Non-crossing Monotonic Paths in Labeled Point Sets on the Plane

Toshinori Sakai*[†]

Jorge Urrutia^{‡§}

Abstract

Let *n* be a positive integer, and let *P* be a set of *n* points in general position on the plane with labels 1, 2, ..., n. The label of each $p \in P$ will be denoted by $\ell(p)$. A polygonal line connecting *k* elements $p_1, p_2, ..., p_k$ of *P* in this order is called a *monotonic* path of length *k* if the sequence $\ell(p_1), \ell(p_2), ..., \ell(p_k)$ is monotonically increasing or decreasing in this order. We show that *P* contains a vertex set of a *noncrossing* monotonic path of length at least $c(\sqrt{n}-1)$, where c = 1.0045...

1 Introduction

Let P be a set of points on the plane. P is in general position if no three of its elements are collinear. Furthermore, P is in convex position if all points are vertices of the convex hull of P. All point sets P considered in this paper are in general position, and consisting of points with pairwise different labels $1, 2, \ldots, |P|$. We will refer to these point sets as lpsets. For each lp-set P, the label of a point $p \in P$ will be denoted by $\ell(p)$.

Let P be an lp-set. A polygonal line connecting k elements p_1, \ldots, p_k of P in this order is called a monotonic path of length k if the sequence $\ell(p_1), \ldots, \ell(p_k)$ is monotonically increasing or decreasing (Figure 1). When P contains the vertex set of a non-crossing monotonic path of length k, we will say that P contains a non-crossing monotonic path of length k.

The *length* of a finite sequence is the number of its terms. The following theorem is (a corollary of) a well known result by Erdős and Szekeres [3]:

Theorem 1 Let n be a positive integer. Then any sequence of n distinct real numbers contains a monotonically increasing or decreasing subsequence of length at least \sqrt{n} . This bound is tight.

In [4], Sakai and Urrutia proved that any n-element lp-set in *convex* position contains a non-crossing

Figure 1: An *lp*-set (each number represents the label of each element) and a monotonic path of length 6.

monotonic path of length at least $\sqrt{3n - \frac{3}{4}} - \frac{1}{2}$, improving on a result by Czyzowicz, Kranakis, Krizanc and Urrutia [2]. In [4], it is also conjectured that any *n*-element *lp*-set in convex position contains a non-crossing monotonic path of length at least $2\sqrt{n} - 1$.

Furthermore, it has been believed that there exists a constant c > 1 such that the following statement holds: any *n*-element *lp*-set in *general* position contains a non-crossing monotonic path of length at least $c\sqrt{n} - o(\sqrt{n})$. In Section 2, we show the following result:

Theorem 2 Let *n* be a positive integer. Then any *n*-element *lp*-set *P* in general position contains a non-crossing monotonic path of length at least $c(\sqrt{n}-1)$,

where
$$c = \frac{1}{2} \left(\sqrt{\sqrt{\frac{10}{3}} - 1} + \frac{1}{\sqrt{\sqrt{\frac{10}{3}} - 1}} \right) = 1.0045 \dots$$

Note that it is easy to verify that any *n*-element lpset contains a non-crossing monotonic path of length at least \sqrt{n} . Actually, we have only to take a straight line *l* that is not perpendicular to any straight line connecting two distinct elements of *P*, to project all elements of *P* orthogonally to *l*, and to apply Theorem 1 to the sequence obtained on *l*. Though the constant c = 1.0045... in Theorem 2 is just slightly greater than 1, the result shows that the behavior of problems on monotonic sequences and non-crossing monotonic paths are essentially different.

2 Proof of Theorem 2

In this section, we prove Theorem 2 (for $n \ge 4$).

^{*}Department of Mathematics, School of Science, Tokai University, Japan. sakai@tokai-u.jp

 $^{^{\}dagger}\text{Research}$ supported by JSPS KAKENHI Grant Number 24540144.

[‡]Instituto de Matemáticas, Ciudad Universitaria, Universidad Nacional Autónoma de México, México D.F., México. urrutia@matem.unam.mx

 $^{^{\$}}Research partially supported by CONACyT$ (Mexico) grant CB-2012-01-0178379.

A finite sequence $\{x_i\}_{i=1}^n$ is said to be unimodal (resp. anti-unimodal) if there is an $m, 1 \le m \le n$, such that $x_1 < x_2 < \cdots < x_m$ and $x_m > x_{m+1} >$ $\cdots > x_n$ (resp. $x_1 > x_2 > \cdots > x_m$ and $x_m <$ $x_{m+1} < \cdots < x_n$). To prove Theorem 2, we use the following Theorem 3 which was first obtained by Chung [1], and later by Sakai and Urrutia [4].

Theorem 3 Let *n* be a positive integer. Then any sequence of *n* distinct real numbers contains a unimodal or anti-unimodal subsequence of length at least $\sqrt{3n - \frac{3}{4}} - \frac{1}{2}$.

In Figure 2, for k = 3, we present an example with $n = 3k^2 + k = 30$ terms whose longest unimodal/antiunimodal subsequence has length $\left[\sqrt{3n - \frac{3}{4}} - \frac{1}{2}\right] = 3k = 9$.

Figure 2: The maximum length of a unimodal/antiunimodal subsequence is 3k.

Now we proceed to the proof of Theorem 2. We may assume that P is an lp-set on \mathbb{R}^2 , and that no two points of P have the same x-coordinate. Let p_1, p_2, \ldots, p_n be the elements of P in increasing order of their x-coordinates, and let \mathcal{L} be the sequence $\ell(p_1), \ell(p_2), \ldots, \ell(p_n)$ (recall that $\ell(x)$ denotes the label of point x), which is a permutation of $\{1, 2, \ldots, n\}$. For each i with $1 \leq i \leq n$, let a_i denote the length of the longest *increasing* subsequences of \mathcal{L} ending at $\ell(p_i), b_i$ the length of the longest *decreasing* subsequences of \mathcal{L} ending at $\ell(p_i)$, and A_i the point (a_i, b_i) on the ab-coordinate plane. Set $\mathcal{A} = \{A_i : 1 \leq i \leq n\}$. We can verify that the following lemma holds:

Lemma 4 Let *i* and *j* be integers with $1 \le i < j \le n$. Then the following (i) and (ii) hold. (i) If $\ell(p_i) < \ell(p_j)$, then $a_j \ge a_i + 1$. (ii) If $\ell(p_i) > \ell(p_j)$, then $b_j \ge b_i + 1$.

So, for distinct indices i and j, we must have $A_i \neq A_j$.

First consider the case where there exists m such that $a_m \ge c(\sqrt{n}-1)$ (recall that c = 1.0045..., as in the statement of Theorem 2). In this case, there exists a non-crossing path connecting a_m points of P and ending at p_m such that the values of the labels of its vertices monotonically increase along it, as desired. Also, in the case where there exists m such that $b_m \ge c(\sqrt{n}-1)$, we can find a path with desired properties as well. Thus we may assume that

$$a_i < c(\sqrt{n} - 1) \text{ and } b_i < c(\sqrt{n} - 1)$$

for all $1 \le i \le n$. (1)

A Non-crossing Monotonic Path ${\mathcal P}$

Let $d = \sqrt{\sqrt{\frac{10}{3}} - 1} = 0.9087...$ We have $c = \frac{1}{2}(d + \frac{1}{d})$, and hence

$$2cd = d^2 + 1.$$
 (2)

We can also verify the following (3) and (4).

$$0.09 < c - d < 0.1. \tag{3}$$

$$14c^2 - 5d^2 = 10. (4)$$

Lemma 5 There exists m such that

$$a_m > d(\sqrt{n}-1)$$
 and $b_m > d(\sqrt{n}-1)$ (5)

(Figure 3).

Figure 3

Proof. By way of contradiction, suppose that $a_i \leq d(\sqrt{n}-1)$ or $b_i \leq d(\sqrt{n}-1)$ for all *i*. From this assumption and (1), it follows that

$$\begin{aligned} |\mathcal{A}| &< [c(\sqrt{n}-1)]^2 - [(c-d)(\sqrt{n}-1)-1]^2 \\ &< n-2\sqrt{n}+2(c-d)(\sqrt{n}-1) \quad (\text{by (2)}) \\ &< n \quad (\text{by (3)}), \end{aligned}$$

a contradiction.

Take m satisfying (5). By symmetry, we may assume that

$$\ell(p_m) \le \frac{n}{2}.\tag{6}$$

Also, by the definition of the a_i , there is a non-crossing path \mathcal{P} connecting a_m points of P and ending at p_m such that the values of the labels of points monotonically increase along \mathcal{P} . We have

the length of
$$\mathcal{P} = a_m > d(\sqrt{n} - 1)$$
 (7)

by (5).

A Path Connecting a Unimodal Sequence

Next we define Q_1 and Q_2 by

$$Q_1 = \{ p_i : 1 \le i \le m - 1 \text{ and } \ell(p_i) > \ell(p_m) \}, \text{ and}$$
$$Q_2 = \{ p_i : m + 1 \le i \le n \text{ and } \ell(p_i) > \ell(p_m) \}$$

(so, in particular, the x-coordinates of the elements of Q_1 (resp. Q_2) are smaller (resp. greater) than the x-coordinate of p_m). By Lemma 4 (i) and (5), $a_i \ge a_m + 1 > d(\sqrt{n} - 1) + 1$ for any $p_i \in Q_2$. From this and (1), it follows that for any $p_i \in Q_2$,

$$d(\sqrt{n}-1) + 1 < a_i < c(\sqrt{n}-1)$$
 and
 $1 \leq b_i < c(\sqrt{n}-1)$,

and hence

$$\begin{aligned} |Q_2| &< (c-d)(\sqrt{n}-1) \times c(\sqrt{n}-1) \\ &= c(c-d)(\sqrt{n}-1)^2. \end{aligned}$$

From this, we obtain

$$|Q_1| = (n - \ell(p_m)) - |Q_2|$$

> $\frac{n}{2} - c(c - d)(\sqrt{n} - 1)^2$
> $\frac{1}{7}\left(\sqrt{\frac{10}{3}} + 1\right)n + \frac{1}{4}$
= $\frac{1}{3d^2}n + \frac{1}{4}$ (8)

by (2), (3), (4) and the assumption that $n \ge 4$.

Connect p_m and each element of Q_1 , and relabel the elements of Q_1 as $q_1, q_2, \ldots, q_{|Q_1|}$ in the counterclockwise order around p_m . We choose q_1 in such a way that all other elements of Q_1 lie on the left side of directed line $p_m q_1$.

By Theorem 3 and (8), there exists a path $Q = q_{i_1}q_{i_2}\ldots q_{i_k}$ of length

$$k \ge \sqrt{3|Q_1| - \frac{3}{4}} - \frac{1}{2} > \frac{1}{d}\sqrt{n} - \frac{1}{2} \tag{9}$$

such that $i_1 < i_2 < \cdots < i_k$, and such that either

(i) $\ell(q_{i_1}) < \dots < \ell(q_{i_h}) > \ell(q_{i_{h+1}}) > \dots > \ell(q_{i_k})$ or (ii) $\ell(q_{i_1}) > \dots > \ell(q_{i_h}) < \ell(q_{i_{h+1}}) < \dots < \ell(q_{i_k})$

holds for some h. Define *monotonic* subpaths \mathcal{R}_1 and \mathcal{R}_2 by

$$\mathcal{R}_1 = q_{i_1} q_{i_2} \dots q_{i_h} \text{ and}$$
$$\mathcal{R}_2 = q_{i_h} q_{i_{h+1}} \dots q_{i_k},$$

and also define \mathcal{R}_1^{-1} and \mathcal{R}_2^{-1} by

$$\mathcal{R}_1^{-1} = q_{i_h} q_{i_{h-1}} \dots q_{i_1}$$
 and
 $\mathcal{R}_2^{-1} = q_{i_k} q_{i_{k-1}} \dots q_{i_h}.$

Combining Paths

Let H_1 (resp. H_2) be closed half-plane bounded by straight line $p_m q_{i_h}$ and containing q_{i_1} (resp. q_{i_k}). Let P_0 be the vertex set of \mathcal{P} , and write

$$P_{0} \cap H_{1} = \{p_{j_{1}}, p_{j_{2}}, \dots, p_{j_{s}}\},\$$
where $j_{1} < j_{2} < \dots < j_{s}$, and
$$P_{0} \cap H_{2} = \{p_{j_{1}'}, p_{j_{2}'}, \dots, p_{j_{t}'}\},\$$
where $j_{1}' < j_{2}' < \dots < j_{t}'$

(note that we have $p_{j_s} = p_{j'_t} = p_m$). Then the paths $\mathcal{P}_1 = p_{j_1}p_{j_2}\dots p_{j_s}$ and $\mathcal{P}_2 = p_{j'_1}p_{j'_2}\dots p_{j'_t}$ are noncrossing monotonic paths in H_1 and H_2 , respectively (Figure 4).

Figure 4

Case 1. \mathcal{R}_1 is increasing and \mathcal{R}_2 is decreasing:

In this case, we combine paths \mathcal{P}_1 , $p_{j_s}q_{i_k}$ and \mathcal{R}_2^{-1} to form a non-crossing monotonic path \mathcal{S}_1 , and combine paths \mathcal{P}_2 , $p_{j'_t}q_{i_1}$ and \mathcal{R}_1 to form another non-crossing monotonic path \mathcal{S}_2 :

$$S_1 = p_{j_1} p_{j_2} \dots p_{j_s} q_{i_k} q_{i_{k-1}} \dots q_{i_h} \text{ and}$$

$$S_2 = p_{i'_k} p_{j'_k} \dots p_{j'_k} q_{i_1} q_{i_2} \dots q_{i_h}.$$

Since

(the length of
$$S_1$$
) + (the length of S_2)
= [(the length of \mathcal{P}) + 1]
+[(the length of \mathcal{Q}) + 1]
= $(a_m + 1) + (k + 1)$
> $d(\sqrt{n} - 1) + \frac{1}{d}\sqrt{n} + \frac{3}{2}$ (by (7) and (9))
> $\left(d + \frac{1}{d}\right)(\sqrt{n} - 1),$

at least one of S_1 or S_2 has length at least $\frac{1}{2}\left(d+\frac{1}{d}\right)(\sqrt{n}-1) = c(\sqrt{n}-1)$, as desired.

Case 2. \mathcal{R}_1 is decreasing and \mathcal{R}_2 is increasing:

In this case, we combine paths \mathcal{P}_1 , $p_{j_s}q_{i_h}$ and \mathcal{R}_2 to form a non-crossing monotonic path \mathcal{T}_1 , and combine paths \mathcal{P}_2 , $p_{j'_t}q_{i_h}$ and \mathcal{R}_1^{-1} to form another non-crossing monotonic path \mathcal{T}_2 . The rest of the argument is quite similar to the argument in Case 1.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 24540144 and CONACyT(Mexico) grant CB-2012-01-0178379.

References

- F.R.K. Chung. On unimodal subsequences. J. Combin. Theory Ser. A 29 (1980) 267–279.
- [2] J. Czyzowicz, E. Kranakis, D. Krizanc, J. Urrutia. Maximal length common non-intersecting paths. Proc. Eighth Canadian Conference on Computational Geometry, August 1996, Ottawa, 180–189.
- [3] P. Erdős, G. Szekeres: A combinatorial problem in geometry. Compositio Math. 2 (1935) 463–470.
- [4] T. Sakai, J. Urrutia. Monotonic polygons and paths in weighted point sets. Computational Geometry, Graphs and Applications (Lecture Notes in Computer Science **7033** (2011)) 164–175.