
1

Separating Collections of Points in Euclidean Spaces

Ralph P. Boland1 and Jorge Urrutia2

Abstract

Given two disjoint convex sets A and B in Ed, a
hyperplane h in Ed separates them if A lies on one
of the half spaces defined by h while B lies on the
complementary half space. Given a collection F of
convex sets in Ed we say F is separated by a set of
hyperplanes H if every pair of elements of F i s
separated by some hyperplane of H. We deal here with
the case that the convex sets are all points. Let f(n,d)
be the minimum number of hyperplanes always
sufficient and occasionally necessary to separate n
points in general position in Ed. We prove that È(n-
1)/d˘ ≤ f(n,d) ≤ È(n-2Èlog(d)˘) / d˘ + Èlog(d)˘. When d i s
even the lower bound can be improved to Èn/d˘. In the
planar case this gives us f(n,2) = Èn/2˘. We prove the
upper bound by presenting an algorithm that generates
a separating family of hyperplanes H that satisfies the
upper bound. In dimension 2 the algorithm has a time
complexity of O(n log(n)). Finally, we show that in
the planar case H can be stored such that retrieving a
line in H that separates a given pair of points from P
can be found in O(1) expected time and worst case time
of O(log2(n)).

Keywords: Algorithms, combinatorial problems,
computational geometry, information retrieval, point
sets, separability

1 Introduction

Let Ed represent the d-dimensional Euclidean vector
space. Given two disjoint convex sets A and B in Ed,
a hyperplane h in Ed separates them if A lies on one of
the half spaces defined by h while B lies on the
complementary half space. Given a collection F of
convex sets in Ed, we say F is separated by a set of
hyperplanes H if, for each possible pair of elements of F,
there is a hyperplane of H that separates them.

1 School of Computer Science, Carleton University, Ottawa Ontario Canada.

2 Department of Computer Science, University of Ottawa, Ottawa Ontario
Canada.

There are many results in the literature concerning the
separability of convex sets [1],[2],[3],[4],[6], and [11]. For
instance , it is known that any family of n disjoint plane
convex sets can always be separated with at most 3n-6
lines. In this paper we deal with the separability of point
sets in general position in Ed. For any two points a,b Œ
Ed, we denote the open line segment joining them
seg(a,b) and the closed line segment joining them
seg[a,b]. We say that a set of points P in Ed is
separated by a set of hyperplanes H in Ed if for every
pair of points a,b Œ P, there is a hyperplane h of H
not containing a or b that intersects seg(a,b). We
further say that h separates a from b. See Figure 1.
We say that the points of P are in general position in Ed

if no d + 1 points of P are in the same hyperplane in
Ed. This restriction is important since if the elements of P
can be located arbitrarily then we can trivially show that n
- 1 hyperplanes are needed simply by placing n points in
a straight line. All points sets considered here are assumed
to be in general position.

A set of ten points separated by four lines
Figure 1

Let f(n,d) be the minimum number of hyperplanes
always sufficient and occasionally necessary to separate n
points in Ed where n ≥ d. We show that È(n-1)/d)˘ ≤
f(n,d) ≤ È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘ for d odd and that
Èn/d˘ ≤ f(n,d) ≤ È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘ for d even.
From now on we assume that n ≥ d. Theorem 3 will
show that if n < d then f(n,d) = Èlog(n)˘. The upper
bounds of f(n,d) are determined by construction: we
present algorithms that generate a solution within these
upper bounds. In dimension 2 the algorithm can be made
to run in O(n log(n)) time.

2

For the planar case we can construct a data structure for
storing the lines generated in the above algorithm that
allows us to retrieve a line that separates two given points
in worst case time O(log2(n)) and expected case time
O(1). This data structure is constructed in linear additional
time.

2 Determination of Lower Bounds for
f(n,d)

To determine a lower bound for f(n,d) consider the
moment curve

Md = {(t, t2,..., td) | t Œ R} (1)
and denote the point (t, t2,..., td) by Md(t). Let Yn(d) =
{Md(1), ..., Md(n)} be a set of n points on Md. We
determine how many times a hyperplane can intersect the
moment curve. A hyperplane in Ed can be represented by
an equation of the form:

adxd + ad-1xd-1 + º a1x1 + a0 = 0(2)
Combining (2) and (1) we get the equation

adtd + ad-1td-1 + º a1t1 + a0 = 0 (3)
Equation (3) is a polynomial of degree d and thus has at
most d roots. This proves the following well-known
result. See, for example [7], [8].

Lemma 1. Any hyperplane h in Ed intersects the
moment curve Md in at most d points. If h intersects
Md in exactly d points then h does not intersect Md
tangentially.

Using Lemma 1 we establish lower bounds for f(n,d).

Theorem 2. f(n,d) ≥ È(n-1)/d)˘ for d odd and f(n,d) ≥
Èn/d˘ for d even.

Proof. Consider Yn(d) = {Md(1),..., Md(n)}. Let
M(i,j) be the section of Md between points Md(i) and
Md(j), i < j. Let ei denote seg[Md(i), Md(i+1)] and let
E = {ei | 1 ≤ i < n}. Let H be any set of hyperplanes that
separates Yn(d). Observe that every ei Œ E has to be
crossed by some hyperplane of H.

We determine the maximum number of segments of E
that any hyperplane h Œ H can intersect. Assume h
intersects an element ei of E. Then h separates Md(i)
from Md(i+1). Therefore, since M(i,i+1) is an arc joining
Md(i) and Md(i+1), h intersects M(i,i+1). (Note that
we need not consider that h intersects M(i,i+1) at points
Md(i) or Md(i+1) since h is to separate these points.)
Now, by Lemma 1, h intersects Md at most d times;

therefore h crosses at most d elements of E. Since |E|
= n - 1, we have that f(n,d) ≥ È(n-1)/d)˘.

If d is even then this result can be improved slightly.
We observe that the line segment f = seg[Md(1), Md(n)]
must cross the hyperplane h Œ H that separates Md(1)
from Md(n). If h intersects M(1,n) d times then each
intersection is a crossing of M(1,n) by Lemma 1 and
since d is even Md(1) and Md(n) lie on the same side of
h, contradicting that h separates them. Therefore h
crosses M(1,n) at most d - 1 times. Therefore, when d
is even, f(n,d) ≥ Èn/d˘. ®

3 An Algorithm for Separating Points by
Hyperplanes

We now show that f(n,d) ≤ È(n-2Èlog(d)˘) / d)˘ +
Èlog(d)˘ by constructing an algorithm that separates a point
set P in Ed with È(n - 2Èlog(d)˘) / d)˘ + Èlog(d)˘
hyperplanes. If a set of hyperplanes H partitions P into
t points sets of cardinality În/t˚ or Èn/t˘ then we say that
H t-partitions P. The first step of our algorithm will use
the following result.

Theorem 3. Any set P of n points in Ed can be
2Èlog(d)˘-partitioned using at most Èlog(d)˘ hyperplanes.

This theorem is easily proven by repeated application of
the following theorem [5], [12].

Theorem 4. Let P1,º,Pd be d finite sets of points
on Ed. There exists a hyperplane h that simultaneously
bisects P1,º,Pd.

To explain the rest of our algorithm we will need a
number of definitions and observations. Let P be any set
of points in Ed and H be any set of hyperplanes in Ed.
A cell CL of H is a connected subset of Ed such that,
for any two points a,b Œ CL, seg(ab) does not intersect
any hyperplane of H. We say that a subset C of P is a
cluster of H if C is contained in a cell CL determined
by some subset of H while P - C is contained in the
complement of CL. See figure 2. A partitioning S =
{P1,º,Pk} of P into disjoint subsets such that each Pi
Œ P is a cluster of H is called a cluster set of (P,H).
Note that if all the elements of S are singletons, then H
separates P. We say that C is separated if |C| = 1 and
crowded if |C| ≥ 2. See figure 2.

3

C3

C

C

C1

2

4

2
L

1L

3L

4L
A possible cluster set for a set of fourteen points P and four

lines H = {L1,L2,L3, L4}. C1 is a cluster of (P,H) determined
by {L1,L4}.

Figure 2.

Given a cluster set Si of (P,H) we say that a
hyperplane h (not in H) refines Si if there is a set of
crowded clusters C = {C1,º,Ck}, k ≥ 1, of Si such that
h splits each element Ci of C into two smaller non-
empty clusters Ci1, Ci2. We then say that h is a refine
of Si and denote by Si+1 = (Si - C) »
{C1,1,C1,2,º,Ck,1,Ck,2}. Note that Si+1 is now a cluster
set of (P, H » {h}). Note also that C does not
necessarily contain every cluster of S i that can be split by
h.

The ability to do refines, where as many as d clusters
are split simultaneously, in dimension d is key to our
point separation algorithm so we develop an algorithm that
does this first. We observe that for any set of 2k points
in Ed, k ≤ d, grouped into k pairs S = {si | 1 ≤ i ≤ k}
in Ed, there exists a hyperplane h that simultaneously
intersects the interior of each of the k line segments
determined by each pair of S. It is easy to show that such
a hyperplane can be found in time O(d3), i.e., in constant
time for any fixed d. An example, when k = d, is the
hyperplane determined by the midpoints of these line
segments or a small perturbation of it. See Figure 3 (b,c).
This observation gives us a simple algorithm for carrying
out a refine, that splits k clusters, k ≤ d, in Ed.

Algorithm Refine
Input: A cluster set Sj of a point set P in Ed, and

k clusters {C1 º Ck} of Sj, 1 ≤ k ≤ d, |Ci| ≥ 2,
1 ≤ i ≤ k.

Output: 1) A cluster set Sj+1 that results from a
refine of Sj in which each Ci, 1 ≤ i ≤ k,
is split into two clusters by a hyperplane h and
 2) Hyperplane h.

1) For each Ci, 1 ≤ i ≤ k, select any two points pi1,
pi2 Œ Ci.

2) h := the hyperplane determined by the midpoints of
seg(pi1, pi2), 1 ≤ i ≤ k, and d-k arbitrarily chosen
points (or a small perturbation of this hyperplane).

3) For each i, 1 ≤ i ≤ k, partition Ci into two
clusters Ci1 and Ci2 according to which side of
h each point of Ci is on.

4) Return((Sj+1 := Sj - {Ci, 1 ≤ i ≤ k} » {Ci j, 1 ≤ i
≤ k, 1 ≤ j ≤ 2}), h).

Our separation algorithm is also based on the following
simple but important observation.

Observation 5. Let S0 = {P} be a cluster set of a
point set P and H = {h1,h2 ,º , hn-1} be a family of
hyperplanes such that hi is a refine of Si, i = 1, º n-1
that splits only one cluster Ci of Si. Then H separates P.

Theorem 3, algorithm k-refine, and observation 5 are
the tools we need to write our point separation algorithm.

Algorithm Separate.
Input: A point set P in general position in Ed.
Output: A set of hyperplanes H that separates P.
1) Hinit := {h1 º hÈlog(d)˘} where {h1 º hÈlog(d)˘} is

a set of hyperplanes that 2Èlog(d)˘-partitions P into
initial clusters Ci, 0 ≤ i < 2Èlog(d)˘ labeled such
that |Ci| ≥ |Ci+1|, 0 ≤ i < 2Èlog(d)˘ - 1. The initial
clusters are put in a queue Q such that Ci
precedes Ci+1, 0 ≤ i < 2Èlog(d)˘ - 1 in Q.

2) S0 := {Ci, 0 ≤ i < 2Èlog(d)˘}, H0 := Hinit, k := 1.
3) While there is a crowded cluster Dj, 1 ≤ j ≤ d

contained in each of the first d initial clusters in Q
do
3.1) Use algorithm Refine to find a hyperplane hk

that simultaneously splits Dj, 1 ≤ j ≤ d and
then split them.

3.2) Sk = Sk-1 - {Dj, 1 ≤ j ≤ d} » {the new clusters
created by the Refine}

3.3) Move the first d clusters in Q to the back of
Q, maintaining their relative order.

3.4) Hk := Hk-1 » hk, k := k + 1.
4) If there are m crowded clusters Dj, 1 ≤ j ≤ m,

remaining, then split each of them into two clusters
using Refine. Hk := Hk-1 » hk where hk is the
hyperplane produced by this Refine.

4

5) return H. See figure 3.

(a) (b)

(c) (d)
The sequence of the first three 2-splits ((a), (b), and (c))

of P and the final separating set of lines of P (d).
Figure 3

Theorem 6. Algorithm Separate separates a set of n
points P in Ed by a set of hyperplanes H where |H| =
È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘.

Proof. After Step 1 any set of hyperplanes H' that
separates Ci, 0 ≤ i < 2Èlog(d)˘, together with Hinit
separates P. Let Ci,k, 0 ≤ i < 2Èlog(d)˘, denote the
cluster set determined by cluster Ci and the refines that
have been applied to subclusters of Ci by the first k
hyperplanes produced in Separate after Step 1. Note that
if the kth hyperplane does not split a subcluster of Ci
then Ci,k = Ci, k-1. Let R(X) denote the number of
refines used to separate cluster set X. By observation 5
R({Ci,0}) = |Ci|-1, 0 ≤ i < 2Èlog(d)˘ and thus

R(S0) = Â2È log(d)˘ -1

#i#=#0 | Ci|-1) = n - 2Èlog(d)˘.

Therefore S0 can be separated with È(n-2Èlog(d)˘) / d)˘
hyperplanes if each hyperplane hk, 1 ≤ k ≤ È(n-2Èlog(d)˘) /
d)˘, except possibly the last, is produced by a refine
which splits d clusters of Sk-1. This is accomplished by
Separate since | R({Ci,k}) - R({Cj,k}) | ≤ 1, 0 ≤ i,j <
2Èlog(d)˘ after Step 1 (when k=0) and this equation
remains invariant as hyperplanes are added by Separate.
Thus the total number of hyperplanes produced by Separate
is È(n-2Èlog(d)˘) / d)˘ + Èlog(d)˘. ®

Theorem 7. Not including Step 1 Algorithm
Separate runs in time O(n2) in the worst case and O(n
log(n)) in the expected case.

Proof . We only need to prove that after Step 1
Separate subdivides the clusters of P into smaller
subclusters (until one point clusters are obtained) in a way
equivalent to that of a version of Quicksort and thus has
the same run time behavior.

To do this we choose a version of Partition that
determines a value x to use to partition a subcollection N
by randomly selecting two values a,b Œ N, a ≤ b, and
choosing x such that a ≤ x ≤ b. Of the values a,b let y
be the one which is the furthest from the median of N. It
is easily shown that Partition has expected worst case
performance when x = y but that even with this bad choice
for x the O(n log(n)) expected run time behavior of
Quicksort is unchanged. We also note that the analysis of
Quicksort is independent of the distribution of the values
being sorted.

Now let C be any cluster of P generated during the
execution of Separate, |C| ≥ 2. Since |C| ≥ 2, C must
be split into two smaller subclusters of P (during an
execution of Step 3.1 of Separate) using a hyperplane
hk.

Without loss of generality assume that hk is chosen by
having Refine first select a set T of d - 1 points, not in
C, that are in general position with respect to the points in
C. T may be chosen by an 'adversary to the algorithm'
who wishes the algorithm to perform as slowly as possible.
However the adversary must do so without knowledge of
the next step. In the next step the algorithm determines a
line segment s whose endpoints are two points selected at
random from C. The algorithm now selects any point sp
on line segment s. The adversary is free to make as bad a
choice for sp as possible. Now, sp together with the
points in T determine hk.

For each point q in Ed we associate a value w(q,hk)
which is the angle between the hyperplane hk and the
hyperplane determined by T » {q}. Let C(hk) be the set
of values determined by applying w(p,hk) to each point p
in cluster C. Since the values C(hk) are totally ordered
they can be partitioned by algorithm Partition. Let pi, pj
be the endpoints of s such that w(pi, hk) ≤ w(sh, hk)
≤ w(pj, hk) in this total ordering. We can assume that
Partition partitions C(hk) using the value w(sp, hk)
since:

1) Choosing pi, pj randomly from C corresponds to
choosing w(pi, h), w(pj, h) randomly from C(hk).

5

That is, for every random pair pi, pj Œ C there exists
exactly one corresponding pair w(pi, hk), w(pj, hk)
Œ C(hk). and

2) sp, on average, must be at least as good a choice as
the choice with worst case expected behavior of the
points on s (which is pi or pj).

Thus Partition partitions C(hk) into two parts C1(hk)
and C2(hk) where C1, C2 are the two clusters produced
by splitting C with hk during the execution of Step 3.1
of Separate. Therefore Separate separates point sets at
least as well as Quicksort sorts collections. ®

Let P1,º,Pk be disjoint point sets in Rd, k ≤ d. By
Theorem 4, it is possible to find a hyperplane h that
simultaneously bisects P1,º,Pk. In R2 and R3 this
process can be carried out in linear time [9],[10] while in
Rd, d ≥ 4 it can be carried out in time O(nd-1-a(d)) where
a(d) Æ 0 as d goes to infinity [9].

Using the algorithms in [9],[10] in Step 1 and in
Step 3.1 of Separate (instead of Refine) gives us an
O(n log(n)) run time performance for Separate in R2 and
R3 while for dimension d, d ≥ 4 we get a run time
complexity of O(nd-1-a(d)log(n)) where a(d) Æ 0 as d
goes to infinity. We call the version of Separate in which
these changes have been made Bisect-Separate.

4 A Data Structure for Retrieval of
Separating Lines

Now consider that Bisect-Separate has separated a set P
of n points with a set of hyperplanes (or lines) H. We
are then asked: given any two points a,b Œ P, find a
hyperplane of H that separates a,b. We now discuss data
structures for storing the hyperplanes of H so that this
query can be done efficiently. It is clear from the results in
[4] and [9] that in the general case a query can be done in
O(log(n)) time. We deal here only with the planar case and
show that in linear time we can construct a data structure
that allows a line that separates a,b to be retrieved in
worst case time O(log2(n)) and expected time O(1). In
both cases a linear amount of space is needed for the data
structures.

Let P = {p1,p2,º, pn} be a set of n points on the plane
and H be a set of lines (produced during the execution of
algorithm Bisect-Separate) that separates P. We will
decompose the plane into n regions each bounded by a
convex polygon or a convex chain constructed from
portions of the lines of H in such a way that each region
contains exactly one point of P. For any point pi Œ P

we denote the region containing it R(pi) and denote the
number of edges composing the boundary of R(pi) as
|R(pi)|. The regions will be constructed such that MAX(
|R(pi)|, 1 ≤ i ≤ n) ≤ log(n) and such that Â# i = 0

n |R(pi)| <
4n.

We can now find a separating line between any two
points a,b Œ P. It is easily shown that one of the edges of
the convex polygons or convex chains R(a),R(b) separate
a from b [4]. It is also well-known that this edge can be
found in time O(log(MAX(|R(a)|,|R(b)|)). This in turn
leads to our claimed results.

We construct our regions using a sequence of
refinements, one for each line that is added to H by
Bisect-Separate. Observe that each cluster C of (P,H)
has a cell associated with it; that determined by the subset
of H which determined C. We refer to that polygon or
convex chain as CL(C). Initially we have one region
namely CL(P). Each time Bisect-Separate refines a cluster
C with a line l , C is split into two clusters C1,C2.
Our additional step at this time is to split CL(C) into two
new (possibly open) polygons CL(C1) and CL(C2) using
line l. Clearly |CL(C)| + 4 ≥ |CL(C1)| + |CL(C2)|.
Since n-1 refines of clusters are applied by Bisect-Separate
to separate P, the number of edges needed to construct
CL(pi) = R(pi) for every separated point pi Œ P is less
than 4n. See Figure 4.

To construct the boundaries in time O(n) we maintain
each boundary as a circular linked list of lines (each line can
be thought of as an edge). Initially there are only two
boundaries with each containing the initial line used to
bisect P. For each cluster that is refined, we search its
boundary for the edge intersection(s) with the line that is
splitting the cluster, split the boundary into two new parts,
and construct the new boundaries. In the worst case this
cost is O(k) where k is the number of edges on the
boundary being split. For simplicity we assume that |P| =
n is a power of two. If not we can always add sufficient
points to P until this is so. Let G(n,k) be the set of
clusters produced after each point p of P has participated
in k refines. Then |G(n,k)| = 2k since each refine
corresponds to a bisection of the point set containing p.
Let g(n,k) be the total number of edges in all the
boundaries of the clusters of G(n,k). Then g(n,k) ≤
g(n,k-1) + 4 * 2k since at most four new edges are added to
cluster boundaries when a cluster is split and there are
|G(n,k-1)| = 2k-1 clusters to split in constructing G(n,k)
from G(n,k-1). From this recurrence relation we determine
that g(n,k) < 2k+2. Let m be the total number of
boundary edges to be processed during Bisect-Separate.

6

Then
 m < Â# È log(n)˘

#i#=#0 g(n,i)) = Â# È log(n)˘
#i#=#0 2i+2 < 8n.

Therefore the boundaries of regions for all points in P is
constructed in amortized time O(n).

The polygons corresponding to each cluster after the addition
of separating lines. The points and lines are as in Figure 3.

Figure 4

5 Conclusion and Open Problems

We have determined bounds on the number of
hyperplanes always sufficient and occasionally necessary to
separate n points in general position in Ed. For
dimension two these bounds are tight. For higher
dimensions the bounds are different only by a value
logarithmic in the dimension. We proved the upper bound
by presenting an algorithm that constructs a separating set
of hyperplanes H for a given point set P satisfying the
upper bound. Except for step 1, the algorithm is simple
and efficient.

We also showed that in R2 and R3 that the time
complexity of this algorithm can be reduced to O(n log(n)).
In the planar case we also presented a data structure for
storing H such that a line of H separating any two given
points a,b Œ P can be found in expected time O(1) and
worst case time O(log2(n)).

We conjecture that the problem of separating points in
E2 is W(n log(n)). However we have not been able to
prove it.

References
[1] N. Alon, M. Katchalski, and W.R. Pulleyblank.

"Cutting disjoint disks by straight lines", Discrete
Comput. Geom. 4 (1989), 239-243.

[2] Avis, D. "On the partitionability of point sets in
space". Proceedings of the 1st A.C.M. Symposium on
Computational Geometry. 1985, 116-120.

[3] Avis, D. "Non-Partitionable Point Sets" Information
Processing Letters 19 (1984) 125-129

[4] Boland, R. Separating Convex Sets. Masters Thesis
Carleton University Ottawa, Ontario, Canada. 1992.

[5] Borsuk, K. "Drei Sätze uber die n-dimensionale
euklidische Sphare". Fund. Math. 20 (1933).

[6] Rivera-Campo, E., Czyzowicz, J., Urrutia, J., and
Zaks, J. "Separating Convex Sets On the Plane".
Discrete Comput. Geom., To appear.

[7] Gale, D. "Neighborly and Cyclic Polytopes" Proc.
Synp. Pure Math. 7 (Convexity), p 225-232.

[8] Grünbaum, B. "Convex Polytopes", J. Wy;ey & Sons,
London, New York, Sydney, 1967.

[9] Lo, C.Y., Matousek, J., and Steiger, W. "Ham
Sandwich Cuts in Rd ". Proceedings of the 24th Annual
A.C.M. Symposium on Theory of Computing. (1992)

[10] Megiddo, N. "Partitioning with two lines in the plane".
Journal of Algorithms 3 (1985) 430-433.

[11] Tverberg, H. "A separation property of plane convex
sets", Math. Scand. 45 (1979), 255-260.

[12] Williard, D.E. Polygon retrieval. SIAM Journal o f
Computing. 11 (1982)

