Scheduling Tasks with Communication

Delays on Parallel Processors

JORGE URRUTIA AND NEJIB ZAGUIA Department of Computer Science University of Ottawa Ottawa, Ontario, CANADA

ABSTRACT

Let $J_n=\{v_1,...,v_n\}$ be a set of n jobs to be executed and E a set of precedence constraints on J_n . Assume that we have available a set $M_k=\{m_1,...,m_k\}$ of k identical machines that are to execute the jobs in J_n such that the time needed by any machine to execute each job in J_n is one unit.

Our main result in this paper is to give an $O(n \log^2(n))$ algorithm to find an optimal scheduling *with communication delays* on sets J_n of tasks for which their precedence constraints induce a tree order on J_n , i.e. an order $P(J_n,<)$ on J_n such that the covering graph of $P(J_n,<)$ is a tree. A communication delay is the time it takes for some information to be transferred between two different machines m_i and m_j of M_k , say from m_i to m_j before m_j can start processing a certain job.

1. Introduction

Let $J_n = \{v_1,...,v_n\}$ be a set of n jobs to be executed and E a set of precedence constraints on J_n . Assume that we have available a set $M_k = \{m_1,...,m_k\}$ of k identical machines that are to execute the job in J_n and that the time needed by any machine to execute each job in J_n is one unit of time. Given J_n and M_k , a scheduling f of J_n is a function f: $J_n \rightarrow M_k xN$ that assigns to each job $v_i \in T$ a machine m(v_i) and a completion time $c(v_i) \ge 1$ such that the following conditions are satisfied:

i) no two jobs are scheduled in the same machine at the same time

ii) if there is a precedence relation in E that dictates that v_i has to be executed before v_j , then the completion time $c(v_i)$ of v_i is smaller than the completion time $c(v_j)$ of v_j .

In this paper we study schedulings in which another restriction called *communication delays* are considered. Suppose that two jobs v_s and v_t are such that v_s has to be completed before v_t . If v_s and v_t are executed in different machines, say m_i and m_j respectively, some information has to be passed from m_i to m_j . The time it takes to transmit that information from m_i to m_j is called a communication delay.

Accordingly, we say that a scheduling f is a scheduling with communication delays if in addition to i) and ii) it also satisfies:

iii) if v_i has to be executed before v_i and $m(v_i) \neq m(v_j)$ then $c(v_i) \ge c(v_i) + 2$

The set of precedence relations E on the elements of T_n induces a partial order $P(J_n,<)$ on the elements of T_n in which a job v_i is smaller than a job v_j if there is a precedence constraint that dictates that job v_i has to be executed before job v_j ; we will denote this by $v_i < v_j$.

A precedence constraint $v_i < v_k$ in $P(J_n,<)$ is redundant if there is a job v_j such that $v_i < v_j$ and $v_j < v_k$. A precedence constraint $v_i < v_k$ is essential if there is no job v_j such that $v_i < v_j$ and $v_j < v_k$. The covering graph of $P(J_n,<)$ is the graph with vertex set J_n in which v_i is connected to v_j if $v_i < v_j$ is an essential precedence constraint of $P(J_n,<)$.

It is known that scheduling with communication delays is NP-complete for sets of tasks with arbitrary precedence relations, even for the case when we use two processors [6]. Nevertheless, there are some special cases for which polynomial time scheduling algorithms exist [1,6].

Our main result in this paper is to give an $O(n \log^2(n))$ algorithm to find an optimal scheduling *with communication delays* on partial orders $P(J_n,<)$ such that the covering graph of $P(J_n,<)$ is a tree using an arbitrary number of machines.

2. Terminology and Definitions

An ordered set $P(J_n,<)$ on a set J_n of n elements consists of a binary relation < over the set J_n that satisfies:

- (a) For any $v_i, v_j, v_k \in J_n$ such that $v_i < v_j$ and $v_j < v_k$ we have $v_i < v_k$ (transitivity), and
- (b) $v_i \not< v_i$ (antisymmetry).

Given two elements $v_i, v_j \in J_n$, we say that v_i is a *lower cove* of v_j if $v_i < v_j$ and there is no element v_k of J_n different from v_i and v_j such that $v_i < v_k < v_j$. The *covering graph* of $P(J_n,<)$ is the graph with vertex set J_n in which two vertices v_i and v_j are adjacent if v_i is a lower cover of v_j or, v_j is a lower cover of v_i . It is customary to represent an ordered set $P(J_n,<)$ on the plane by drawing its covering graph on the plane in such a way that the elements of $P(J_n,<)$ are represented by small circles in such a way that if v_i is lower cover of v_j then v_i is joined to v_j with a strictly monotonically increasing curve from v_i to v_j . See Figure 1.

Figure 1

An equivalent formulation of iii), and one that will be more useful to us is the following:

iii') If a task v_i is scheduled with termination time $c(v_i)$, then at most one task $v_j \gg v_i$ can be scheduled with completion time $c(v_i)+1$ and at most one task $v_k < v_i$ can be scheduled with completion time $c(v_i)-1$.

To see that iii) and iii') are equivalent, simply notice that by iii) if a task v_i is completed at time $c(v_i)$, then the machine m_s that executed v_i can complete only one job $v_j > v_i$ at time $c(v_i)+1$. Any other job $v_k > v_i$ executed by a machine m_t different from m_s is delayed by at least one extra unit due to a communication delay. Similarly, at most one job $v_j < v_i$ can be completed at time $c(v_i)-1$.

Given a scheduling f with communication delays of an ordered set $P(J_n,<)$ we define the completion time C(f) of f as the largest completion time in f over all of the elements of J_n . A scheduling f is optimal if its completion time C(f) is the smallest possible over all possible schedulings of $P(J_n,<)$. C(f) will be called the *optimal scheduling time* of $P(J_n,<)$.

An optimal scheduling of a tree order using 3 machines

$$m_1$$
, m_2 and m_3 .

Figure 2

In Figure 2, we show an optimal scheduling with delays for a tree. Notice that by x) v_5 cannot be assigned completion time 2. To see this, notice that by iii') at most one of v_1 , v_2 and v_3 can have completion time $c(v_5)$ -1, and since $c(v_i) \ge 1$, i=1,2,3 the completion time of v_5 is at least 3. Also, it is possible to assign to v_7 completion time $c(v_7) = c(v_5) + 1$ since the same machine m_2 executes both jobs.

3. Finding Optimal Schedulings with Communication Delays for Tree-Orders

In this section we will develop a $O(n \log^2(n))$ algorithm to find optimal schedulings with communication delays for tree orders. To avoid carrying cumbersome notation, we shall refer to optimal schedulings of trees, not tree orders.

It is easy to see that for the case when the number of machines available is at least the number of jobs to be performed, the most important parameter to take into consideration is the completion time. All we have to keep in mind is that, under our assumptions, if $v_i < v_j$ and $c(v_j)=c(v_i)+1$, then by iii'), both of these tasks are processed by the same machine. Otherwise we may assume that v_i and v_j are processed by different machines. In view of our previous discussion and to ease the presentation of our results, in what follows, we will concentrate only in the completion times of our tasks and ignore the machines assigned to our tasks.

Our main objective in this section is to prove the following theorem:

Theorem 1: Optimal scheduling with communication delays in tree orders $P(J_n,<)$ with n elements using at most n machines can be found in $O(n \log^2(n))$ time.

In order to prove our result we need to introduce some concepts:

A scheduling f for $P(J_n,<)$ is called an α schedule if $1 \le c(v_i) \le \alpha$ for all the elements of J_n . Let v_i be an element of J_n and suppose that we have an α -schedule of $P(J_n,<)$. We define $Min(\alpha, P(J_n,<), v_i)$ to be the earliest completion time that can be assigned to v_i over all α -schedules of $P(J_n,<)$. Similarly we can define $Max(\alpha, P(J_n,<), v_i)$. In Figure 2(a) we have a tree order $P(J_{10},<)$ with a 6-schedule. In Figure 2(b) we have a different 6-schedule of $P(J_{10},<)$ in which $Max(6, P(J_{10},<), v)$ is achieved and in Figure 2(c) Min(6, $P(J_{10},<), v)$ is achieved.

Figure 3

We will prove that given an α -schedule of a tree order $P(J_n,<)$ and an element v_i of J_n we can develop two procedures FMIN(α , $P(J_n,<),v_i$) and FMAX(α , $P(J_n,<),v_i$) that in linear time obtain new α -schedules for $P(J_n,<)$ such that the completion time of v_i is Min(α , P($J_n,<),v_i$) or Max(α , P($J_n,<),v_i$) respectively.

Some results will be needed to develop our procedures.

Lemma 1: Let $P(J_n,<)$ be a tree order with an α -scheduling and v_i be an element of P. Then there is an α -schedule of $P(J_n,<)$ in which the completion time of v_i is $Min(\alpha, P(J_n,<), v_i)$ (respectively $Max(\alpha, P(J_n,<), v_i)$) such that the termination time of any lower (resp. upper) covers v_i of v_i is $Min(\alpha, P(J_n,<), v_j)$ (resp. $Max(\alpha, P(J_n,<), v_j)$).

Proof: Let us consider an α -schedule f of $P(J_n,<)$ in which the completion time of v_i is $Min(\alpha, P(J_n,<), v_i)$. Suppose that there is a lower cover v_j of v_i that has a completion time greater than $Min(\alpha, P(J_n,<), v_j)$. Consider a different α -schedule f of $P(J_n,<)$ such that the

completion time of v_j in f' is Min(α , P(J_n,<), v_j). Consider the covering graph T of P(J_n,<). Since P(J_n,<) is a tree order, T is a tree. When we delete from T the edge connecting v_j to v_i , we split T into two subtrees, one, T_j containing v_j and the other T_i containing v_i . Let P_j(S_j,<) be the tree order induced in P(J_n,<) by the set of all the vertices of T_j. Let f" be the schedule obtained from f and f' as follows: If an element v_k of J_n is not a vertex of T_j assign to v_k the completion time it had in f; if v_k is a vertex of T_i then assign to v_k the completion time it has in f'. It is easy to see that f" is a valid α -schedule for P(J_n,<). A similar argument can be applied to Max(α , P(J_n,<), v_j) for the case when v_j is an upper cover of v_i and we seek to maximize the completion time of v_i in an α -schedule of P(J_n,<).

QED

Lemma 2: Let v_i be an element of J_n and suppose we have an α -schedule f of $P(J_n,<)$ such that:

a) For all the lower covers of v_j of v_i the schedule assigned to v_j by f is Min(α , P(J_n,<), v_j)

and

b) If v_j lower cover of v_i and u_s is an upper cover of v_j different from v_i the completion time of u_s is Max(α , P(J_n,<), u_s).

Then $Min(\alpha, P(J_n, <), v_i)$ can be calculated as follows:

Let $\beta = \{ Min(\alpha, P(J_n, <), v_j): v_j \text{ is a lower cover of } v_i \}$. Then if there are at least two lower covers v_j and v_k of v_i such that $Min(\alpha, P(J_n, <), v_j) = Min(\alpha, P(J_n, <), v_k) = \beta$ then the earliest completion time $Min(\alpha, P(J_n, <), v_i)$ of v_i is $\beta + 2$.

Proof: Suppose then that there is only one lower cover v_j of v_i such that β =Min(α , P(J_n,<), v_j), i.e. for any lower cover v_k of v_i different from v_j we have Min(α , P(J_n,<), v_k) < β . Then if the completion times Max(α , P(J_n,<), u_s) in f of all the upper covers of v_j are at least β + 2, then Min(α , P(J_n,<), v_i)= β +1, otherwise Min(α , P(J_n,<), v_i)= β +2. To prove this, all we need to do is to notice that if the completion time Max(α , P(J_n,<), u_k) in f of one upper cover of v_j is exactly β + 1, then the machine that executes v_j is the same that executes u_k in f, and thus the earliest completion time Min(α , P(J_n,<), v_i) is β + 2, otherwise we can assign to v_i completion time β + 1, which is clearly the earliest completion time for v_i over all α -schedules of P(J_n,<).

A similar argument holds for maximizing the completion time of an element v_i of $P(J_n,<)$. One more definition will be needed before we can proceed to give two recursive

procedures that given an α -schedule f of a tree order $P(J_n,<)$ will enable us to calculate $Min(\alpha, P(J_n,<), v_i)$ and $Max(\alpha, P(J_n,<), v_j)$.

QED

Since $P(J_n,<)$ is a tree order, the covering graph T of $P(J_n,<)$ is a tree. Let $e_{i,j}=v_i-v_j$ be an edge of T. Then T- $e_{i,j}$ consists of two subtrees T_i and T_j of T such that v_i is a vertex of T_i and v_j is a vertex of T_j . Further let $S_i=\{v_k\in J_n: v_k \text{ is a vertex of } T_i\}$ and $S_j=\{v_k\in J_n:$ v_k is a vertex of $T_j\}$. We now define $P(S_i,<)$ and $P(S_j,<)$ as the suborders of $P(J_n,<)$ induced by S_i and S_j respectively (see Figure 4). Clearly the covering graphs of $P(S_i,<)$ and $P(S_j,<)$ are T_i and T_j respectively. We can now describe FMIN and FMAX.

Figure 4

Procedure FMIN(α , P(J_n,<), v_i)

If v is a minimal element of $P(J_n, <)$ then

 $Min(\alpha, P(J_n, <), v_i)=1$ and c(v)=1

Else

For each lower cover v_j of v_i in $P(J_n,<)$ calculate $\beta_j=Min(\alpha, P_j(S_j,<), v_j)$ using **FMIN** $(\alpha, P_j(S_j,<), v_j)$.

Let $\beta = Max\{\beta_j: v_j \text{ is a lower cover of } v_i\}$

If at least two β_i achieve the maximum value β in $\{\beta_1,...,\beta_m\}$ then

 $Min(\alpha, P(J_n, <), v_1) = \beta + 2, c(v) = \beta + 2$

else

Let v_j be the unique lower cover of v_i such that $\beta = \beta_j = Min(\alpha, \beta)$

$$P_j(S_j,<), v_j)$$

For each upper cover v_k of v_j calculate $\delta_k = Max(\alpha, P_k(S_k, <), v_k)$ using **FMAX** $(\alpha, P_k(S_k, <), u_j)$ if $\delta \ge \beta+2$ then $Min(\alpha, P(J_n, <), v_i) = \beta+1, c(v) = \beta+1$ else

 $Min(\alpha, P(J_n, <), v_i) = \beta + 2$

End if.

EndFMIN.

Procedure FMAX(α , P(J_n,<), v_i)

If v is a maximal element of $P(J_n, <)$ then

 $Max(\alpha, P(J_n, <), v_i) = \alpha \text{ and } c(v) = \alpha$

Else

For each upper cover v_j of v_i in $P(J_n,<)$ calculate $\beta_j=Max(\alpha, P_j(S_j,<), v_j)$ using **FMAX**($\alpha, P_j(S_j,<), v_j$).

Let $\beta = Min\{\beta_i: v_i \text{ is an upper cover of } v_i\}$

If at least two β_i achieve the minimum value β in $\{\beta_1,...,\beta_m\}$ then

 $Max(\alpha, P(J_n, <), v_1) = \beta - 2, c(v) = \beta - 2$

else

Let v_j be the unique upper cover of v_i such that $\beta = \beta_j = Max(\alpha, P_j(S_j,<), v_j)$. For each lower cover v_k of v_j calculate $\delta = Min(\alpha, P_k(S_k,<), v_k)$ using **FMIN**($\alpha, P_k(S_k,<), u_j$) if $\delta \leq \beta - 2$ then $Max(\alpha, P(J_n,<), v_i) = \beta 11, c(v) = \beta - 1$ else $Min(\alpha, P(J_n,<), v_i) = \beta - 2$

End if.

EndFMAX.

Complexity analysis and correctness of the procedures

We first prove the following lemma:

Lemma 3: Given an α -scheduling of $P(J_n,<)$ and a vertex v_i of $P(J_n,<)$, procedures **FMIN**(α , $P(J_n,<)$, $\mathbf{\hat{y}}_i$) and **FMAX**(α , $P(J_n,<)$, v_i) correctly minimize (maximize) the completion time $c(v_i)$ of a vertex v_i over all α -schedulings of $P(J_n,<)$.

Proof: Our proof is by induction on the number of elements in J_n for both of **FMIN**(α , P(J_n ,<), v_i) and **FMAX**(α , P(J_n ,<), v_i).

If J_n has one element, then our procedures work correctly.

Let us assume that *both* of **FMIN**(α , P(J_n,<), v_i) and **FMAX**(α , P(J_n,<), v_i) work correctly for tree orders P(J_n,<) with less than n vertices, n≥2 and let us prove that they work for tree orders with n vertices.

Let $P(J_n,<)$ be a tree with n elements, $n\geq 2$, and let v_i be an element of $P(J_n,<)$. Let us consider a α -schedule f' of $P(J_n,<)$ for which the completion time c'(v_i) of v_i in f' is Min(α , $P(J_n,<), v_i$).

Consider any α -schedule f of P(J_n,<). We shall prove that if we apply FMIN(α ,P(J_n,<),v_i) to f, the completion time c(v_i) assigned to v_i by MIN(α ,P(J_n,<),v_i) is smaller than or equal to c'(v_i). Let v_j be a lower cover of v_i in P(J_n,<) and c(v_j) be the completion time of v_j in f. Clearly f induces a valid α -schedule in P(S_j,<) and since P(S_j,<) has less elements that P(J_n,<) when during the execution of FMIN(α ,P(J_n,<), v_i) a recursive call is made to FMIN(α , P(S_j,<),v_j), the completion time β_j assigned to v_j is Min(α , P(S_j,<), v_j) over all possible α -schedules of P(S_j,<).

We now show that $Min(\alpha, P(S_{j},<), v_{j})$ as calculated here is exactly $Min(\alpha, P(J_{n},<), v_{j})$. To show this, consider a scheduling f" of $P(J_{n},<)$ such that the completion time c"(v_j) of v_j is exactly $Min(\alpha, P(S_{j},<), v_{j})$. By the same argument as before, the completion time assigned to v_j when we apply **FMIN**($\alpha, P(S_{j},<), v_{j}$) to f" is the smallest over all possible α -schedules of $P(S_{j},<)$, i.e. the completion time assigned ti v_j has to be β_{j} . Thus $\beta_{j} \leq c"(v_{j})$ which by assumption is $Min(\alpha, P(J_{n},<), v_{j})$. Our claim now follows.

Using similar arguments, we can now prove that if v_k is an upper cover of v_j different from v_i then if we apply **FMAX**(α ,P(S_k,<), v_k) to the subtree order of P(S_k,<) obtained when we delete from the covering graph T of P(J_n,<) the edge v_j - v_k the completion time assigned to v_k by **FMAX**(α ,P(S_k,<), v_k) is exactly Max(α , P(J_n,<), v_k). It now follows by Lemma 2 that the completion time assigned to v_i by **FMIN**(α , P(J_n,<), v_i) is exactly Min(α , P(J_n,<), v_i). A dual argument applies now for the procedure **FMAX**(α ,P(S_k,<), v_k).

QED

We now prove:

Lemma 4. FMIN(α , P(J_n,<), v_i) and FMAX(α , P(J_n,<), v_i) work in O(n) time, where n is the number of elements of J_n.

Proof: Let $g(\alpha, P(J_n,<), v_i)$ be the number of steps $FMIN(\alpha, P(J_n,<), v_i)$ takes $(FMAX(\alpha, P(J_n,<), v_i)$. To execute $FMIN(\alpha, P(J_n,<), v_i)$, we first calculate for all the lower covers v_j of $v_i \beta_i = Min(\alpha, P_j(S_j), v_j)$ using $FMIN(\alpha, P(J_n,<), v_i)$. After this is done, $Min(\alpha, P(v_i), v_i)$ is found in O(k) time using Lemma 2, where k is the number of lower covers of v_i . Then:

$$(\alpha, T, v) = O(k) + \sum_{i=1}^{k} (\alpha, T_i, i)$$

which is O(E), where E is the set of edges of T. However T is a tree, and thus O(E) is linear which proves our result.

We now develop a recursive divide and conquer algorithm to find optimal schedulings in tree orders in $O(n \log^2 n)$. To this end we need the following result known as the one-third two-thirds theorem:

Theorem 2: Let T be any tree. Then there is a vertex v of T such that all of the components of T-v have at most 2n/3 vertices. Moreover, v can be found in linear time.

Consider a vertex v_i of a tree order $P(J_n,<)$, with lower covers say $\{v_j,...,v_k\}$ and upper covers $\{v_s,...,v_t\}$. Let $P_{low}(v_i)$ and $P_{upp}(v_i)$ be the subtrees of $P(J_n,<)$ containing v_i obtained by deleting all the edges joining v_i to its upper covers (resp. lower covers) (see Figure 5).

Figure 5

Given a tree order T our algorithm to find an optimal schedule for a tree order T follows the outline:

Algorithm OPTTREE

QED

- 1) Find a vertex v_i of $P(J_n,<)$ as in Theorem 2.
- 2) For every v_j lower or upper cover of v_i obtain an optimal schedulings for $P(S_{j},<)$, with completion time β_j .
- 3) Using these optimal schedulings, obtain optimal schedulings for $P_{low}(v_i)$ and $P_{upp}(v_i)$
- Merge the optimal schedulings for for P_{low}(v_i) and P_{upp}(v_i) into an optimal scheduling for P(J_n,<).

Due to the choice of v_i , if we can show how to achieve Step 3 in linear time and Step 4 in O(n log n) time, it immediately follows that our algorithm OPTREE runs in O(n log²n) time.

We now prove that Step 3 can be achieved in linear time.

Lemma 5: Suppose that for every lower (upper) cover v_j of v_i we have an optimal scheduling for $P(S_j,<)$ with completion time β_j . Then optimal schedulings for $P_{low}(v_i)$ (resp. $P_{upp}(v_i)$) can be obtained in linear time.

Proof: Suppose that the lower covers of v_i are $v_k,...,v_m$. Let $\beta = \max\{\beta_k,...,\beta_m\}$. Clearly the optimal completion time for time $P_{low}(v_i)$ can not be smaller than β . For each lower cover v_j of v_i in $P(J_n,<)$ find a β -schedule for $P(S_j,<)$ which minimizes the completion time α_j of v_j . This can be achieved in linear time using MIN(β , $P(S_j)$, v_j). Let $\alpha' = Max\{\alpha_k,...,\alpha_m\}$. If $\alpha' \leq \beta - 2$ then we can assign to v termination time α , thus achieving an β -scheduling of $P_{low}(v_i)$ which has optimal termination time.

If $\alpha' = \beta - 1$, two cases arise:

- α' is achieved by at least two elements of {α_k,...,α_m}. Then by condition
 iii) the completion time c(v_i) of v_i has to be α'+2=β+1.
- 2) α' is achieved by exactly one element in $\{\alpha_k,...,\alpha_m\}$, say α_k . If v_k has an upper cover, say w_1 in $P(S_k,<)$ then the completion time for w_1 in $P(S_k,<)$ is β . Thus by iii) we cannot assign completion times of β for both w_1 and v_i . Thus v_i must be assigned completion time $\beta+1$. On

the other if u_1 is a maximal element of $P(S_k,<)$ then we can assign completion time β to v_i .

If $\beta = \alpha$ and it is achieved by at least two elements in $\{\beta_1, ..., \beta_k\}$ then by iii) v_i must be assigned termination time $\alpha+2$. Otherwise, we can assign to v a completion time of $\alpha+1$.

Clearly the scheduling obtained for $P_{low}(v_i)$ is optimal and the whole process takes linear time as claimed. A dual argument proves our result for $P_{upp}(v)_i$.

QED.

We now show that Step 4 can be achieved in $O(n \log(n))$ time.

Lemma 6: Suppose that we have optimal schedulings for $P_{low}(v_i)$ and $P_{upp}(v_i)$ with completion times α and β respectively. Then we can obtain an optimal schedule for $P(J_n,<)$ in $O(n \log n)$.

Proof: Let $\delta = \max{\{\alpha, \beta\}}$. The first thing to notice is that the optimal completion time of $P(J_n, <)$ could be any integer in the range δ to $\lambda = \alpha + \beta$. Our problem is now to find the smallest integer γ in the range δ to λ for which an γ -schedule for $P(J_n, <)$ exists. This can be accomplished by a performing a binary search for γ in the range $\delta = \min$ to max= λ . At each step of our search, we check if a γ -schedule for T exists, for $\gamma = \frac{\min + \max}{2}$. If a γ -schedule exists for T, we make max= γ , otherwise min= γ . Since $\delta + \lambda$ is at most n, the number of iterations of our search is logarithmic.

We now proceed to prove that for any integer γ in the range δ to $\alpha+\beta$ we can test in linear time if an γ -scheduling for P(J_n,<) exists.

Let g and h be optimal schedulings for $P_{low}(v_i)$ and $P_{upp}(v_i)$ with completion times α and β respectively. Since $\gamma > \alpha, \beta$ these schedules are γ -schedules of $P_{low}(v_i)$ and $P_{upp}(v_i)$ respectively. Using g and h, find γ -schedules g' and h' for $P_{low}(v_i)$ and $T_{high(v)}$ by using **FMAX**(γ , $P_{low}(v_i)$, v_i) and **FMIN**(γ , $P_{upp}(v_i)$, v_i).

If the completion time of v_i in the γ -scheduling g' of $P_{low}(v_i)$ is greater that the completion time of v_i in the γ -scheduling h' of $P_{upp}(v_i)$ then no γ -scheduling f exists, for $P(J_n,<)$, since otherwise f would induce γ -schedulings of $P_{low}(v_i)$ and $T_{high(v)}$ with

completion time $c(v_i)$ greater than or equal to $Min(\gamma, P_{low}(v_i), v)$ and smaller than or equal to $Max(\gamma, P_{upp}(v_i), v)$, which is a contradiction.

On the other hand if the completion time of v_i in the γ -scheduling g' of $P_{low}(v_i)$ is smaller than or equal to the completion time of v_i in the γ -scheduling h' of $P_{upp}(v_i)$, then we can get an γ -schedule for T in which the completion time for any $u \in P_{low}(v_i)$, $u \neq v$ is the same as the completion time of in h' and for any $u \in P_{upp}(v_i)$ including v itself, the completion time of u is that of g'.

Since **FMIN**(γ , P_{low}(v_i), g, v) and **FMAX**(γ , P_{upp}(v_i), h, v) can be carried out in linear time checking if a γ -schedule for T exists can be done in linear time. Our result now follows.

QED

3. Concluding Remarks

We have presented an $O(n \log^2 n)$ time algorithm to find optimal schedulings with communication delays for tree orders. We believe that this algorithm, however, is not optimal and that it may be possible to obtain an $O(n \log n)$ time algorithm or even a linear time one.

In some special cases, it is possible to find linear time algorithms. For example if a tree order $P(J_n,<)$ is such that it has a unique maximal element, i.e. an element v_i such that for any $v_j \in P(J_n,<)$, $v_i \neq v_j$ we have $v_j < v_i$, it is easy to find a linear time scheduling algorithm.

To see this, let us assume that the elements of T are labelled $v_1,...,v_n$ in such a way that if i<j then $v_j \not< v_i$. It is easy to see that the following linear time procedure will obtain an optimal scheduling with communication delays for P(J_n,<).

For i=1 to n do

If v_i is a minimal element,

 $c(v_i)=1$

Else

Let $v_{i(1)},...,v_{i(k)}$ be the lower covers of v_i . Assume w.l.o.g. that $c(v_{i(j)}) \leq c(v_{i(k)}), 1 \leq j < k$ If $k \geq 2$ and $c(v_{i(k-1)}) = c(v_{i(k)})$ $c(v_i) = c(v_{i(k)}) + 2$

```
else c(v_i) = c(v_{i(k)}) + 1 endif
```

endif.

References

- H.H. Ali and H. El-Rewini, "An Optimal Algorithm for Scheduling Interval Ordered Tasks with Communication on N Processors", University of Nebraska at Omaha, Mathematics and Computer Science Department, Technical Report 91-20, 1990.
- [2] T. Casavant and J. Kuhl, "A Taxonomy of Scheduling in General Purpose Distributed Computing Systems", *IEEE Transactions on Software Engineering*, SE-14:2, February 1988.
- [3] E. Coffman and R. Graham, "Optimal Scheduling for Two Processor Systems", *Acta Informatica* **1**, 1972, 200-213.
- [4] T. Hu, "Parallel Sequencing and Assembly Line Problems", *Operations Research* 9, 1961, 841-848.
- [5] C.H. Papadimitriou and M. Yanakakis, "Scheduling Interval-Ordered Tasks", *SIAM Journal of Computing* 8, 1979, 405-409.
- [6] M. Prastein, "Precedence-Constrained Schedulings with Minimum Time and Communication", M.S. Thesis, University of Illinois at Urbana-Champaign, 1987.
- [7] R. Sethi, "Scheduling Graphs on Two Processors", *SIAM Journal of Computing* 5, 1976, 73-82.
- [8] J. Ullmann, "NP-Complete Scheduling Problems", *Journal of Computing and System Sciences* 10, 1975, 384-393.