Non-crossing Monotonic Paths in Labeled Point Sets on the Plane

Toshinori Sakai* ${ }^{* \dagger} \quad$ Jorge Urrutia ${ }^{\ddagger \S}$

Abstract

Let n be a positive integer, and let P be a set of n points in general position on the plane with labels $1,2, \ldots, n$. The label of each $p \in P$ will be denoted by $\ell(p)$. A polygonal line connecting k elements $p_{1}, p_{2}, \ldots, p_{k}$ of P in this order is called a monotonic path of length k if the sequence $\ell\left(p_{1}\right), \ell\left(p_{2}\right), \ldots, \ell\left(p_{k}\right)$ is monotonically increasing or decreasing in this order. We show that P contains a vertex set of a noncrossing monotonic path of length at least $c(\sqrt{n}-1)$, where $c=1.0045 \ldots$.

1 Introduction

Let P be a set of points on the plane. P is in general position if no three of its elements are collinear. Furthermore, P is in convex position if all points are vertices of the convex hull of P. All point sets P considered in this paper are in general position, and consisting of points with pairwise different labels $1,2, \ldots,|P|$. We will refer to these point sets as $l p$ sets. For each $l p$-set P, the label of a point $p \in P$ will be denoted by $\ell(p)$.

Let P be an $l p$-set. A polygonal line connecting k elements p_{1}, \ldots, p_{k} of P in this order is called a monotonic path of length k if the sequence $\ell\left(p_{1}\right), \ldots, \ell\left(p_{k}\right)$ is monotonically increasing or decreasing (Figure 1). When P contains the vertex set of a non-crossing monotonic path of length k, we will say that P contains a non-crossing monotonic path of length k.

The length of a finite sequence is the number of its terms. The following theorem is (a corollary of) a well known result by Erdős and Szekeres [3]:

Theorem 1 Let n be a positive integer. Then any sequence of n distinct real numbers contains a monotonically increasing or decreasing subsequence of length at least \sqrt{n}. This bound is tight.

In [4], Sakai and Urrutia proved that any n-element $l p$-set in convex position contains a non-crossing

[^0]

Figure 1: An $l p$-set (each number represents the label of each element) and a monotonic path of length 6 .
monotonic path of length at least $\sqrt{3 n-\frac{3}{4}}-\frac{1}{2}$, improving on a result by Czyzowicz, Kranakis, Krizanc and Urrutia [2]. In [4], it is also conjectured that any n-element $l p$-set in convex position contains a noncrossing monotonic path of length at least $2 \sqrt{n}-1$.

Furthermore, it has been believed that there exists a constant $c>1$ such that the following statement holds: any n-element $l p$-set in general position contains a non-crossing monotonic path of length at least $c \sqrt{n}-o(\sqrt{n})$. In Section 2, we show the following result:

Theorem 2 Let n be a positive integer. Then any n-element $l p$-set P in general position contains a noncrossing monotonic path of length at least $c(\sqrt{n}-1)$, where $c=\frac{1}{2}\left(\sqrt{\sqrt{\frac{10}{3}}-1}+\frac{1}{\sqrt{\sqrt{\frac{10}{3}}-1}}\right)=1.0045 \ldots$

Note that it is easy to verify that any n-element $l p$ set contains a non-crossing monotonic path of length at least \sqrt{n}. Actually, we have only to take a straight line l that is not perpendicular to any straight line connecting two distinct elements of P, to project all elements of P orthogonally to l, and to apply Theorem 1 to the sequence obtained on l. Though the constant $c=1.0045 \ldots$ in Theorem 2 is just slightly greater than 1, the result shows that the behavior of problems on monotonic sequences and non-crossing monotonic paths are essentially different.

2 Proof of Theorem 2

In this section, we prove Theorem 2 (for $n \geq 4$).

A finite sequence $\left\{x_{i}\right\}_{i=1}^{n}$ is said to be unimodal (resp. anti-unimodal) if there is an $m, 1 \leq m \leq n$, such that $x_{1}<x_{2}<\cdots<x_{m}$ and $x_{m}>x_{m+1}>$ $\cdots>x_{n}$ (resp. $x_{1}>x_{2}>\cdots>x_{m}$ and $x_{m}<$ $\left.x_{m+1}<\cdots<x_{n}\right)$. To prove Theorem 2, we use the following Theorem 3 which was first obtained by Chung [1], and later by Sakai and Urrutia [4].

Theorem 3 Let n be a positive integer. Then any sequence of n distinct real numbers contains a unimodal or anti-unimodal subsequence of length at least $\sqrt{3 n-\frac{3}{4}}-\frac{1}{2}$.

In Figure 2, for $k=3$, we present an example with $n=3 k^{2}+k=30$ terms whose longest unimodal/antiunimodal subsequence has length $\left\lceil\sqrt{3 n-\frac{3}{4}}-\frac{1}{2}\right\rceil=$ $3 k=9$.

Figure 2: The maximum length of a unimodal/antiunimodal subsequence is $3 k$.

Now we proceed to the proof of Theorem 2. We may assume that P is an $l p$-set on \mathbb{R}^{2}, and that no two points of P have the same x-coordinate. Let $p_{1}, p_{2}, \ldots, p_{n}$ be the elements of P in increasing order of their x-coordinates, and let \mathcal{L} be the sequence $\ell\left(p_{1}\right), \ell\left(p_{2}\right), \ldots, \ell\left(p_{n}\right)$ (recall that $\ell(x)$ denotes the label of point $x)$, which is a permutation of $\{1,2, \ldots, n\}$. For each i with $1 \leq i \leq n$, let a_{i} denote the length of the longest increasing subsequences of \mathcal{L} ending at $\ell\left(p_{i}\right), b_{i}$ the length of the longest decreasing subsequences of \mathcal{L} ending at $\ell\left(p_{i}\right)$, and A_{i} the point $\left(a_{i}, b_{i}\right)$ on the $a b$-coordinate plane. Set $\mathcal{A}=\left\{A_{i}: 1 \leq i \leq n\right\}$. We can verify that the following lemma holds:

Lemma 4 Let i and j be integers with $1 \leq i<j \leq n$. Then the following (i) and (ii) hold.
(i) If $\ell\left(p_{i}\right)<\ell\left(p_{j}\right)$, then $a_{j} \geq a_{i}+1$.
(ii) If $\ell\left(p_{i}\right)>\ell\left(p_{j}\right)$, then $b_{j} \geq b_{i}+1$.

So, for distinct indices i and j, we must have $A_{i} \neq A_{j}$.
First consider the case where there exists m such that $a_{m} \geq c(\sqrt{n}-1)$ (recall that $c=1.0045 \ldots$, as in the statement of Theorem 2). In this case, there exists a non-crossing path connecting a_{m} points of P and ending at p_{m} such that the values of the labels of its vertices monotonically increase along it, as desired. Also, in the case where there exists m such that $b_{m} \geq$ $c(\sqrt{n}-1)$, we can find a path with desired properties as well. Thus we may assume that

$$
\left.\begin{array}{l}
a_{i}<c(\sqrt{n}-1) \text { and } b_{i}<c(\sqrt{n}-1) \tag{1}\\
\text { for all } 1 \leq i \leq n
\end{array}\right\}
$$

A Non-crossing Monotonic Path \mathcal{P}

Let $d=\sqrt{\sqrt{\frac{10}{3}}-1}=0.9087 \ldots$. We have $c=$ $\frac{1}{2}\left(d+\frac{1}{d}\right)$, and hence

$$
\begin{equation*}
2 c d=d^{2}+1 \tag{2}
\end{equation*}
$$

We can also verify the following (3) and (4).

$$
\begin{align*}
& 0.09<c-d<0.1 \tag{3}\\
& 14 c^{2}-5 d^{2}=10 \tag{4}
\end{align*}
$$

Lemma 5 There exists m such that

$$
\begin{equation*}
a_{m}>d(\sqrt{n}-1) \text { and } b_{m}>d(\sqrt{n}-1) \tag{5}
\end{equation*}
$$

(Figure 3).

Figure 3

Proof. By way of contradiction, suppose that $a_{i} \leq$ $d(\sqrt{n}-1)$ or $b_{i} \leq d(\sqrt{n}-1)$ for all i. From this assumption and (1), it follows that

$$
\begin{aligned}
|\mathcal{A}| & <[c(\sqrt{n}-1)]^{2}-[(c-d)(\sqrt{n}-1)-1]^{2} \\
& <n-2 \sqrt{n}+2(c-d)(\sqrt{n}-1) \quad(\text { by }(2)) \\
& <n \quad(\text { by }(3))
\end{aligned}
$$

a contradiction.
Take m satisfying (5). By symmetry, we may assume that

$$
\begin{equation*}
\ell\left(p_{m}\right) \leq \frac{n}{2} \tag{6}
\end{equation*}
$$

Also, by the definition of the a_{i}, there is a non-crossing path \mathcal{P} connecting a_{m} points of P and ending at p_{m} such that the values of the labels of points monotonically increase along \mathcal{P}. We have

$$
\begin{equation*}
\text { the length of } \mathcal{P}=a_{m}>d(\sqrt{n}-1) \tag{7}
\end{equation*}
$$

by (5).

A Path Connecting a Unimodal Sequence

Next we define Q_{1} and Q_{2} by

$$
\begin{aligned}
& Q_{1}=\left\{p_{i}: 1 \leq i \leq m-1 \text { and } \ell\left(p_{i}\right)>\ell\left(p_{m}\right)\right\}, \text { and } \\
& Q_{2}=\left\{p_{i}: m+1 \leq i \leq n \text { and } \ell\left(p_{i}\right)>\ell\left(p_{m}\right)\right\}
\end{aligned}
$$

(so, in particular, the x-coordinates of the elements of Q_{1} (resp. Q_{2}) are smaller (resp. greater) than the x-coordinate of p_{m}). By Lemma 4 (i) and (5), $a_{i} \geq a_{m}+1>d(\sqrt{n}-1)+1$ for any $p_{i} \in Q_{2}$. From this and (1), it follows that for any $p_{i} \in Q_{2}$,

$$
\begin{aligned}
d(\sqrt{n}-1)+1 & <a_{i}<c(\sqrt{n}-1) \quad \text { and } \\
1 & \leq b_{i}<c(\sqrt{n}-1)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left|Q_{2}\right| & <(c-d)(\sqrt{n}-1) \times c(\sqrt{n}-1) \\
& =c(c-d)(\sqrt{n}-1)^{2} .
\end{aligned}
$$

From this, we obtain

$$
\begin{align*}
\left|Q_{1}\right| & =\left(n-\ell\left(p_{m}\right)\right)-\left|Q_{2}\right| \\
& >\frac{n}{2}-c(c-d)(\sqrt{n}-1)^{2} \\
& >\frac{1}{7}\left(\sqrt{\frac{10}{3}}+1\right) n+\frac{1}{4} \\
& =\frac{1}{3 d^{2}} n+\frac{1}{4} \tag{8}
\end{align*}
$$

by (2), (3), (4) and the assumption that $n \geq 4$.
Connect p_{m} and each element of Q_{1}, and relabel the elements of Q_{1} as $q_{1}, q_{2}, \ldots, q_{\left|Q_{1}\right|}$ in the counterclockwise order around p_{m}. We choose q_{1} in such a way that all other elements of Q_{1} lie on the left side of directed line $p_{m} q_{1}$.

By Theorem 3 and (8), there exists a path $\mathcal{Q}=$ $q_{i_{1}} q_{i_{2}} \ldots q_{i_{k}}$ of length

$$
\begin{equation*}
k \geq \sqrt{3\left|Q_{1}\right|-\frac{3}{4}}-\frac{1}{2}>\frac{1}{d} \sqrt{n}-\frac{1}{2} \tag{9}
\end{equation*}
$$

such that $i_{1}<i_{2}<\cdots<i_{k}$, and such that either
(i) $\ell\left(q_{i_{1}}\right)<\cdots<\ell\left(q_{i_{h}}\right)>\ell\left(q_{i_{h+1}}\right)>\cdots>\ell\left(q_{i_{k}}\right)$ or
(ii) $\ell\left(q_{i_{1}}\right)>\cdots>\ell\left(q_{i_{h}}\right)<\ell\left(q_{i_{h+1}}\right)<\cdots<\ell\left(q_{i_{k}}\right)$
holds for some h. Define monotonic subpaths \mathcal{R}_{1} and \mathcal{R}_{2} by

$$
\begin{aligned}
& \mathcal{R}_{1}=q_{i_{1}} q_{i_{2}} \ldots q_{i_{h}} \text { and } \\
& \mathcal{R}_{2}=q_{i_{h}} q_{i_{h+1}} \ldots q_{i_{k}}
\end{aligned}
$$

and also define $\mathcal{R}_{1}{ }^{-1}$ and $\mathcal{R}_{2}{ }^{-1}$ by

$$
\begin{aligned}
\mathcal{R}_{1} & =q_{i_{h}} q_{i_{h-1}} \ldots q_{i_{1}} \text { and } \\
\mathcal{R}_{2} & =q_{i_{k}} q_{i_{k-1}} \ldots q_{i_{h}} .
\end{aligned}
$$

Combining Paths

Let H_{1} (resp. H_{2}) be closed half-plane bounded by straight line $p_{m} q_{i_{h}}$ and containing $q_{i_{1}}\left(\right.$ resp. $\left.q_{i_{k}}\right)$. Let P_{0} be the vertex set of \mathcal{P}, and write

$$
\begin{aligned}
P_{0} \cap H_{1}= & \left\{p_{j_{1}}, p_{j_{2}}, \ldots, p_{j_{s}}\right\}, \\
& \quad \text { where } j_{1}<j_{2}<\cdots<j_{s}, \text { and } \\
P_{0} \cap H_{2}= & \left\{p_{j_{1}^{\prime}}, p_{j_{2}^{\prime}}, \ldots, p_{j_{t}^{\prime}}\right\}, \\
& \text { where } j_{1}^{\prime}<j_{2}^{\prime}<\cdots<j_{t}^{\prime}
\end{aligned}
$$

(note that we have $p_{j_{s}}=p_{j_{t}^{\prime}}=p_{m}$). Then the paths $\mathcal{P}_{1}=p_{j_{1}} p_{j_{2}} \ldots p_{j_{s}}$ and $\mathcal{P}_{2}=p_{j_{1}^{\prime}} p_{j_{2}^{\prime}} \ldots p_{j_{t}^{\prime}}$ are noncrossing monotonic paths in H_{1} and H_{2}, respectively (Figure 4).

Figure 4

Case 1. \mathcal{R}_{1} is increasing and \mathcal{R}_{2} is decreasing:
In this case, we combine paths $\mathcal{P}_{1}, p_{j_{s}} q_{i_{k}}$ and $\mathcal{R}_{2}{ }^{-1}$ to form a non-crossing monotonic path \mathcal{S}_{1}, and combine paths $\mathcal{P}_{2}, p_{j_{t}^{\prime}} q_{i_{1}}$ and \mathcal{R}_{1} to form another noncrossing monotonic path \mathcal{S}_{2} :

$$
\begin{aligned}
\mathcal{S}_{1} & =p_{j_{1}} p_{j_{2}} \ldots p_{j_{s}} q_{i_{k}} q_{i_{k-1}} \ldots q_{i_{h}} \quad \text { and } \\
\mathcal{S}_{2} & =p_{j_{1}^{\prime}} p_{j_{2}^{\prime}} \ldots p_{j_{t}^{\prime}} q_{i_{1}} q_{i_{2}} \ldots q_{i_{h}}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \text { (the length of } \left.\mathcal{S}_{1}\right)+\left(\text { the length of } \mathcal{S}_{2}\right) \\
& =\quad[(\text { the length of } \mathcal{P})+1] \\
& \quad+[(\text { the length of } \mathcal{Q})+1] \\
& =\left(a_{m}+1\right)+(k+1) \\
& > \\
& > \\
& > \\
& > \\
& \quad\left(d(\sqrt{n}-1)+\frac{1}{d} \sqrt{n}+\frac{3}{2} \quad(\text { by }(7) \text { and }(9))\right.
\end{aligned}
$$

at least one of \mathcal{S}_{1} or \mathcal{S}_{2} has length at least $\frac{1}{2}\left(d+\frac{1}{d}\right)(\sqrt{n}-1)=c(\sqrt{n}-1)$, as desired.

Case 2. \mathcal{R}_{1} is decreasing and \mathcal{R}_{2} is increasing:
In this case, we combine paths $\mathcal{P}_{1}, p_{j_{s}} q_{i_{h}}$ and \mathcal{R}_{2} to form a non-crossing monotonic path \mathcal{T}_{1}, and combine paths $\mathcal{P}_{2}, p_{j_{t}^{\prime}} q_{i_{h}}$ and $\mathcal{R}_{1}{ }^{-1}$ to form another noncrossing monotonic path \mathcal{T}_{2}. The rest of the argument is quite similar to the argument in Case 1.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 24540144 and CONACyT(Mexico) grant CB-2012-010178379.

References

[1] F.R.K. Chung. On unimodal subsequences. J. Combin. Theory Ser. A 29 (1980) 267-279.
[2] J. Czyzowicz, E. Kranakis, D. Krizanc, J. Urrutia. Maximal length common non-intersecting paths. Proc. Eighth Canadian Conference on Computational Geometry, August 1996, Ottawa, 180-189.
[3] P. Erdős, G. Szekeres: A combinatorial problem in geometry. Compositio Math. 2 (1935) 463-470.
[4] T. Sakai, J. Urrutia. Monotonic polygons and paths in weighted point sets. Computational Geometry, Graphs and Applications (Lecture Notes in Computer Science 7033 (2011)) 164-175.

[^0]: *Department of Mathematics, School of Science, Tokai University, Japan. sakai@tokai-u.jp
 ${ }^{\dagger}$ Research supported by JSPS KAKENHI Grant Number 24540144.
 ${ }^{\ddagger}$ Instituto de Matemáticas, Ciudad Universitaria, Universidad Nacional Autónoma de México, México D.F., México. urrutia@matem.unam.mx
 §Research partially supported by CONACyT(Mexico) grant CB-2012-01-0178379.

