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Non-crossing Monotonic Paths in Labeled Point Sets on the Plane

Toshinori Sakai∗† Jorge Urrutia‡§

Abstract

Let n be a positive integer, and let P be a set of
n points in general position on the plane with la-
bels 1, 2, . . . , n. The label of each p ∈ P will be de-
noted by ℓ(p). A polygonal line connecting k elements
p1, p2, . . . , pk of P in this order is called a monotonic

path of length k if the sequence ℓ(p1), ℓ(p2), . . . , ℓ(pk)
is monotonically increasing or decreasing in this or-
der. We show that P contains a vertex set of a non-

crossing monotonic path of length at least c(
√

n− 1),
where c = 1.0045 . . . .

1 Introduction

Let P be a set of points on the plane. P is in gen-

eral position if no three of its elements are collinear.
Furthermore, P is in convex position if all points
are vertices of the convex hull of P . All point sets
P considered in this paper are in general position,
and consisting of points with pairwise different labels
1, 2, . . . , |P |. We will refer to these point sets as lp-
sets. For each lp-set P , the label of a point p ∈ P will
be denoted by ℓ(p).

Let P be an lp-set. A polygonal line connecting k

elements p1, . . . , pk of P in this order is called a mono-

tonic path of length k if the sequence ℓ(p1), . . . , ℓ(pk)
is monotonically increasing or decreasing (Figure 1).
When P contains the vertex set of a non-crossing
monotonic path of length k, we will say that P con-

tains a non-crossing monotonic path of length k.
The length of a finite sequence is the number of its

terms. The following theorem is (a corollary of) a well
known result by Erdős and Szekeres [3]:

Theorem 1 Let n be a positive integer. Then any se-
quence of n distinct real numbers contains a monoton-
ically increasing or decreasing subsequence of length
at least

√
n. This bound is tight.

In [4], Sakai and Urrutia proved that any n-element
lp-set in convex position contains a non-crossing
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Figure 1: An lp-set (each number represents the label
of each element) and a monotonic path of length 6.

monotonic path of length at least
√

3n − 3

4
− 1

2
, im-

proving on a result by Czyzowicz, Kranakis, Krizanc
and Urrutia [2]. In [4], it is also conjectured that any
n-element lp-set in convex position contains a non-
crossing monotonic path of length at least 2

√
n − 1.

Furthermore, it has been believed that there exists
a constant c > 1 such that the following statement
holds: any n-element lp-set in general position con-
tains a non-crossing monotonic path of length at least
c
√

n− o(
√

n). In Section 2, we show the following re-
sult:

Theorem 2 Let n be a positive integer. Then any
n-element lp-set P in general position contains a non-
crossing monotonic path of length at least c(

√
n− 1),

where c = 1

2

(

√

√

10

3
− 1 + 1

q√
10
3
−1

)

= 1.0045 . . . .

Note that it is easy to verify that any n-element lp-
set contains a non-crossing monotonic path of length
at least

√
n. Actually, we have only to take a straight

line l that is not perpendicular to any straight line
connecting two distinct elements of P , to project all
elements of P orthogonally to l, and to apply The-
orem 1 to the sequence obtained on l. Though the
constant c = 1.0045 . . . in Theorem 2 is just slightly
greater than 1, the result shows that the behavior of
problems on monotonic sequences and non-crossing
monotonic paths are essentially different.

2 Proof of Theorem 2

In this section, we prove Theorem 2 (for n ≥ 4).

This is an extended abstract of a presentation given at EuroCG 2015. It has been made public for the benefit of the community and should be considered a
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A finite sequence {xi}n
i=1 is said to be unimodal

(resp. anti-unimodal) if there is an m, 1 ≤ m ≤ n,
such that x1 < x2 < · · · < xm and xm > xm+1 >

· · · > xn (resp. x1 > x2 > · · · > xm and xm <

xm+1 < · · · < xn). To prove Theorem 2, we use
the following Theorem 3 which was first obtained by
Chung [1], and later by Sakai and Urrutia [4].

Theorem 3 Let n be a positive integer. Then any
sequence of n distinct real numbers contains a uni-
modal or anti-unimodal subsequence of length at least
√

3n − 3

4
− 1

2
.

In Figure 2, for k = 3, we present an example with
n = 3k2 +k = 30 terms whose longest unimodal/anti-

unimodal subsequence has length
⌈
√

3n − 3

4
− 1

2

⌉

=

3k = 9.

Figure 2: The maximum length of a unimodal/anti-
unimodal subsequence is 3k.

Now we proceed to the proof of Theorem 2. We
may assume that P is an lp-set on R

2, and that no
two points of P have the same x-coordinate. Let
p1, p2, . . . , pn be the elements of P in increasing or-
der of their x-coordinates, and let L be the sequence
ℓ(p1), ℓ(p2), . . . , ℓ(pn) (recall that ℓ(x) denotes the la-
bel of point x), which is a permutation of {1, 2, . . . , n}.
For each i with 1 ≤ i ≤ n, let ai denote the length
of the longest increasing subsequences of L ending at
ℓ(pi), bi the length of the longest decreasing subse-
quences of L ending at ℓ(pi), and Ai the point (ai, bi)
on the ab-coordinate plane. Set A = {Ai : 1 ≤ i ≤ n}.
We can verify that the following lemma holds:

Lemma 4 Let i and j be integers with 1 ≤ i < j ≤ n.
Then the following (i) and (ii) hold.
(i) If ℓ(pi) < ℓ(pj), then aj ≥ ai + 1.
(ii) If ℓ(pi) > ℓ(pj), then bj ≥ bi + 1.

So, for distinct indices i and j, we must have Ai 6= Aj .

First consider the case where there exists m such
that am ≥ c(

√
n − 1) (recall that c = 1.0045 . . . , as

in the statement of Theorem 2). In this case, there
exists a non-crossing path connecting am points of P

and ending at pm such that the values of the labels of
its vertices monotonically increase along it, as desired.
Also, in the case where there exists m such that bm ≥
c(
√

n− 1), we can find a path with desired properties
as well. Thus we may assume that

ai < c(
√

n − 1) and bi < c(
√

n − 1)

for all 1 ≤ i ≤ n.

}

(1)

A Non-crossing Monotonic Path P

Let d =

√

√

10

3
− 1 = 0.9087 . . . . We have c =

1

2

(

d + 1

d

)

, and hence

2cd = d2 + 1. (2)

We can also verify the following (3) and (4).

0.09 < c − d < 0.1. (3)

14c2 − 5d2 = 10. (4)

Lemma 5 There exists m such that

am > d(
√

n − 1) and bm > d(
√

n − 1) (5)

(Figure 3).
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Proof. By way of contradiction, suppose that ai ≤
d(
√

n − 1) or bi ≤ d(
√

n − 1) for all i. From this
assumption and (1), it follows that

|A| < [c(
√

n − 1)]2 − [(c − d)(
√

n − 1) − 1]2

< n − 2
√

n + 2(c − d)(
√

n − 1) (by (2))

< n (by (3)),

a contradiction. �

Take m satisfying (5). By symmetry, we may as-
sume that

ℓ(pm) ≤ n

2
. (6)

Also, by the definition of the ai, there is a non-crossing
path P connecting am points of P and ending at pm

such that the values of the labels of points monoton-
ically increase along P . We have

the length of P = am > d(
√

n − 1) (7)

by (5).
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A Path Connecting a Unimodal Sequence

Next we define Q1 and Q2 by

Q1 = {pi : 1 ≤ i ≤ m − 1 and ℓ(pi) > ℓ(pm)}, and

Q2 = {pi : m + 1 ≤ i ≤ n and ℓ(pi) > ℓ(pm)}

(so, in particular, the x-coordinates of the elements
of Q1 (resp. Q2) are smaller (resp. greater) than
the x-coordinate of pm). By Lemma 4 (i) and (5),
ai ≥ am + 1 > d(

√
n − 1) + 1 for any pi ∈ Q2. From

this and (1), it follows that for any pi ∈ Q2,

d(
√

n − 1) + 1 < ai < c(
√

n − 1) and
1 ≤ bi < c(

√
n − 1),

and hence

|Q2| < (c − d)(
√

n − 1) × c(
√

n − 1)

= c(c − d)(
√

n − 1)2.

From this, we obtain

|Q1| = (n − ℓ(pm)) − |Q2|
>

n

2
− c(c − d)(

√
n − 1)2

>
1

7

(

√

10

3
+ 1

)

n +
1

4

=
1

3d2
n +

1

4
(8)

by (2), (3), (4) and the assumption that n ≥ 4.
Connect pm and each element of Q1, and relabel

the elements of Q1 as q1, q2, . . . , q|Q1| in the counter-
clockwise order around pm. We choose q1 in such a
way that all other elements of Q1 lie on the left side
of directed line pmq1.

By Theorem 3 and (8), there exists a path Q =
qi1qi2 . . . qik

of length

k ≥
√

3|Q1| −
3

4
− 1

2
>

1

d

√
n − 1

2
(9)

such that i1 < i2 < · · · < ik, and such that either

(i) ℓ(qi1) < · · · < ℓ(qih
) > ℓ(qih+1

) > · · · > ℓ(qik
) or

(ii) ℓ(qi1) > · · · > ℓ(qih
) < ℓ(qih+1

) < · · · < ℓ(qik
)

holds for some h. Define monotonic subpaths R1 and
R2 by

R1 = qi1qi2 . . . qih
and

R2 = qih
qih+1

. . . qik
,

and also define R1
−1 and R2

−1 by

R1
−1 = qih

qih−1
. . . qi1 and

R2
−1 = qik

qik−1
. . . qih

.

Combining Paths

Let H1 (resp. H2) be closed half-plane bounded by
straight line pmqih

and containing qi1 (resp. qik
). Let

P0 be the vertex set of P , and write

P0 ∩ H1 = {pj1 , pj2 , . . . , pjs
},

where j1 < j2 < · · · < js, and

P0 ∩ H2 = {pj′
1
, pj′

2
, . . . , pj′

t
},

where j′1 < j′2 < · · · < j′t

(note that we have pjs
= pj′

t
= pm). Then the paths

P1 = pj1pj2 . . . pjs
and P2 = pj′

1
pj′

2
. . . pj′

t
are non-

crossing monotonic paths in H1 and H2, respectively
(Figure 4).
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Case 1. R1 is increasing and R2 is decreasing:
In this case, we combine paths P1, pjs

qik
and R2

−1

to form a non-crossing monotonic path S1, and com-
bine paths P2, pj′

t
qi1 and R1 to form another non-

crossing monotonic path S2:

S1 = pj1pj2 . . . pjs
qik

qik−1
. . . qih

and

S2 = pj′
1
pj′

2
. . . pj′

t
qi1qi2 . . . qih

.

Since

(the length of S1) + (the length of S2)

= [(the length of P) + 1]

+[(the length of Q) + 1]

= (am + 1) + (k + 1)

> d(
√

n − 1) +
1

d

√
n +

3

2
(by (7) and (9))

>

(

d +
1

d

)

(
√

n − 1),

at least one of S1 or S2 has length at least
1

2

(

d + 1

d

)

(
√

n − 1) = c(
√

n − 1), as desired.

Case 2. R1 is decreasing and R2 is increasing:
In this case, we combine paths P1, pjs

qih
and R2

to form a non-crossing monotonic path T1, and com-
bine paths P2, pj′

t
qih

and R1
−1 to form another non-

crossing monotonic path T2. The rest of the argument
is quite similar to the argument in Case 1.
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