1, respectively.

As we did for the corner-type solution, we now use a MCS-tree to obtain the optimal positions of
v1 and v2, and then maintain dynamically the MCS-tree as we slide hr2

down using Theorem 2.1.

The disjoint-type solution. Computing a disjoint-type solution is straightforward. It can be
solved in O(n log n) time. We omit the details.

Therefore, putting together the results above, we get to the following theorem.

Theorem 4.2. The 2-EB-problem for S can be solved in O(n2 log n) time and O(n) space.

8

hr1

r1

r2

SB

S1

S2

S3

hr2

a) b)

SR

v1 v2

hr1

r1

r2

SB

S1

S2

S3

hr2

ℓ

Figure 7: a) Starting position, b) finding an optimal position.

5 The three chromatic planar case with three disjoint boxes

In this section we study the following problem as an extension of the 2-EB-problem.

The Disjoint Three-Chromatic Enclosing Boxes problem (DTEB-problem): Let S be a
set of n points on the plane in general position such that the points are colored blue, red, and green.
The DTEB-problem for S consist of finding three pairwise-disjoint isothetic rectangles B, R, and
G such that |Blue(B)| + |Red(R)| + |Green(G)| is maximum.

Theorem 5.1. The DTEB-problem for S can be solved in O(n log n) time and O(n) space.

Proof. First, we observe that given any three pairwise-disjoint isothetic rectangles B, R, and G we
can always find two isothetic lines (or a line and a half-line) ℓ1 and ℓ2 such that for any pair of
elements of {B,R,G} either ℓ1 or ℓ2 separates them (Figure 8). We solve the two cases separately.

ℓ1

GB

R G

B

R

a) b)

ℓ2
ℓ1

ℓ2

Figure 8: Separation by two isothetic lines: a) parallel lines, b) perpendicular lines.

Parallel case: We show first how to solve the parallel case by reducing it to the Longest Increasing
Subsequence problem [12]: Given a sequence (x1, . . . , xn) of numbers, find a largest subset of indexes
α1 < · · · < αk such that xα1

≤ · · · ≤ xαk
. It is well known that this problem can be solved in

O(n log n) time. In fact, the instance we have to solve here can be solved in linear time, as it
involves a sequence whose elements have values 1, 2, or 3. Suppose first that ℓ1 and ℓ2 are vertical
and that B, R, and G form an optimal solution. We have to consider six cases for the relative
positions of B, R, and G with respect to ℓ1 and ℓ2. Suppose that B is to the left of ℓ1, R lies
between ℓ1 and ℓ2, and G is to the right of ℓ2 (Figure 8a). The remaining five cases are solved in a
similar way.

Assign weight 1 to the points colored blue, weight 2 to those colored red, and weight 3 to the green
points. Project all the points in S on the x-axis obtaining a sequence Σ of 1’s, 2’s, and 3’s. Observe
that all the blue, red, and green points contained in B, R, and G, respectively, as projected into
the x-axis induce an increasing subsequence of Σ. The result follows.

9

Perpendicular case: Suppose, w.l.o.g., that the relative positions of ℓ1, ℓ2, B, R, and G are as in
Figure 8b. We show how to solve this case using dynamic binary trees.

Suppose first that the elements of S are labelled p1, . . . , pn such that the y-coordinate of pi is smaller
than the y-coordinate of pj, i < j. Construct a balanced binary tree T such that its set of leaves
S = {p1, . . . , pn} are colored red, blue, and black. Given an index i, 1 ≤ i ≤ n, let R(i) (resp. B(i))
be the number of red elements pj with j ≤ i (resp. blue pj’s with j ≥ i). Our objective is to store
information on the vertices of T such that the following problem, which we call the Maximum Sum
problem, or the MS-problem for short, can be solved dynamically in O(log n) time:

The Maximum Sum problem (MS-problem): Find an index i that maximizes R(i) + B(i).
At each point in time, a red or blue point can change color to black.

As in Section 2.1, for every internal node p of T let I(p) = [plp , prp] be the interval of S formed by
the descendants of p in T . If p = pj for some j, I(p) = [pj]. For an index i, lp ≤ i ≤ rp, let Rp(i)
(resp. Bp(i)) be the number of red pj ’s such that lp ≤ j ≤ i (resp. the number of blue pk’s with
i ≤ k ≤ rp). We define IR(p) (IB(p)) to be the number of red (blue) points in I(p).

At every node p of T we will store the following information: an index ip, lp ≤ ip ≤ rp, such that
Rp(ip) + Bp(ip) is maximized. If p is a leaf pj of T , then ip = j.

If w is an internal node of T whose left and right children are p and q, respectively, it is easy
to see that iw is either ip or iq, according to the following criterion: If R(ip) + B(ip) + IB(q) ≥
IR(p) + R(iq) + B(iq) then iw = ip, otherwise iw = iq.

It follows immediately that using a bottom-up traversal of T , we can calculate the values IR(p),
IB(p), ip, R(ip), and B(ip) for all nodes of T in linear time by Theorem 2.1. Moreover, by Theo-
rem 2.1, it is straightforward to see that if a red or blue point pi of T is re-colored black, then we
can update T in O(log n) time by traversing the path from pi to the root of T , and that if Root is
the root vertex of T , R(iRoot) + B(iRoot) is the solution to the MS-problem.

We are now ready to solve the perpendicular case. Take a copy S′ of S and re-color black to all
the green elements of S′. Construct a binary tree T as described above such that the elements of
S′ are the leaves of T . R(iRoot) + B(iRoot) is the optimal solution for which the green box contains
no points.

We now perform a line sweep using a vertical line ℓ1 from left to right. Initially all the elements
of S are to the right of ℓ1, at the end all the elements of S are to the left of ℓ1. Each time ℓ1

meets a point in S we change the color of its corresponding copy in S′ to black. In O(log n) time,
we update T , and recalculate the boxes B, R that maximize the number of blue points plus the
number of red points contained in them. Each time ℓ1 meets a green point, the number of elements
in G increases by one. By keeping the maximum number of red point plus blue points plus green
points contained in R, B, and G, respectively, we obtain the optimal solution to our problem.

6 Generalization and other applications

We have shown how to solve the 2-EB-problem and the DTEB-problem by using dynamic trees
over a sequence of elements for which some attribute is dynamically maintained. Notice that in the
case of the 2-EB-problem (resp. the DTEB-problem) the interval of maximum weight (resp. the
position in which the number of red elements to its left plus the number of blue points to its right
is maximum) is maintained in O(log n) time. The approach can easily be generalized as follows.

Generalization: Let X = (x1, x2, . . . , xn) be a sequence of n elements and let A(X) be a set

10

of attributes of X that depends on its elements. Suppose that A(X) can be obtained by applying
a recursive O(n)-time algorithm as follows: if the length of X is at most one compute A(X) in
constant time, otherwise A(X) is computed in constant time from A(X1) and A(X2), where X1

and X2 are the two halves of X. Then the recursive tree having the elements of X as its leaves is
a balanced binary tree and representing it we can, whenever some xi changes, recompute A(X) in
O(log n) time by traversing the path from xi to the root.

Note that although the goal may be to maintain only one attribute, we maintain a set of them
because in many applications the calculation of an attribute of the sequence depends on others.
For the sake of clarity see the MCS-tree (Section 2.1), where the property of the sequence is the
weight of its elements and other three attributes are considered in order to maintain the interval
of maximum weight.

By applying this generalization we are now ready to present efficient algorithms for a collection of
problems.

The Maximum Weighted Box problem (MWB-problem): Given a set S of n points on the
plane and a weight function w : S → R, compute the axis-aligned box H such that

∑

x∈H∩S w(x) is
maximized.

Note that there exists a box H that gives an optimal solution such that H contains on its boundary
only elements of S with positive weight. A solution can be calculated as follows:

Make a top-bottom sweep of the elements of S with a horizontal line ℓ1 and whenever it stops
at a positive element of S, make a sweeping of the elements of S that lie below ℓ1 with another
horizontal line ℓ2 that starts at ℓ1 and stops only on positive-weight points. Let X be the points
of S ordered by abscissa and let w′ be a weight function for each x ∈ S defined as follows:

w′(x) =

{

w(x) if x lies between ℓ1 and ℓ2;

0 if x lies either above ℓ1 or below ℓ2.

For a given position of ℓ1 and ℓ2, the optimal box whose top and bottom sides lie on ℓ1 and
ℓ2 respectively is determined by the interval of maximum weight sum on X. This interval is
dynamically computed in O(log n) time by using an MCS-tree. We obtain a simple O(n2 log n)-
time algorithm since there are O(n2) possible positions of ℓ1 and ℓ2.

The Maximum Box problem (MB-problem): Given a set of blue points B and a set of red
points R on the plane, where |R ∪ B| = n, find an axis-aligned box H such that H ∩ R = ∅ and
|H ∩ B| is maximized.

The MB-problem can be solved in O(n2 log n) time by using O(n) space since it is an instance of
the MWB-problem by considering S = B ∪ R and the weight function:

w(x) =

{

1 if x ∈ B;

−∞ if x ∈ R.

The MB-problem was solved in [13] with O(b2 log b + br + r log r) time, where r = |R| and b = |B|.
However our approach is a simpler method with the same complexity in the worst case.

The Maximum Bichromatic Discrepancy Box problem (MBDB-problem): Given a set
of blue points B and a set of red points R on the plane, where |R∪B| = n, find an axis-aligned box
H such that ||H ∩ B| − |H ∩ R|| is maximized.

The solution to the MBDB-problem can be obtained by solving the following two instances of the

11

MWB-problem, in both consider that S = R ∪ B:

(1) w(x) =

{

1 if x ∈ B,
−1 if x ∈ R;

(2) w(x) =

{

−1 if x ∈ B,
1 if x ∈ R.

In this way, the MBDB-problem can be solved in O(n2 log n) time by using O(n) space. This
complexity matches the result given in [7].

The Weak Strip Separation problem (WSS-problem): Let S be a set of n points on the
plane in general position such that its elements are colored red or blue. Find a corridor C bounded
by two parallel lines in any direction such that the number of blue points inside C plus the number
of red points outside C is maximized.

Suppose that we have a direction given by a line ℓ and we want to compute the best corridor Cℓ that
is orthogonal to ℓ. It can be done as follows: Project the points of S onto ℓ, obtaining the sequence
of elements X = (x1, . . . , xn) ordered from left to right. Given an index i, 1 ≤ i ≤ n, let R−(i)
(resp. R+(i)) be the number of red elements xk with k ≤ i (resp. k ≥ i) and given two indexes i

and j, 1 ≤ i ≤ j ≤ n, let B(i, j) be the number of blue elements xk with i ≤ k ≤ j. It is easy to
see that Cℓ is determined by the indexes i and j, 1 ≤ i ≤ j ≤ n, such that R−(i) + B(i, j) + R+(j)
is maximum.

If we rotate the line ℓ about the origin, the order of the projected points on ℓ changes a quadratic
number of times. Thus we make a rotational sweeping passing from the current critical direction
to the next by swapping two consecutive elements of X. When the swap occurs, the solution is
dynamically computed using a tree constructed by using similar arguments as in Section 5 and also
applying the general approach. This method has O(n2 log n)-time and O(n2)-space complexities.

The Weak Cross Separation problem (WCS-problem): Let S be a point set on the plane
in general position such that its elements are colored red or blue. Find a point p on the plane such
that |Blue(NE(p))| + |Red(NW(p))| + |Blue(SW(p))| + |Red(SE(p))| is maximized.

The point p can be seen as the intersection point between a horizontal line ℓh and a vertical line
ℓv defining a cross. Suppose we are given ℓh and we want to compute the best location of ℓv.
It can be done as follows: Project the points of S onto ℓh, obtaining the sequence of elements
X = (x1, . . . , xn) ordered from left to right. Given an index i, 1 ≤ i ≤ n, let Ra(i) (resp. Rb(i)) be
the number of red elements xk with k ≤ i (resp. k ≥ i) such that its corresponding point in S is
above (resp. below) ℓh, and let Ba(i) (resp. Bb(i)) be the number of blue elements xk with k ≥ i

(resp. k ≤ i) such that its corresponding point in S is above (resp. below) ℓh. Note that the best
position of ℓv is determined by the index i such that Ra(i) + Ba(i) + Bb(i) + Rb(i) is maximum.

We make a top-bottom sweep with ℓh dynamically computing the best position of ℓv at each step.
This fits the general approach and we obtain an O(n log n)-time and O(n)-space algorithm.

7 Conclusions

In this paper we have shown the connection between maximum boxes problems and Bentley’s
maximum consecutive sum problem. We have developed a dynamic data structure that allows us
to maintain the solution of the Bentley’s maximum consecutive sum problem in O(log n) time when
an element of the sequence changes its value. This data structure can be computed in linear time.
The key idea used to dynamically solve Bentley’s maximum consecutive sum problem was extended
as a general technique useful for solving other data analysis problems.

A natural problem for further research is the three-dimensional case. Some cases of the 2-EB-

12

problem in R
3 can be reduced to O(n2) instances of the 2-EB-problem in R

2 by using projections
of the bicolored point set on the plane. (see Figure 9 for a corner-type solution). Thus we could
solve the problem in O(n4 log n) time and O(n) space. It would be interesting to solve the other
cases and to improve this complexity as well. Finally, it is worthy to know if the 2-EB-problem in
R

2 is 3SUM-hard.

V iew

Projection Projection

PB

PR

QB

QR

B

R

a.) b.) c.)

P

P

Figure 9: A corner-type solution in R
3 is projected to R

2.

References

[1] B. Aronov and S. Har-Peled. On approximating the depth and related problems. SIAM Journal
on Computing, 38(3), , pp. 899-921, 2008.

[2] J. L. Bentley. Programming pearls: algorithm design techniques. Comm. ACM 27 (1984)
865–873.

[3] J. L. Bentley and M. I. Shamos. A problem in multivariate statistics: Algorithms, data struc-
ture and applications. Proceedings of the 15th annual Allerton Conference on Communications,
Control, and Computing, (1977), pp. 193–201.

[4] S. Bespamyatnikh and M. Segal. Covering a set of points by two axis-parallel boxes. Informa-
tion Processing Letters 75 (2000) 95–100.

[5] C. Cortés, J. M. D́ıaz-Báñez, and J. Urrutia. Finding enclosing boxes with empty intersection.
23rd. European Workshop on Computational Geometry, 2006, pp. 185–188.

[6] K.-Y. Chen and K.-M. Chao. On the range maximum-sum segment query problem. R. Fleischer
and G. Trippen Eds., ISAAC 2004, LNCS 3341, 2004, pp. 294–305.

[7] D. P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum bichromatic discrep-
ancy, with applications to computer graphics and machine learning. J. Computer and Systems
Sciences, 52(3) (1996) 453–470.

[8] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley and Sons, Inc., 2001.

[9] J. Eckstein, P. L. Hammer, Y. Liu, M. Nediak, and B. Simeone. The maximum box problem
and its applications to data analysis. Comput. Optim. Appl. 23 (2002) 285–298.

[10] P. L. Hammer and T. Bonates. Logical analysis of data: from combinatorial optimization to
medical applicatios. Rutcor Research Report, RRR 10-2005. Rutger University, New Jersey,
USA, 2005.

13

[11] H. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. The MIT Press, 2001.

[12] D. E. Knuth. Sorting and searching. The Art of Computer Programming. Addison-Wesley,
2000.

[13] Y. Liu and M. Nediak. Planar case of the maximum box and related problems. In Proc. 15th
Canad. Conf. Comp. Geom., Halifax, Nova Scotia, 2003.

14

