
1

Separating  Collections of Points in Euclidean Spaces

Ralph P. Boland1   and   Jorge Urrutia2

Abstract

Given two disjoint convex sets  A  and  B  in  Ed,  a
hyperplane  h  in  Ed  separates them if  A  lies on one
of the half spaces defined by  h  while  B  lies on the
complementary half space.  Given a collection  F  of
convex sets in  Ed  we say  F  is separated by a set of
hyperplanes  H  if every pair of elements of  F  i s
separated by some hyperplane of  H.  We deal here with
the case that the convex sets are all points.  Let  f(n,d)
be the minimum number of hyperplanes always
sufficient and occasionally necessary to separate  n
points in general position in Ed.  We prove that  È(n-
1)/d˘  ≤ f(n,d) ≤ È(n-2Èlog(d)˘) / d˘ + Èlog(d)˘.  When  d  i s
even the lower bound can be improved to Èn/d˘.  In the
planar case this gives us  f(n,2) = Èn/2˘.  We prove the
upper bound by presenting an algorithm that generates
a separating family of hyperplanes  H  that satisfies the
upper bound.  In dimension  2  the algorithm has a time
complexity of  O(n log(n)).  Finally, we show that in
the planar case  H  can  be stored such that retrieving a
line in  H  that separates a given pair of points from  P
can be found in  O(1)  expected time and worst case time
of  O(log2(n)).

Keywords:  Algorithms, combinatorial problems,
computational geometry, information retrieval, point
sets, separability

1  Introduction

Let  Ed  represent the  d-dimensional  Euclidean vector
space.  Given two disjoint convex sets  A  and  B  in  Ed,
a hyperplane  h  in  Ed  separates them if  A  lies on one of
the half spaces defined by  h  while  B  lies on the
complementary half space.  Given a collection  F  of
convex sets in  Ed,  we say  F  is separated  by a set of
hyperplanes  H  if, for each possible pair of elements of  F,
there is a hyperplane of  H  that separates them.
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There are many results in the literature concerning the
separability of convex sets  [1],[2],[3],[4],[6], and [11].  For
instance , it is known that any family of   n  disjoint plane
convex sets can always be separated with at most  3n-6
lines.  In this paper we deal with the separability of point
sets in general position in  Ed.  For any two points  a,b Œ
Ed,  we denote the open line segment joining them
seg(a,b)  and the closed line segment joining them
seg[a,b].  We say that a set of points  P  in  Ed  is
separated  by a set of hyperplanes  H  in  Ed  if for every
pair of points  a,b  Œ  P,  there is a hyperplane  h  of  H
not containing  a  or  b  that intersects  seg(a,b).  We
further say that  h  separates   a  from  b.  See Figure 1.
We say that the points of  P  are in general position in  Ed

if no  d + 1  points of  P  are in the same hyperplane in
Ed.  This restriction is important since if the elements of  P
can be located arbitrarily then we can trivially show that  n
- 1  hyperplanes are needed simply by placing  n  points in
a straight line.  All points sets considered here are assumed
to be in general position.

A set of ten points separated by four lines
Figure 1

Let  f(n,d)  be the minimum number of hyperplanes
always sufficient and occasionally necessary to separate  n
points in  Ed  where  n ≥ d.  We show that  È(n-1)/d)˘  ≤
f(n,d) ≤ È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘  for  d  odd and that
Èn/d˘ ≤ f(n,d) ≤ È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘  for  d  even.
From now on we assume that  n ≥ d.  Theorem  3  will
show that if  n < d  then  f(n,d) = Èlog(n)˘.  The upper
bounds of  f(n,d)  are determined by construction:  we
present algorithms that generate a solution within these
upper bounds.  In dimension  2  the algorithm can be made
to run in  O(n log(n))  time.
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For the planar case we can construct a data structure for
storing the lines generated in the above algorithm that
allows us to retrieve a line that separates two given points
in worst case time  O(log2(n))  and expected case time
O(1).  This data structure is constructed in linear additional
time.

2   Determination  of Lower  Bounds  for
f(n,d)

To determine a lower bound for  f(n,d)  consider the
moment curve  

Md = {(t, t2,..., td) | t Œ R} (1)
and denote the point  (t, t2,..., td)  by Md(t).  Let  Yn(d) =
{Md(1), ..., Md(n)}  be a set of  n  points on  Md.  We
determine how many times a hyperplane can intersect the
moment curve.  A hyperplane in  Ed  can be represented by
an equation of the form:

adxd + ad-1xd-1 + º a1x1 + a0  =  0(2)
Combining (2)  and  (1)  we get the equation

adtd +  ad-1td-1 + º a1t1 +  a0  =  0 (3)
Equation  (3)  is a polynomial of degree  d  and thus has at
most  d  roots.  This proves the following well-known
result.  See, for example  [7], [8].

Lemma  1.  Any hyperplane  h  in  Ed  intersects the
moment curve  Md  in at most  d  points.  If  h   intersects
Md  in exactly  d  points then  h  does not intersect  Md
tangentially.

Using Lemma  1  we establish lower bounds for  f(n,d).

Theorem  2.  f(n,d) ≥ È(n-1)/d)˘  for  d  odd and  f(n,d) ≥
Èn/d˘  for  d  even.

Proof.   Consider  Yn(d) = {Md(1),..., Md(n)}.   Let
M(i,j)  be the section of  Md  between points  Md(i)  and
Md(j),  i < j.  Let  ei  denote  seg[Md(i), Md(i+1)]  and let
E  = {ei | 1 ≤ i < n}.  Let  H  be any set of hyperplanes that
separates  Yn(d).  Observe that every  ei Œ  E  has to be
crossed by some hyperplane of  H.

We determine the maximum number of segments of  E
that any hyperplane  h Œ  H  can intersect.  Assume  h
intersects  an element  ei  of  E.  Then  h  separates  Md(i)
from  Md(i+1).  Therefore, since M(i,i+1) is an arc joining
Md(i)  and  Md(i+1),  h  intersects  M(i,i+1).  (Note that
we need not consider that  h  intersects  M(i,i+1)  at points
Md(i)  or  Md(i+1)  since  h  is to separate  these points.)
Now, by  Lemma 1,  h  intersects  Md  at most  d  times;

therefore  h  crosses at most  d  elements of  E.  Since  |E|
= n - 1,  we have that  f(n,d) ≥ È(n-1)/d)˘.

If  d  is even then this result can be improved slightly.
We observe that the line segment  f = seg[Md(1), Md(n)]
must cross the hyperplane  h Œ H  that separates  Md(1)
from  Md(n).  If  h  intersects  M(1,n)  d  times then each
intersection is a crossing of  M(1,n)  by  Lemma 1  and
since  d  is even  Md(1)  and  Md(n)  lie on the same side of
h,  contradicting that  h  separates them.  Therefore  h
crosses  M(1,n)  at most  d - 1  times.  Therefore, when  d
is even,  f(n,d) ≥ Èn/d˘.      ®

3   An Algorithm for Separating Points by
Hyperplanes

We now show that  f(n,d) ≤ È(n-2Èlog(d)˘) / d)˘ +
Èlog(d)˘  by constructing an algorithm that separates a point
set  P  in  Ed  with  È(n - 2Èlog(d)˘) / d)˘ + Èlog(d)˘
hyperplanes.  If a set of hyperplanes  H  partitions  P  into
t  points sets of cardinality  În/t˚  or  Èn/t˘  then we say that
H  t-partitions  P.  The first step of our algorithm will use
the following result.

Theorem  3.   Any set  P  of  n  points in  Ed  can be
2Èlog(d)˘-partitioned  using at most  Èlog(d)˘  hyperplanes.

This theorem is easily proven by repeated application of
the following theorem  [5], [12].

Theorem  4.   Let  P1,º,Pd  be  d  finite sets of points
on  Ed.  There exists a hyperplane  h  that simultaneously
bisects  P1,º,Pd.

To explain the rest of our algorithm we will need a
number of definitions and observations.  Let  P  be any set
of points in  Ed  and  H  be any set of hyperplanes in  Ed.
A cell  CL  of  H  is a connected subset of  Ed  such that,
for any two points  a,b Œ CL,  seg(ab)  does not intersect
any hyperplane of  H.  We say that a subset  C  of  P  is a
cluster  of  H  if  C  is contained in a cell  CL     determined
by       some       subset     of  H  while  P - C  is contained in the
complement of  CL.  See figure 2.  A partitioning  S =
{P1,º,Pk}  of  P  into disjoint subsets such that each  Pi
Œ  P  is a cluster of  H  is called a cluster set  of  (P,H).
Note that if all the elements of  S  are singletons, then  H
separates  P.  We say that  C  is  separated   if  |C|  = 1  and
crowded   if  |C|  ≥ 2.  See figure  2.
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A possible cluster set for a set of fourteen points  P  and four

lines  H = {L1,L2,L3, L4}.   C1  is a cluster of   (P,H)   determined
by  {L1,L4}.

Figure  2.

Given a cluster set  Si  of  (P,H)  we say that a
hyperplane  h  (not in  H)  refines  Si  if there is a set of
crowded clusters  C = {C1,º,Ck}, k ≥ 1, of  Si   such that
h  splits  each element  Ci  of  C  into two smaller non-
empty  clusters  Ci1, Ci2.  We then say that  h  is  a  refine
of  Si  and denote by  Si+1 = (Si - C) »
{C1,1,C1,2,º,Ck,1,Ck,2}.  Note that  Si+1  is now a cluster
set of  (P, H »  {h}).      Note        also        that                  C                         does        not
necessarily       contain       every       cluster       of               S       i                    that       can       be       split       by
h.   

The ability to do refines, where as many as  d  clusters
are split simultaneously, in dimension  d  is key to our
point separation algorithm so we develop an algorithm that
does this first.  We observe that for any set of  2k  points
in  Ed,  k ≤ d,  grouped into  k  pairs  S  = {si | 1 ≤ i ≤ k}
in  Ed,  there exists a hyperplane  h  that simultaneously
intersects the interior of each of the  k  line segments
determined by each pair of  S.  It is easy to show that such
a hyperplane can be found in time  O(d3),  i.e.,  in constant
time for any fixed  d.  An example, when  k = d,  is the
hyperplane determined by the midpoints of these line
segments or a small perturbation of it.  See  Figure 3 (b,c).
This observation gives us a simple algorithm for carrying
out a refine, that splits  k  clusters, k ≤ d,  in  Ed.

Algorithm  Refine
Input:   A cluster set  Sj  of a point set  P  in  Ed,  and

k  clusters  {C1 º Ck}  of  Sj, 1 ≤ k ≤ d,  |Ci| ≥ 2,
1 ≤ i ≤ k.

Output:  1)  A cluster set  Sj+1  that results from a
refine of  Sj  in which each  Ci, 1 ≤ i ≤ k,  
is split into two clusters by a hyperplane  h  and
  2)  Hyperplane  h.

1) For each  Ci,  1 ≤ i ≤ k,  select any two points  pi1,
pi2 Œ Ci.

2) h := the hyperplane determined by the midpoints of
seg(pi1, pi2), 1 ≤ i ≤ k,  and d-k  arbitrarily chosen
points  (or a small perturbation of this hyperplane).

3) For each  i, 1 ≤ i ≤ k,  partition  Ci  into two
clusters  Ci1  and  Ci2  according to which side of
h  each point of  Ci  is on.

4) Return((Sj+1 := Sj - {Ci,  1 ≤ i ≤ k}  »  {Ci j, 1 ≤ i
≤ k,  1 ≤ j ≤ 2}), h).

Our separation algorithm is also based on the following
simple but important observation.

Observation  5.  Let  S0 = {P}   be a cluster set of a
point set  P  and  H =  {h1,h2 ,º , hn-1} be a family of
hyperplanes such that  hi  is a  refine of  Si,  i = 1, º n-1
that splits only one cluster  Ci  of Si.  Then H separates P.

Theorem 3, algorithm  k-refine,  and observation 5  are
the tools we need to write our point separation algorithm.

Algorithm  Separate.
Input:     A point set  P  in general position in  Ed.
Output:   A  set of hyperplanes  H  that separates  P.
1) Hinit := {h1 º hÈlog(d)˘}  where  {h1 º hÈlog(d)˘}  is

a set of hyperplanes that  2Èlog(d)˘-partitions  P  into
initial clusters  Ci, 0 ≤ i < 2Èlog(d)˘  labeled such
that  |Ci| ≥ |Ci+1|, 0 ≤ i < 2Èlog(d)˘ - 1.  The initial
clusters are put in a queue  Q  such that  Ci
precedes  Ci+1,  0 ≤ i < 2Èlog(d)˘ - 1 in  Q.

2) S0 := {Ci, 0 ≤ i < 2Èlog(d)˘},  H0 :=  Hinit,  k := 1.
3) While there is a crowded cluster  Dj, 1 ≤ j ≤ d

contained in each of the first d  initial clusters in Q
do
3.1) Use algorithm  Refine  to find a hyperplane  hk

that simultaneously splits  Dj, 1 ≤ j ≤ d  and
then split them.

3.2) Sk = Sk-1 - {Dj, 1 ≤ j ≤ d} » {the new clusters
created by the  Refine}

3.3) Move the first  d  clusters in  Q  to the back of
Q,  maintaining their relative order.

3.4) Hk :=  Hk-1 » hk,   k := k + 1.
4)  If there are  m  crowded clusters  Dj,  1 ≤ j ≤ m,

remaining, then split each of them into two clusters
using  Refine.  Hk :=  Hk-1 » hk  where  hk  is the
hyperplane produced by this  Refine.



4

5)  return  H.  See figure 3.

(a) (b)

(c) (d)
The sequence of the first three 2-splits ((a), (b), and (c))

of  P  and the final separating set of lines of  P (d).
Figure 3

Theorem  6.   Algorithm  Separate  separates a set of  n
points  P  in  Ed  by a set  of hyperplanes  H  where  |H| =
È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘.

Proof.   After  Step 1  any set of hyperplanes  H'  that
separates  Ci,  0 ≤ i < 2Èlog(d)˘,  together with  Hinit
separates  P.  Let  Ci,k, 0 ≤ i < 2Èlog(d)˘,   denote the
cluster set determined by cluster  Ci  and the  refines  that
have been applied to subclusters of  Ci  by the first  k
hyperplanes produced in  Separate  after Step 1.  Note that
if the  kth  hyperplane does not split a subcluster of  Ci
then  Ci,k = Ci, k-1.  Let  R(X)  denote the number of
refines  used to separate cluster set  X.  By observation 5
R({Ci,0}) = |Ci|-1, 0 ≤ i < 2Èlog(d)˘  and thus

R(S0)  = Â2È log(d)˘ -1

#i#=#0   | Ci|-1) =  n - 2Èlog(d)˘.

Therefore  S0  can be separated with  È(n-2Èlog(d)˘) / d)˘ 
hyperplanes    if    each hyperplane  hk, 1 ≤ k ≤ È(n-2Èlog(d)˘) /
d)˘,  except possibly the last, is produced by a  refine
which splits  d  clusters of  Sk-1.  This is accomplished by
Separate  since  | R({Ci,k}) - R({Cj,k}) | ≤ 1, 0 ≤ i,j <
2Èlog(d)˘  after Step 1  (when  k=0)  and this equation
remains invariant as hyperplanes are added by  Separate.
Thus the total number of hyperplanes produced by  Separate
is  È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘.      ®

Theorem  7.   Not   including   Step  1   Algorithm
Separate   runs in time  O(n2)   in the worst  case and  O(n
log(n))  in the expected case.

Proof .   We only need to prove that after Step 1
Separate  subdivides the clusters of  P  into smaller
subclusters (until one point clusters are obtained) in a way
equivalent to that of a version of  Quicksort  and thus has
the same run time behavior.

To do this we choose a version of  Partition  that
determines a value  x  to use to partition a subcollection  N
by randomly selecting two values  a,b  Œ N, a ≤ b,  and
choosing  x  such that  a ≤ x ≤ b.  Of the values a,b  let  y
be the one which is the furthest from the median of  N.  It
is easily shown that  Partition  has expected worst case
performance when  x = y  but that even with this bad choice
for  x  the  O(n log(n))  expected run time behavior of
Quicksort  is unchanged.  We also note that the analysis of
Quicksort  is independent of the distribution of the values
being sorted.

Now let  C  be any cluster of  P  generated during the
execution of  Separate,  |C| ≥ 2.  Since  |C| ≥ 2,  C  must
be split into two smaller subclusters of  P  (during an
execution of  Step 3.1  of  Separate)  using a hyperplane
hk.  

Without loss of generality assume that  hk  is chosen by
having  Refine  first select a set  T  of  d - 1  points, not in
C,  that are in general position with respect to the points in
C.  T  may be chosen by an  'adversary to the algorithm'
who wishes the algorithm to perform as slowly as possible.
However the adversary must do so without knowledge of
the next step.  In the next step the algorithm determines a
line segment  s  whose endpoints are two points selected at
random from  C.  The algorithm now selects any point  sp
on line segment  s.  The adversary is free to make as bad a
choice for  sp  as possible.  Now,  sp  together with the
points in  T  determine  hk.    

For each point  q  in  Ed  we associate a value  w(q,hk)
which is the angle between the hyperplane  hk  and the
hyperplane determined by  T » {q}.  Let  C(hk)  be the set
of values determined by applying  w(p,hk)  to each point  p
in cluster  C.  Since the values  C(hk)  are totally ordered
they can be partitioned by algorithm  Partition.  Let  pi, pj
be  the  endpoints  of  s  such  that  w(pi, hk) ≤ w(sh, hk)
≤ w(pj, hk) in this total ordering.  We can assume that
Partition  partitions  C(hk)  using the value  w(sp, hk)
since:

1)  Choosing  pi, pj  randomly from  C  corresponds to
choosing  w(pi, h), w(pj, h)  randomly from  C(hk).
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That is, for every random pair  pi, pj Œ C  there exists
exactly one corresponding  pair  w(pi, hk), w(pj, hk)
Œ C(hk).    and

2)  sp,  on average, must be at least as good a choice as
the choice with worst case expected behavior of the
points on  s  (which is  pi  or  pj).

Thus  Partition partitions  C(hk)  into two parts  C1(hk)
and  C2(hk)  where  C1, C2  are the two clusters produced
by splitting  C  with  hk  during the execution of  Step 3.1
of  Separate.  Therefore  Separate separates point sets at
least as well as Quicksort sorts collections.                    ®

Let  P1,º,Pk  be disjoint point sets in  Rd,  k ≤ d.  By
Theorem  4, it is possible to find a hyperplane  h  that
simultaneously bisects  P1,º,Pk.  In  R2  and  R3  this
process can be carried out in  linear time [9],[10] while in
Rd,  d ≥ 4  it can be carried out in time  O(nd-1-a(d))  where
a(d) Æ 0 as  d  goes to infinity  [9].

Using the algorithms  in  [9],[10]  in  Step 1  and in
Step 3.1  of  Separate  (instead of  Refine)  gives us an
O(n log(n))  run time performance for  Separate  in  R2  and
R3  while for  dimension  d, d ≥ 4 we get a run time
complexity of  O(nd-1-a(d)log(n))  where  a(d) Æ  0 as  d
goes to infinity.  We call the version of  Separate  in which
these changes have been made  Bisect-Separate.

4   A Data Structure for Retrieval of
Separating Lines

Now consider that  Bisect-Separate  has separated a set  P
of  n  points with a set of hyperplanes (or lines)  H.  We
are then asked:  given any two points  a,b Œ  P,  find a
hyperplane of  H  that separates  a,b.  We now discuss data
structures for storing the hyperplanes of  H  so that this
query can be done efficiently.  It is clear from the results in
[4]  and  [9]  that in the general case a query can be done in
O(log(n))  time.  We deal here only with the planar case and
show that in linear time we can construct a data structure
that allows a line that separates  a,b  to be retrieved in
worst case time  O(log2(n))  and expected time  O(1).  In
both cases a linear amount of space is needed for the data
structures.

Let  P = {p1,p2,º, pn} be a set of  n  points on the plane
and  H  be a set of lines (produced during the execution of
algorithm  Bisect-Separate)  that separates  P.  We will
decompose the plane into  n  regions each bounded by a
convex polygon or a convex chain constructed from
portions of the lines of  H  in such a way that each region
contains exactly one point of  P.  For any point  pi Œ  P

we denote the region containing it  R(pi)  and denote the
number of edges composing the boundary of R(pi) as
|R(pi)|.  The regions will be constructed such that MAX(
|R(pi)|, 1 ≤ i ≤ n) ≤ log(n)  and such that  Â# i = 0

# n   |R(pi)| <
4n.

We can now find a separating line between any two
points  a,b Œ P.  It is easily shown that one of the edges of
the convex polygons or convex chains R(a),R(b)  separate
a  from  b  [4].  It is also well-known that this edge can be
found in time  O(log(MAX(|R(a)|,|R(b)|)).  This in turn
leads to our claimed results.

We construct our regions using a sequence of
refinements, one for each line that is added to  H  by
Bisect-Separate.  Observe that each cluster  C  of  (P,H)
has a cell associated with it;  that determined by the subset
of  H  which determined  C.  We refer to that polygon or
convex chain as  CL(C).  Initially we have one region
namely  CL(P).  Each time Bisect-Separate  refines a cluster
C  with a line  l ,  C  is split into two clusters  C1,C2.
Our additional step at this time is to split  CL(C)  into two
new (possibly open) polygons  CL(C1)  and  CL(C2)  using
line  l.  Clearly  |CL(C)|  + 4 ≥  |CL(C1)| + |CL(C2)|.
Since  n-1  refines of clusters are applied by Bisect-Separate
to separate  P,  the number of edges needed to construct
CL(pi) = R(pi)  for every separated point  pi Œ  P is less
than  4n.  See Figure 4.

To construct the boundaries in time  O(n)  we maintain
each boundary as a circular linked list of lines (each line can
be thought of as an edge).  Initially there are only two
boundaries with each containing the initial line used to
bisect  P.  For each cluster that is  refined,  we search its
boundary for the edge intersection(s) with the line that is
splitting the cluster, split the boundary into two new parts,
and construct the new boundaries.  In the worst case this
cost is  O(k)  where  k  is the number of edges on the
boundary being split.  For simplicity we assume that  |P| =
n  is a power of two.  If not we can always add sufficient
points to  P  until this is so.  Let  G(n,k)  be the set of
clusters produced after each point  p  of  P  has participated
in  k  refines.  Then  |G(n,k)|  =  2k  since each  refine
corresponds to a bisection of the point set containing  p.
Let  g(n,k)  be the total number of edges in all the
boundaries of the clusters of  G(n,k).  Then  g(n,k)  ≤
g(n,k-1) + 4 * 2k since at most four new edges are added to
cluster boundaries when a cluster is split and there are
|G(n,k-1)| = 2k-1   clusters to split in constructing  G(n,k)
from  G(n,k-1). From this recurrence relation we determine
that  g(n,k) < 2k+2.  Let  m  be the  total  number  of
boundary  edges to be processed during  Bisect-Separate.



6

Then
  m <  Â# È log(n)˘

#i#=#0   g(n,i))  =  Â# È log(n)˘
#i#=#0   2i+2 < 8n.

Therefore the boundaries of regions for all points in  P  is
constructed in amortized time  O(n).

The polygons corresponding to each cluster after the addition
of separating lines.  The points and lines are as in  Figure 3.

Figure 4

5   Conclusion and Open Problems

We have determined bounds on the number of
hyperplanes always sufficient and occasionally necessary to
separate  n  points in general position in Ed.   For
dimension two these bounds are tight.  For higher
dimensions the bounds are different only by a value
logarithmic in the dimension.  We proved the upper bound
by presenting an algorithm that constructs a separating set
of hyperplanes  H  for a given point set  P  satisfying the
upper bound.  Except for step 1,  the algorithm is simple
and efficient.

We also showed that in  R2  and  R3  that the time
complexity of this algorithm can be reduced to  O(n log(n)).
In the planar case we also presented a data structure for
storing  H  such that a line of  H  separating any two given
points  a,b Œ P  can be found in expected time  O(1)  and
worst case time  O(log2(n)).

We conjecture that the problem of separating points in
E2  is  W(n log(n)).  However we have not been able to
prove it.
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