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Abstract. Let S = {s(1), . . . , s(n)} be a permutation of the integers
{1, . . . , n}. A subsequence of S with elements {s(i1), . . . , s(ik)} is called
an increasing subsequence if s(i1) < · · · < s(ik); It is called a decreasing

subsequence if s(i1) > · · · > s(ik). The weight of a subsequence of S, is
the sum of its elements. In this paper, we prove that any permutation of
{1, . . . , n} contains an increasing or a decreasing subsequence of weight
greater than n

√

2n/3.
Our motivation to study the previous problem arises from the following
problem: Let P be a set of n points on the plane in general position,
labeled with the integers {1, . . . , n} in such a way that the labels of
different points are different. A non-crossing path Π with vertices in P
is an increasing path if when we travel along it, starting at one of its
end-points, the labels of its vertices always increase. The weight of an
increasing path, is the sum of the labels of its vertices. Determining lower
bounds on the weight of the heaviest increasing path a point set always
has.
We also study the problem of finding a non-crossing matching of the
elements of P of maximum weight, where the weight of an edge with
endpoints i, j ∈ P is min{i, j}.

1 Introduction

Let n be a positive integer. Consider any permutation S of the integers {1, . . . , n}.
A well known result of Erdős and Szekeres [4], asserts that S always contains an
increasing or a decreasing subsequence with at least ⌈√n ⌉ elements. The weight
of a subsequence of a permutation S is the sum of its elements. For example if
we consider the permutation:

5, 2, 8, 1, 7, 4, 3, 6,

the weight of the increasing subsequence 2, 4, 6 is equal to 12. In this paper we
study the problem of finding the heaviest increasing, or decreasing subsequence
of a permutation. For the permutation considered before, the heaviest increasing,
or decreasing subsequence, consists of 8, 7, 4, 3 and has weight 22.



We prove that any permutation of {1, . . . , n} always has an increasing or a
decreasing subsequence with weight greater than n

√

n/3, our bound is asymp-
totically tight. Our solution is somehow related to a well known problem of
Tutte [8] involving the efficient packing of squares of different sizes into a rect-
angle, or a square of small area. The permutations giving the tight bound for
our problem, produce efficient packings of squares with areas 12, 22, . . . , n2 under
some conditions.

A finite sequence a1, a2, . . . , ak is said to be unimodal (resp. anti-unimodal)
if there is an m, 1 ≤ m ≤ k, such that a1 < a2 < · · · < am and am > am+1 >
· · · > ak (resp. a1 > a2 > · · · > am and am < am+1 < · · · < ak). We also
study the problem of finding a heavy unimodal or anti-unimodal subsequence of
a permutation of {1, . . . , n}. We show that any permutation of {1, . . . , n}, always
has a unimodal or anti-unimodal subsequence of weight greater than n

√

2n/3.

Let P be a set of n points on the plane in general position which are labeled
with {1, . . . , n}. Our results are motivated by the study of longest or heaviest
non-crossing increasing paths connecting elements of P . In particular, as we
will see in Section 2, for labeled point sets in convex position, finding a non-
crossing increasing path with maximum weight, is related to that of finding
a heaviest unimodal or anti-unimodal subsequence in some permutation. The
problem of finding non-crossing paths, cycles and trees with vertices on point
sets on the plane optimizing some given functions, has been of interest to many
computational geometers for some time now. Alon, Rajagopalan, and Suri [1],
and Dumitrescu and Tóth [3] studied the problem of finding non-crossing paths,
matchings, cycles, and trees of maximum length, where the length od a cycle,
matching, and tree, is the sum of the lengths of its edges.

Károlyi, Pach, and Tóth [6] show that if the edges of a complete geometric
graph on k2+1 points are colored red or blue, then there always exists a non-self
intersecting red or blue path with k + 1 edges.

The problem of finding non-crossing monotonic paths with many edges was
first studied by Czyzowicz et al [5]. They proved that any labeled point set in
convex position, contains a non-crossing monotonic path with at least

√
2n edges.

This bound was improved recently by Sakai and Urrutia [7] to
√

3n− 3/4− 1/2
by giving a simple proof for a result by Chung [2] concerning the length (number
of elements) of a longest unimodal or anti-unimodal subsequences in a sequence.

For labeled point set P , we also study the problem of finding a non-crossing
matching of P , not necessarily perfect, such that the sum of the weights of its
edges is maximized, where the weight of an edge joining points i and j is the
smallest of {i, j}, see Figure 1.

We show that P always has a matching of weight greater than n2/6 for n ≥ 2.
When the elements of P are in convex position, then P has a matching of weight
at least ⌊n2/5⌋. We observe that if we define the weight of the edge joining point
i to point j to be the largest of {i, j}, and P has n = 2m elements, then we
can always find a perfect matching with weight (m+1)+ · · ·+2m, which is the
largest possible. To prove this, we recall a well known result that if a point set S
has 2m elements (in general position), m colored red, and m colored blue, then
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Fig. 1. A non-crossing matching with edges having weights 1, 2, 4.

there always exists a non-crossing perfect matching of the elements of S, such
that any edge in the matching has a blue and an red endpoint. Now color the
elements of P as follows: those elements whose label is smaller than or equal to
m are colored red, and the remaining points blue. Our result follows.

2 The heaviest monotonic subsequences and paths

In the rest of this paper, P will denote a set of n points in general position whose
elements are labeled with the integers {1, . . . , n} in such a way that different
points receive different labels. A point in P labeled i will be denoted as point i.

A path Π of P is a sequence of elements i1, . . . , ik of P together with the
closed line segments [ir, ir+1] (called the edges of P ) joining ir to ir+1, r =
1, . . . , k − 1. We say that Π is non-crossing if its edges do not cross each other.
If in addition ir < ir+1, 1 ≤ r ≤ k− 1, we call Π a non-crossing increasing path
of P . The weight of Π is equal to i1 + · · ·+ ik.
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Fig. 2. (a) A non-crossing increasing path. (b) Finding the non-crossing increasing
path with vertices 1, 3, 4, 5, 6, 9 is equivalent to finding the unimodal subsequence
3, 6, 9, 5, 4, 1 in the permutation {8, 3, 6, 2, 9, 5, 7, 4, 1} (or the anti-unimodal subse-
quence 9, 5, 4, 1, 3, 6 in the permutation {9, 5, 7, 4, 1, 8, 3, 6, 2}).



In this section we will study the following problem: Find the largest integer
W(n) such that any labeled point set with n elements has a non-crossing in-
creasing path of weight at least W(n). In Figure 2(a), we show a non-crossing
increasing path of weight 34. The path with vertices 1, 7, 8, 9 is increasing, but
has a crossing.

Observe that if the elements of P are in convex position, that is, they are
the vertices of a convex polygon, then the problem of finding a non-crossing
increasing path of maximum weight, can be reduced to that of finding a uni-
modal or anti-unimodal subsequence of maximum weight in a permutation of
{1, . . . , n} obtained from P , by reading its elements starting at some point of P ,
see Figure 2(b).

2.1 The heaviest monotonic subsequence of a permutation

Let S = {s(1), . . . , s(n)} be a permutation of {1, . . . , n}. A subsequence of S with
elements {s(i1), . . . , s(ik)} is called an increasing subsequence if s(i1) < · · · <
s(ik), or a decreasing subsequence if s(i1) > · · · > s(ik). The subsequence is also
called a monotonic subsequence if it is increasing or decreasing. The weight of
{s(i1), . . . , s(ik)} is s(i1) + · · ·+ s(ik).

For each s(i) of S, let us associate to it the point (xi, yi) as follows: xi

is the weight of the heaviest increasing subsequence of S staring at s(i), and
yi is the weight of the heaviest decreasing subsequence of S staring at s(i).
For example if S = {4, 3, 7, 2, 5, 1, 6}, then to s(2) = 3, we associate the point
(x2, y2) = (3+ 5+6, 3+ 2+1) = (14, 6). It is easy to see that for indices i < j,
if s(i) < s(j), then xi ≥ s(i) + xj , and if s(i) > s(j), then yi ≥ s(i) + yj. We
now prove:

Theorem 1. Any permutation of {1, . . . , n} contains a monotonic subsequence
of weight greater than n

√

n/3. Our bound is asymptotically tight.

Proof. We now associate to each s(i) the square SQ(i) whose top-right vertex is
the point (xi, yi), and whose bottom-left vertex is the point (xi − s(i), yi− s(i)).

We now prove that if i 6= j then SQ(i) and SQ(j) have disjoint interiors.
Suppose that i < j. Two cases arise. Suppose first that s(i) < s(j). Then xj ≤
xi−s(i), and SQ(j) lies to the left of the vertical line with equation x = xi−s(i).
If s(i) > s(j) then yj ≤ yi − s(i), and SQ(j) lies below the horizontal line
y = yi − s(i). Thus in both cases SQ(i) and SQ(j) have disjoint interiors. See
Figure 3.

Let R be a rectangle whose bottom-left vertex is the origin, and whose top-
right vertex is the point (α, β), where α is the maximum among all xi and β is
the maximum among all yi. Since R contains all the squares SQ(i), i = 1, . . . , n,

the area of R = αβ ≥ 12 + 22 + · · ·+ n2 >
n3

3
,

and thus

max{α, β} > n

√

n

3
.
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Fig. 3. SQ(i) and SQ(j), i 6= j, have disjoint interiors.

Therefore for some i, xi or yi is greater than n
√

n/3.

To see that our bound is asymptotically tight, we proceed as follows. Define
k and m by k = 4

√

4n3/3, and m =
√
3n/2. Consider now the permutation Π

generated as follows:

⌈k⌉, ⌈k⌉ − 1, . . . , 1, ⌈
√
2k⌉, ⌈

√
2k⌉ − 1, . . . , ⌈k⌉+ 1,

⌈
√
3k⌉, ⌈

√
3k⌉ − 1, . . . , ⌈

√
2k⌉+ 1, . . . , n, n− 1, . . . , ⌈

√
m− 1 k⌉+ 1.

The permutation Π consists of m blocks of decreasing integers, such that
for each of them, the sum of its elements is n

√

n/3 +O(n). On the other hand,
the heaviest increasing subsequence of Π , is the one containing the elements
⌈k⌉, ⌈

√
2 k⌉, ⌈

√
3 k⌉, . . . , n, which again has weight n

√

n/3 + O(n). Our result
follows. ⊓⊔

We can now prove:

Theorem 2. Any labeled point set P with n elements has a non-crossing in-
creasing path of weight greater than n

√

n/3.

Proof. Assume that no two elements of P lie on a vertical line, otherwise rotate
P slightly to achieve this condition. Project the elements of P on the x-axis, and
let Π be the permutation of {1, . . . , n} obtained by reading the projections of
the elements of P on the x-axis from left to right. Then Π has an increasing or
deceasing subsequence of weight greater than n

√

n/3. This subsequence induces

a non-crossing increasing path of P with weight greater than n
√

n/3.

We conclude this section with general result concerning heaviest subsequences
and paths. By arguing as in the proof of Theorems 1 and 2, we obtain:



Theorem 3. (a) Any sequence T = {a1, a2, . . . , an} of n distinct positive num-
bers contains a monotonic subsequence of weight at least

√

∑n

i=1
an2.

(b) Any set of points in general position, labeled with elements of T , has a non-
crossing increasing path of weight at least

√

∑n

i=1
an2.

2.2 The heaviest increasing paths of point sets in convex position

In this section we study the problem of finding a non-crossing increasing path
of large weight for point sets in convex position. Our result will be based on the
next result on unimodal or anti-unimodal subsequences of permutations.

Theorem 4. Any permutation S of {1, . . . , n} contains a unimodal or anti-
unimodal subsequence of weight greater than n

√

2n/3.

Proof. The result follows immediately for n ≤ 3. Thus assume n ≥ 4. Let S =

{s(1), . . . , s(n)} be a permutation, and let A =
n
∑

i=1

s(i)
2
.

Lemma 1. There exist j, 1 ≤ j ≤ n, and d with |d| ≤ n2/2 such that

s(1)2 + · · ·+ s(j)2 =
A

2
− d and s(j + 1)2 + · · ·+ s(n)2 =

A

2
+ d.

Proof. Take the maximum i such that s(1)2 + · · · s(i)2 ≤ A/2. If in addition

(A− n2)/2 ≤ s(1)
2
+ · · · s(i)2, then we have only to let j = i. Thus assume that

s(1)
2
+ · · · s(i)2 < (A − n2)/2. In this case, we have A/2 < s(1)

2
+ · · · s(i)2 +

s(i+1)2 < (A+n2)/2 by our choice of i and by 0 < s(i+1) ≤ n. Thus j = i+1
satisfies the desired property. ⊓⊔

Let j and d be as in Lemma 1, and define the sequences S1 and S2 by

S1 = {s(1), · · · , s(j)} and S2 = {s(j + 1), · · · , s(n)}.

Denote by α1 (resp. β1) the weight of the heaviest increasing (resp. decreasing)
subsequence of S1, and by α2 (resp. β2) the weight of the heaviest increasing
(resp. decreasing) subsequence of S2. First note that α1 + β2 and β1 + α2 are
weights of a unimodal subsequence and an anti-unimodal subsequence of S,
respectively.

By arguing as in the proof of Theorem 1, we obtain

α1β1 ≥ s(1)
2
+ · · ·+ s(j)

2
=

A

2
− d, and

α2β2 ≥ s(j + 1)
2
+ · · ·+ s(n)

2
=

A

2
+ d.



From these and the well known inequality (x+y+z+w)/4 ≥ 4
√
xyzw for positive

numbers x, y, z and w, it follows that

(α1 + β2) + (β1 + α2) ≥ 4 4

√

(α1β1)(α2β2)

≥ 4 4

√

(A/2)2 − d2

≥ 4 4

√

(A2 − n4)/4

Since A = n(n+1)(2n+1)/6 > (n3 +n2)/3, we have A2 −n4 > n6/9 for n ≥ 4.
Thus (α1 + β2) + (β1 + α2) > 2n

√

2n/3, and hence max{α1 + β2, β1 + α2} >

n
√

2n/3, as desired. ⊓⊔

At this point the best lower-bound we have for the weight of a unimodal
or anti-unimodal subsequence of a permutation is approximately 2n

√

n/3, and
is given by the same permutation stated in the proof of Theorem 1. On the
other hand, the best upper-bound we have for the weight of a non-intersecting
increasing path of the set of n labeled points in convex position is approximately
n
√
2n. This is given by the following (circular) permutation for n = 2k2:

n− k + 1, n− 2k + 1, . . . , k + 1, 1,
n− k + 2, n− 2k + 2, . . . , k + 2, 2,

. . . ,
n = 2k2, n− k, . . . , 2k, k.

It is easy to see that among all the unimodal or anti-unimodal subsequences of
all possible permutations, a heaviest one is:

n− k + 1, n− k + 2, . . . , n, n− k, . . . , 2k, k,

which has weight

(2n− k + 1)k

2
+

n(2k − 1)

2
< 2nk = n

√
2n.

Thus we have:

Theorem 5. Any set P of n labeled points in convex position has a non-crossing
increasing path of weight greater than n

√

2n/3. Furthermore, there is a labeled
point set in convex position such that any non-crossing increasing path has weight
less than n

√
2n.

Conjecture 1. Any set P of n labeled points in convex position has a non-crossing
increasing path of weight greater than n

√
2n−O(n).

3 The heaviest matchings

In this section, we study the problem of finding non-crossing matchings of labeled
point sets that maximize the sum of the weights of its edges. Recall that the
weight of an edge joining point i to point j, is the minimum of {i, j}. The sum
of the weights of all edges of a matching is called the weight of the matching.



3.1 Point sets in convex position

In this section, we consider the case where P is in convex position. We start by
observing that even if P has 2m elements, a non-crossing matching of maximum
weight of P is not necessarily a perfect matching. For example for the point set
shown in Figure 4, the weight of any non-crossing perfect matching is 15.
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Fig. 4. The weight of the perfect matching shown is 15. Moreover, any perfect matching
of P has weight 15.

To prove this, observe that in any non-crossing perfect matching of the point
set in Figure 4, any edge must leave an even number of points on each of its sides.
Thus any such edge joins a point in {1, 2, 3, 4, 5} to a point in {6, 7, 8, 9, 10}. It
follows now that the weights of the edges of any non-crossing perfect matching
M of P are precisely {1, 2, 3, 4, 5}, and thus the weight of M is 15. On the other
hand, a non-perfect matching with non-crossing edges {[7, 2], [9, 10], [5, 6], [8, 4]}
has larger weight 20(> 15).

This example can be generalized as follows: Let P be an unlabeled point set
with 2m elements in convex position. We now color the elements of P red or blue,
in such a way that when we traverse the boundary of the convex hull of P the
colors of its elements alternate. Observe now that any edge of perfect matching
M of P joins a red to a blue point. Label the red and blue points of P with
the integers {1, . . . ,m} and {m + 1, . . . , 2m}, respectively. Then the weight of
any edge of M belongs to {1, . . . ,m}. Since different edges in M have different
weights, the weight of M is precisely

(

m+1

2

)

.
The maximum weight a non-crossing perfect matching of P can have, is

achieved when the elements of P are labeled 1, 2, . . . , n in the clockwise order
around the boundary of the convex hull of P . In this case, the weight of the
heaviest matching of P is precisely 1 + 3 + · · ·+ (2m− 1) = m2.

Since these bounds are valid for labeled point sets in general position, we
have:

Lemma 2. The weight of any non-crossing perfect matching of a labeled point
set P in general position with 2m elements is at least

(

m+1

2

)

and at most m2.
These bounds are tight.



Using similar arguments, we obtain:

Lemma 3. Let Q be a set of 2m points in general position whose elements are
labeled with the integers r+1, r+2, . . . , r+2m. Then the weight of any perfect
matching of Q has the following bounds, and these bounds are tight:

– at least (r + 1) + (r + 2) + · · ·+ (r +m) = rm+
(

m+1

2

)

, and
– at most (r + 1) + (r + 3) + · · ·+ [r + (2m− 1)] = rm+m2.

Next we consider matchings not necessarily perfect.

Lemma 4. Let n1 ≥ 0 and n2 ≥ 1 be integers, and Q be a set of 2(n1 + n2)
points in convex position such that 2n1 elements are colored red, and 2n2 blue.
Let p be a blue element of Q. Then there is a non-crossing matching M of Q
such that the endpoints of each edge have the same color, and M matches all
elements of Q, except at most two blue elements containing p.

Proof. We proceed by induction on n = n1+n2. The result follows immediately
for n = 1. Thus assume n ≥ 2. We label the elements of P as p0, . . . , p2n−1

around the boundary of the convex hull of P , where p0 = p. The indices are to
be read modulo 2n. If pi and pi+1 have the same color for some i 6≡ 0,−1, then
the edge [pi, pi+1] together with edges of some matching M′ of Q \ {pi, pi+1}
form a matching M with the desired properties. Thus assume that the colors
of p1, p2, . . . , p2n−1 alternate (so p1 and p2n−1 have a same color). Then M =
{[p1, p2n−1], [p2, p2n−2], · · · , [pn−1, pn+1]} has the desired properties (and pn is
colored blue). ⊓⊔

We are now ready to prove the main result of this section.

Theorem 6. Let P be a labeled point set with n elements in convex position.
Then the heaviest non-crossing matching of P has weight at least ⌊n2/5⌋.

Proof. To make our proof easy to understand, let us assume first that P has
n = 5s elements.

To start, discard from P all the elements with labels in {1, . . . , s − 2}. Now
color with blue all the elements with labels in {s− 1, . . . , 3s}, and with red all
those with labels in {3s+1, . . . , 5s}. By Lemma 4, we can find matchingsM′ and
M′′ of {s−1, . . . , 3s} and {3s+1, . . . , 5s}, respectively, such that M = M′∪M′′

is non-crossing and M leave at most two elements of {s− 1, . . . , 3s}, including
s− 1, unmatched.

First suppose that all the elements of {s− 1, . . . , 3s} are matched. Then by
Lemma 3 with r = s− 2 and m = s+ 1, the weight of M′ is at least

(s− 1) + s+ · · ·+ (2s− 2) + (2s− 1) =
(3s− 2)(s+ 1)

2
.

Similarly, by applying Lemma 3 with r = 3s and m = s, the weight of M′′ is at
least:

(3s+ 1) + (3s+ 2) + · · ·+ (4s− 1) + 4s =
(7s+ 1)s

2
.



Adding up these summations, we get that the weight of M = M′ ∪ M′′ is at
least:

5s2 + s− 1 =
n2

5
+

n

5
− 1.

Next consider the case where two elements of {s−1, . . . , 3s}, including s−1,
are unmatched. Let t be the unmatched point other than s− 1. Then the weight
ofM∪{[s−1, t]} (which might have crossings) is at least 5s2+s−1 in this case as
well. Since the weight of M decreases by s−1 from the weight of M∪{[s−1, t]},
the weight of M is at least 5s2 = n2/5.

We can verify that this bound is valid for n = 5s + k (1 ≤ k ≤ 4) as
follows: We discard from P the elements 1, . . . , s+ k− 4, and color the elements
s+k−3, . . . , 3s+k−2 with blue, and the elements 3s+k−1, . . . , 5s+k with red.
Now we can argue as in the case where n = 5s to see that P has a non-crossing
matching with weight at least 5s2 + 2ks+ k − 1 ≥ ⌊(5s+ k)2/5⌋ = ⌊n2/5⌋. ⊓⊔

3.2 Point sets in general position

For point sets in general position, we have:

Theorem 7. Let P be a labeled point set with n ≥ 2 elements in general posi-
tion. Then the heaviest non-crossing matching of P has weight at least ⌊(n2 +
n)/6⌋.

Proof. First consider the case where n = 3s. In this case, we discard from P all
the elements with labels 1, . . . , s. Then by Lemma 3, any matching M of the
remaining points has weight at least

(s+ 1) + (s+ 2) + · · ·+ 2s =
(3s+ 1)s

2
=

n(n+ 1)

6
.

We can argue similarly for the case where n = 3s+1 or 3s+2 by discarding
from P the elements with labels 1, . . . , s+ 1 or 1, . . . , s, respectively. ⊓⊔
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