1) Département d'Informatique, Université du Québec à Hull, Hull, Québec, Canada.
2) Departamento de Matemáticas, Universidad Autonóma Metropolitana-I, México D.F., México.
3) Department of Computer Science, University of Ottawa, Ottawa, Ontario, Canada.
4) Department of Mathematics, University of Haifa, Haifa, Israel.

1. Introduction.

Given a collection F of convex sets, an element $\mathrm{A} \square \mathrm{F}$ and a subcollection S of F ; we say that a line L separates A from S if A is contained in one of the closed halfplanes defined by L, while every set in S is contained in the complementary closed halfplane.

In [4], H. Tverberg proves that for any positive integer k, there is a minimum integer $\mathrm{N}=\mathrm{N}(\mathrm{k})$ such that in any family F of N disjoint convex plane sets, there is one that can be separated from a subfamily of F with at least k sets; he shows that $N(k)$ is bounded from above by $R(k)+k-1$, where $R(k)$ is a Ramsey number. In this article we prove that $N(k)$ is at most $12 k$.

We also show that for any collection F of n disjoint circles in R^{2}, there is a line L that separates a circle in F from a subcollection of F with at least $\quad \mathrm{h} / 4 \square \square 1$ circles. We produce configurations H_{n} and G_{n}, with n and $2 n$ circles, respectively; such that no pair of circles in H_{n} can be simultaneously separated from any set with more than one circle of H_{n}; and no circle in G_{n} can be separated from any subset of G_{n} with more than n circles.

In section 4 we present a set J_{m} with $3 m$ line segments in R^{2}, such that no segment in J_{m} can be separated from a subset of J_{m} with more than $\mathrm{m}+1$ elements. This disproves a conjecture by N. Alon, M. Katchalski and W.R. Pulleyblank presented in [1]. Finally, we show that if F is a set of n disjoint line segments in the plane such that they can be extended to be disjoint semilines, then there is a straight line L that separates one of the segments from a subset of F with at least $\quad \square / 3 \square+1$ elements.

2. Separating Convex Sets on the Plane.

In this section we deal with collections of disjoint, but otherwise arbitrary, convex sets on the plane. Our main result is the following.

Theorem 1. For any collection F of n disjoint convex sets on the plane, there is a line L that separates an element $\mathrm{A} \square \mathrm{F}$ from a subcollection of F with at least $\left\lceil\mathbf{h} / 12 \square\right.$ sets . (${ }^{(*)}$)

For the proof of theorem 1 we need two lemmas. The first lemma was proved implicitly in [2] and [5].

Lemma 1. For any family F of n disjoint convex sets on the plane there is a partitioning π of the plane using line segments or semilines $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{k}}$, with $\mathrm{k} \leq 3 n-6$, and such that every element in F lies on a different face of π and every element R_{i} of π lies on the boundary of exactly two faces of π containing elements of F ; see figure 1 .

For any line segment or semiline e, let us denote by $L(e)$ the line containing e. The next lemma is given without a proof. Let $\mathrm{C}(\mathrm{n}, \mathrm{k})$ denote the binomial coefficient.

Lemma 2. Let P and Q be two disjoint convex plane polygons. Then there is an edge e of P or Q such that $\mathrm{L}(\mathrm{e})$ separates P from Q .

Proof of Theorem 1. Let F be a family of n disjoint convex sets and let π be as in lemma 1. For every element $S_{i} \square F$ let P_{i} be the face of π containing S_{i}.

Construct a bipartite graph $G(F, \pi)$ with one vertex $v(m)$ for every line segment R_{m} of π, $\mathrm{m}=1, \ldots, \mathrm{k} \leq 3 \mathrm{n}-6$; and one vertex $\mathrm{s}(\mathrm{i})$ for every set S_{i} in F . A vertex $\mathrm{v}(\mathrm{m})$ is adjacent to a vertex $\mathrm{s}(\mathrm{i})$ if the line $L\left(R_{m}\right)$ does not intersect the interior $\operatorname{int}\left(S_{i}\right)$ of S_{i}.

Let us bound the number of edges in $G(F, \pi)$: consider any pair of elements S_{i}, S_{j} in F, and the polygonal faces P_{i} and P_{j} of π containing them. If P_{i} and P_{j} are disjoint, by Lemma 2, there is an edge R_{m}, say of P_{i} such that $L\left(R_{m}\right)$ separates P_{i} from P_{j}, then $L\left(R_{m}\right)$ does not intersect $\operatorname{Int}\left(P_{j}\right)$ and $v(m)$ is adjacent to $s(j)$ in $G(F, \pi)$. When P_{i} and P_{j} share an edge R_{m} of π then $\mathrm{L}\left(\mathrm{R}_{\mathrm{m}}\right)$ separates S_{i} from S_{j}; in particular $\mathrm{L}\left(\mathrm{R}_{\mathrm{m}}\right)$ does not intersect $\operatorname{Int}\left(\mathrm{P}_{l}\right)$, where $l=\min \{\mathrm{i}, \mathrm{j}\}$, and $\mathrm{v}(\mathrm{m})$ is adjacent to $\mathrm{s}(l)$ in $\mathrm{G}(\mathrm{F}, \pi)$. None of these edges is counted more than once, therefore $\mathrm{G}(\mathrm{F}, \pi)$ contains at least $\mathrm{C}(\mathrm{n}, 2)$ edges.

By Lemma 1, any element R_{m} of π is in the boundary of two faces, say P_{m+} and P_{m-}, of π, containing elements of F denoted by S_{m+} and S_{m-}, respectively. Since π has k segments or semilines, $k \leq 3 n-6$, then there is a vertex $v(m)$ of $G(F, \pi)$ with degree at least $C(n, 2) / k \geq C(n, 2)$ / $3 n-6>n / 6$. This implies that $L\left(R_{m}\right)$ does not intersect at least $\square n / 6 \square$ elements of F. In the worst
case, half of them lie on one side of $L\left(R_{m}\right)$ and the remaining on the opposite side. In any case, $L\left(R_{m}\right)$ separates either S_{m+} or S_{m-} from at least $\square / 12 \square$ elements of F.

Figure 1

3. Separating Circles.

This section is devoted to the case where the convex sets are circles. In [1], N. Alon, M. Katchalski and W.R. Pulleyblank proved that there is a constant $\mathrm{c}>0$ such that for any family F
 closed half semiplane defined by L . When the circles are allowed to have arbitrary radii the situation is entirely different.

We describe now a configuration H_{n} of n circles in which no pair C_{i}, C_{j} of circles in H_{n} can be simultaneously separated by one line L from any other pair $\mathrm{C}_{\mathrm{k}}, \mathrm{C}_{l}$ in H_{n}. Let $\mathrm{S}_{1}>\mathrm{S}_{2}>\ldots>$ S_{n} be n different slopes such that $0 \leq S_{i} \leq \square$ with \square small enough. Let H_{n} consist of n circles defined recursively as follows:
a) C_{1} is any circle in R^{2}.
b) $\mathrm{C}_{\mathrm{i}+1}$ is a circle tangent to C_{i} such that the slope of the line that separates them is S_{i}.
c) $\mathrm{C}_{\mathrm{i}+1}$ is large enough such that any line L separating C_{j} from $\mathrm{C}_{\mathrm{i}+1}, 1 \leq \mathrm{j}<\mathrm{i}+1$ has slope $\mathrm{s}(\mathrm{L})$ contained in the interval $\left(\mathrm{S}_{\mathrm{i}}-\square, \mathrm{S}_{\mathrm{i}}+\square\right), \square>0$, \square much smaller than \square Observe that $\mathrm{s}(\mathrm{L})$ is contained in the interval $(-\square \square+\square)$ since $0 \leq S_{i} \leq \square$.

Moreover, if \square is small enough, $\mathrm{C}_{\mathrm{i}+1}$ can be chosen such that:
d) Any line separating C_{j} from $C_{i}, 1 \leq j<i$, intersects C_{i+1}.

It follows that there are no different pairs of circles $\left\{\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}\right\}$ and $\left\{\mathrm{C}_{\mathrm{k}}, \mathrm{C}_{l}\right\}$ in H_{n}, such that there is a line separating $\left\{\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}\right\}$ from $\left\{\mathrm{C}_{\mathrm{k}}, \mathrm{C}_{l}\right\}$. For let us assume that i is the smallest of $\mathrm{i}, \mathrm{j}, \mathrm{k}$
and l and that $\mathrm{k}<l$. It now follows from (d) that any line separating C_{i} from C_{k} must intersect C_{l}. Notice that in $\mathrm{H}_{\mathrm{n}}, \mathrm{C}_{\mathrm{i}}$ can be separated from $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{i}-1}, \mathrm{i}=1, \ldots, \mathrm{k}$, and that C_{i} can not be separated from any pair $\mathrm{C}_{\mathrm{k}}, \mathrm{C}_{l}, \mathrm{i}<\mathrm{k}<l$.

For any family of disjoint plane circles we have the following theorem.

Theorem 2. In any family F of n disjoint circles, there is one that can be separated from a subfamily of F with at least $\lceil/ 4 \square-1$ circles.

The following lemma will be used in the proof; the reader may wish to verify it.

Lemma 3. Let $C_{1}{ }^{\prime}, \ldots . C_{m}$ be m disjoint circles not containing the origin. Assume all of them intersect the x and y -axes and all of their centers are in the same quadrant, say the positive quadrant. If they intersect the axes in increasing order $C_{1}{ }^{\prime}, C_{2}{ }^{\prime}, \ldots, C_{m}{ }^{\prime}$, then any line separating C_{m} from C_{m-} 1^{\prime} also separates C_{m} ' from each Cj^{\prime}, with $1 \leq \mathrm{j}<\mathrm{m}$.

Proof of theorem 2. Start by sweeping a line L_{1}, from left to right and parallel to the y -axis, until one circle of F, say C_{1}, is left to the left of L_{1}. Then sweep a line L_{2}, from bottom to top and parallel to the x-axis, until one circle, say C_{2}, is left below L_{2}.

If there are at least $n_{1} \geq\left\lceil 1 / 4 \square-1\right.$ circles to the right of L_{1} or $n_{2} \geq\left\lceil n / 4 \square-1\right.$ circles above L_{2}, the result holds. Suppose then that n_{1} and n_{2} are both smaller than $\lceil\mathrm{n} / 4 \square-1$. Then there is a subset H of F with $n-\left(n_{1}+n_{2}+2\right)$ circles that intersect both of L_{1} and L_{2}, and at most one of them, say C_{3}, contains the intersection point of L_{1} and L_{2}.

Consider L_{1} and L_{2} as the coordinate axes, and divide $\mathrm{H} \backslash\left\{\mathrm{C}_{3}\right\}$ into four subsets as follows: each one of the four quadrants q_{i} of the plane defines a subset S_{i} of $\mathrm{H} \backslash\left\{\mathrm{C}_{3}\right\}$ consisting of all of the elements of $\mathrm{H} \backslash\left\{\mathrm{C}_{3}\right\}$ with center in $\mathrm{q}_{\mathrm{i}}, \mathrm{i}=1, . .4$. Suppose, without loss of generality, that the union of the subsets $S_{1}=\left\{C_{1}{ }^{\prime}, \ldots, C_{j} '\right\}$ and $S_{2}=\left\{C_{1}{ }^{\prime \prime}, \ldots, C_{k}{ }^{\prime \prime}\right\}$, corresponding to the first and second quadrants contain at least half of the elements of $\mathrm{H} \backslash\left\{\mathrm{C}_{3}\right\}$. Assume that the elements of S_{1} and the elements in S_{2} intersect the y-axis in increasing order $C_{1}{ }^{\prime}, C_{2}^{\prime}, \ldots, C_{j}^{\prime}$ and $C_{1}{ }^{\prime \prime}, C_{2}{ }^{\prime \prime}, \ldots, C_{k}{ }^{\prime \prime}$, respectively. Let M_{1} be any line separating C_{j} from $\mathrm{C}_{\mathrm{j}-1}{ }^{\prime}$ and M_{2} be any line separating $\mathrm{C}_{\mathrm{k}}{ }^{\prime \prime}$ from $\mathrm{C}_{\mathrm{k}-1}{ }^{\prime \prime}$. By observation $1, \mathrm{M}_{1}$ separates $\mathrm{C}_{\mathrm{j}}^{\prime}$ from $\mathrm{S}_{1} \backslash\left\{\mathrm{C}_{\mathrm{j}}\right.$ \} and M_{2} separates $\mathrm{C}_{\mathrm{k}}{ }^{\prime \prime}$ from
$\mathrm{S}_{1} \backslash\left\{\mathrm{C}_{\mathrm{k}}{ }^{\prime \prime}\right\}$. It is easy to verify that either M_{1} separates $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$ from $\left(\mathrm{S}_{1} \backslash\left\{\mathrm{C}_{\mathrm{j}}{ }^{\prime}\right\}\right) \square\left(\mathrm{S}_{2} \backslash\left\{\mathrm{C}_{\mathrm{k}}\right.\right.$ "\}) or M_{2} separates C_{k} " from $\left(\mathrm{S}_{1} \backslash\left\{\mathrm{C}_{\mathrm{j}}^{\prime}\right\}\right) \square\left(\mathrm{S}_{2} \backslash\left\{\mathrm{C}_{\mathrm{k}} "\right\}\right)$ and that $\square\left(\mathrm{S}_{1} \backslash\left\{\mathrm{C}_{\mathrm{j}}{ }^{\prime}\right\}\right) \square\left(\mathrm{S}_{2} \backslash\left\{\mathrm{C}_{\mathrm{k}} "\right\}\right) \square \geq \square / 4 \square 1$.

We now construct a family G_{n} of $2 n$ circles in which no circle in it can be separated from more that n circles in G_{n}. To construct the family G_{n} let us take a copy $H_{n}{ }^{\prime}=\left\{C_{1}{ }^{\prime}, C_{2}{ }^{\prime}, \ldots, C_{n}{ }^{\prime}\right\}$ of the configuration H_{n} as follows: reflect H_{n} along the x -axis and translate it in the north-west direction until all the lines separating C_{i} from C_{j} intersect only $\mathrm{C}_{\mathrm{n}}{ }^{\prime}$ in $\mathrm{H}_{\mathrm{n}}{ }^{\prime}$ and all lines separating $\mathrm{C}_{\mathrm{i}}{ }^{\prime}$ from $\mathrm{C}_{\mathrm{j}}{ }^{\prime}$ intersect only C_{n} in H_{n}, see figure 2 .

Figure 2

Any line separating two elements $\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}$ in H_{n} leaves at most $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{i}}$ on one side and $\mathrm{C}_{1}{ }^{\prime}, \ldots, \mathrm{C}_{\mathrm{n}-1}{ }^{\prime}$ on the other; similarly for any line separating two elements in $\mathrm{H}_{\mathrm{n}}{ }^{\prime}$. Then G_{n} is a configuration with $2 n$ circles and none of them can be separated from any set of circles in G_{n} with more than n circles.

4. Separating Line Segments.

In [1], the following conjecture is presented: for any collection F of n disjoint line segments on the plane, there is an element S of F that can be separated from close to $n / 2$ elements of F . In this section we disprove the conjecture by producing a family J_{m} of 3 m line segments such that no element of J_{m} can be separated from more than $m+1$ elements of J_{m}.

To describe J_{m} we use a configuration due to K.P. Villanger, see [4]. He constructs a family T of m line segments $L_{1}, L_{2}, \ldots, L_{m}$ with the property that for each $k=3, \ldots, m ; L_{k}$
intersects the convex closure of $\mathrm{L}_{\mathrm{i}} \square \mathrm{L}_{\mathrm{j}}, 1 \leq \mathrm{i}<\mathrm{j}<\mathrm{k}$ and therefore L_{k} cannot be separated by a line from $\left\{\mathrm{L}_{\mathrm{i}}, \mathrm{L}_{\mathrm{j}}\right\}$, see figure 3 .

Figure 3

His construction may be reproduced in such a way that $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots, \mathrm{~L}_{\mathrm{m}}$ have slopes $0=\mathrm{S}\left(\mathrm{L}_{1}\right)<\mathrm{S}\left(\mathrm{L}_{2}\right)<\ldots<\mathrm{S}\left(\mathrm{L}_{\mathrm{m}}\right)=\square<\pi / 2$, respectively; and such that for $\mathrm{i}=1,2 \ldots, \mathrm{~m}$, the left endpoint of L_{i+1} lies in an interior point of L_{i} within distance \square of the left endpoint of L_{1}.

Our example is a set J_{m} of 3 m line segments consisting of three copies $\mathrm{T}_{0}=\left\{\mathrm{L}_{0,1}, \ldots, \mathrm{~L}_{0, k}\right\}$, $\mathrm{T}_{1}=\left\{\mathrm{L}_{1,1}, \ldots, \mathrm{~L}_{1, \mathrm{k}}\right\}$ and $\mathrm{T}_{2}=\left\{\mathrm{L}_{2,1}, \ldots, \mathrm{~L}_{2, \mathrm{k}}\right\}$ of T placed around a triangle Q with vertices $\mathrm{v}_{0}, \mathrm{v}_{1}$, v_{2}. The values of \square and \square are chosen in such a way that any element of T_{i}, when extended to be a whole line, intersects all the elements of $\mathrm{T}_{\mathrm{i}+1}$; addition taken $\bmod 2$.

Theorem 3. There is no element in J_{m} that can be separated from more than $\mathrm{m}+1$ elements in J_{m}.

Proof. No element of T_{i} can be simultaneously separated by a single line from two elements of J_{m}, one in $\mathrm{T}_{\mathrm{i}+1}$ and the other in $\mathrm{T}_{\mathrm{i}+2}$; addition taken mod 2. The result follows from the properties of T.

Let us consider the case where the segments in F can be extended to semilines so that they remain pairwise disjoint.

Theorem 4. Let $\mathrm{F}=\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{n}}\right\}$ be a family of n disjoint line segments, $\mathrm{n} \geq 4$. If they can be extended to form a collection of disjoint semilines, then there is a line L that separates an element L_{i} of F from a subset of F with at least $[\eta / 3 \square+1$ elements.

Proof. If there is an element L_{i} of F that can be extended to a whole line without intersecting any other element of F , then L_{i} can be separated from a subfamily of F with at least $\quad[\mathrm{n}-1) / 2 \square$ elements of F . Suppose then that the line containing each L_{i} intersects at least another element L_{i} of F . Extend the elements of F as much as possible until a family $F^{\prime}=\left\{L^{\prime} 1, \ldots, L_{n}^{\prime}\right\}$ of semilines is obtained such that:

1) The end point of every element of F^{\prime} lies on an interior point of another element of F^{\prime}.
2) No two elements of F^{\prime} cross each other.

We say that L_{i}^{\prime} hits L_{j}^{\prime} if the end point of L_{i}^{\prime} lies on L_{j}^{\prime}. It is easy to see that in F^{\prime} there is a cyclic sequence of elements, say $L^{\prime} 1, \ldots, L^{\prime} j, j \leq n$ such that L_{i+1}^{\prime} hits $L_{i}^{\prime}, i=1, \ldots, j-1$, and L_{1}^{\prime} hits L_{j}^{\prime}.

For the case when $\mathrm{j}=\mathrm{n}$ we can easily show that there is an element of F separable from a set with at least $\quad \mathrm{n} / 2 \square$ elements of F; in the remainder of this section we will assume that $\mathrm{j}<\mathrm{n}$.

For every $\mathrm{i}=2, \ldots, \mathrm{j}$ let S_{i} be the subset of F^{\prime} consisting of L_{i} together with all the elements of F^{\prime} contained in the region bounded by $\mathrm{L}_{\mathrm{i}}^{\prime}$ and $\mathrm{L}_{\mathrm{i}-1}$, and let S_{1} be the subset of L^{\prime} consisting of L_{1}^{\prime} and all elements of F^{\prime} contained in the region bounded by L_{1}^{\prime} and L_{j}^{\prime}. Let i be the smallest index such that the line L containing L_{1} intersects $\mathrm{L}^{\prime} \mathrm{i}$. Then it is easy to see that the set $\mathrm{A}=$ $S_{2} \square \ldots \square S_{i-1}$ is separable from L_{1}. It is also easy to see that $B=S_{i}$ is separable from L_{i-1} and that $C=S_{i+1} \square \ldots \square S_{j} \square S_{1}$ may be separated from L_{i}.

However, since $A \square B \square C=F^{\prime}$, at least one of them has $\square n / 3 \square$ elements; moreover if not all their cardinalities are the same, then at least one of them has $\lceil/ 3 \square+1$ elements and the result is proved. Assume then that A, B and C have the same cardinality. Since $j<n$, then at least one of the sets S_{i}, without loss of generality say S_{1}, contains more than one element $L_{a}^{\prime} \square S_{1}, L_{a}^{\prime} \neq L_{1}{ }_{1}$. It is now easy to see that L_{a} is separable from $\mathrm{A} \square\left\{\mathrm{L}_{1}\right\}$.

The segments in the example J_{m} may be extended to semilines in such a way that they remain pairwise disjoint. This shows that the bound in theorem 4 is tight.

4. Triangles and Rectangles

Similar results to the ones presented here for families of rectangles, triangles, etc. can also be obtained. We list some results that are easy to obtain using sweeping line arguments. No proofs will br given.

Theorem 4. In any family of n isothetic rectangles, it is always possible to separate one rectangle from $\square \mathrm{Zn} / 3 \square 1$. Moreover, in this case we can always separate $\square \mathrm{h} / 4 \square$ rectangles from $\square \mathrm{h} / 4 \square$ These bounds are tight.

Theorem 5. Given any family of n disjoint homotetic triangles, there is one that can be separated from at least $3 \mathrm{n} / 5 \pm \mathrm{c}$ triangles. There are some families with 3 m triangles in which we cannot separate any triangle from more than 2 m triangles.

5. Conclusions

We believe that the lower bound of $\square / 12 \square$ sets given in theorem 1 is far from optimal; the best upper bound we know is $\left\lceil n / 3 \square+1\right.$, given by the example J_{n} in the previous section. For the case of circles we think that the $\lceil\mathrm{h} / 4 \square \square 1$ lower bound given in theorem 2 should be improved to something close to $n / 2$. We believe that in any family F of n disjoint line segments there is one that can be separated from considerably more than $\lceil(n-1) / 4 \square$ perhaps from close to $n / 3$ segments. The lower bound in Theorem 5 for homothetic triangles is not tight, we believe that the correct lower bound is close to $2 n / 3$.
(**) Theorem 1 was independently proved by K. Hope and M. Katchalsky [3]

References

[1] N. Alon, M. Katchalski, and W.R. Pulleyblank. "Cutting disjoint disks by straight lines", Discrete Comput. Geom. 4 (1989), 239-243.
[2] H. Edelsbrunner, A.D. Robin and X. Shen."Covering convex sets with non-overlapping polygons", Report no.UIUCDCS-R-87-1364. Aug. 1987.
[3] K. Hope and M. Katchalski. "Separating plane convex sets", to appear in Math Scand.
[4] H. Tverberg. "A separation property of plane convex sets", Math. Scand. 45 (1979), 255-260.
[5] J. Urrutia and J. Zaks, "Illuminating convex sets", Technical Report TR-89-31. Department of Computer Science, University of Ottawa.

