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1. Introduction.
Given a collection  F  of  convex sets,  an element  AŒF  and a subcollection  S  of  F;  we say

that  a line  L  separates  A  from  S  if  A  is contained in one of the closed halfplanes defined by  L,
while every set in  S  is contained in the complementary closed halfplane.

In [4],  H. Tverberg proves that for any positive integer  k,  there is a minimum integer  N=N(k)
such that in any family  F  of  N  disjoint convex plane sets,  there is one that can be separated from a
subfamily of  F  with at least    k  sets;  he shows that  N(k)  is bounded from above by  R(k) + k - 1,
where  R(k)  is  a  Ramsey number.  In this article we prove that  N(k)  is at most  12k.

We also show that for any collection  F  of n  disjoint circles in  R2,   there is a line  L that
separates a circle in  F  from a subcollection of  F  with at least   Èn/4˘ - 1  circles. We produce
configurations  Hn  and  Gn,  with  n  and  2n  circles,  respectively;  such that no pair of circles in Hn
can be simultaneously separated from any set with more than one circle of  Hn ;  and no circle in  Gn  
can be separated from any subset  of  Gn  with more than n circles.

In section 4 we present a set   Jm  with  3m  line segments in  R2,  such that no segment in Jm
can be separated from a subset of  Jm  with more than  m+1  elements. This disproves a conjecture by

N. Alon, M. Katchalski and W.R. Pulleyblank presented in [1]. Finally, we show that if  F is a set of n
disjoint line segments in the plane such that they can be extended to be disjoint  semilines,  then there is
a straight line  L  that separates one of the segments from a subset of F with at least   Èn/3˘ +1
elements.  
 
2. Separating Convex Sets on the Plane.  

In this section we deal with collections of disjoint, but otherwise arbitrary,  convex sets on the
plane. Our main result is the following.
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Theorem 1. For any  collection  F of  n  disjoint convex sets on the plane,  there is a  line  L  that

separates an element  AŒF  from  a subcollection of  F  with at least   Èn/12˘  sets . (**)

For the proof of theorem 1 we need two lemmas. The first lemma was proved implicitly in [2] and
[5].

Lemma 1.  For any family  F  of  n  disjoint convex sets on the plane there is a partitioning  π  of
the plane using  line segments or semilines   R1,...,Rk ,  with  k≤3n-6,  and such that every element in  F  

lies on a different face of  π  and every element   Ri   of  π  lies on the boundary of exactly two faces of

π  containing elements of  F;   see figure 1. ®

     

For any  line segment  or  semiline  e,   let us denote by   L(e)  the line containing  e.  The next
lemma is given without a proof. Let C(n,k) denote the binomial coefficient.

Lemma 2.  Let  P  and  Q  be two disjoint convex plane polygons.  Then there is an edge  e  of  P  or
Q  such that  L(e)  separates  P  from  Q.

       

Proof of Theorem 1.  Let  F be a family of n disjoint convex sets and let  π  be as in lemma 1.  For
every  element  Si Œ F  let  Pi  be the face of  π  containing  Si .  

Construct a bipartite graph  G(F,π)  with one vertex  v(m)  for every line segment  Rm  of  π,

m=1,...,k≤3n-6;  and one vertex  s(i)  for every set  Si in F.  A vertex  v(m)  is adjacent to a vertex  s(i)

if the line  L(Rm)  does not intersect  the interior  int(Si )  of  Si.

Let us bound the number of  edges in  G(F,π):  consider any pair of elements  Si, Sj  in  F,  and

the polygonal faces  Pi  and  Pj  of  π  containing them.  If  Pi  and  Pj  are disjoint,  by Lemma 2,  there

is an edge  Rm,  say of  Pi  such that  L(Rm)  separates  Pi  from  Pj; then  L(Rm)  does not intersect  

Int(Pj )   and  v(m)  is adjacent to   s(j)   in  G(F,π).  When  Pi  and Pj  share an edge  Rm  of  π  then

L(Rm)  separates  Si  from Sj;  in particular  L(Rm)  does not intersect  Int(Pl ), where  l=min{i,j},  and

v(m)  is adjacent to  s(l) in  G(F,π). None of these edges is counted more than once,   therefore  G(F,π)
contains at least  C(n, 2) edges.

By Lemma 1,  any element   Rm  of  π  is in the boundary of two faces,  say  Pm+  and   Pm-,  of

π,  containing elements of  F  denoted by  Sm+  and Sm-,   respectively.  Since  π  has  k  segments or

semilines,   k≤3n-6,  then there is a vertex   v(m)  of  G(F,π)  with degree at least  C(n, 2)/k ≥ C(n, 2)/
3n-6 > n/6.  This implies that  L(Rm)  does not intersect at least  Èn/6˘  elements of  F.  In the worst
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case, half of them  lie on one side of  L(Rm)  and the remaining on the opposite side.  In any case,

L(Rm) separates either  Sm+  or  Sm-   from at least  Èn/12˘  elements of  F. ®    

Figure 1
3. Separating Circles.

This section is devoted to the case where the convex sets are circles. In  [1],  N. Alon,  M.
Katchalski  and W.R. Pulleyblank proved that there is a constant   c>o  such that  for any family  F
with  n  disjoint congruent circles there is a line  L  that leaves at least  k/2 - c√k√log k  circles on each
closed half semiplane defined by  L. When the circles are allowed to have arbitrary radii the situation is
entirely different.

We describe now a configuration  Hn of  n  circles in which no pair  Ci, Cj  of  circles  in  Hn
can be  simultaneously  separated by one line  L  from any other pair  Ck, Cl   in  Hn.  Let  S1> S2>…>

Sn  be  n  different slopes such that   0 ≤ Si ≤ e,  with  e  small enough.  Let  Hn  consist of  n  circles

defined recursively as follows:

a)  C1   is any circle in  R2.

b)  Ci+1  is a circle tangent to  Ci  such that the slope of the line that separates them is  Si.

c)  Ci+1  is large enough such that any line  L  separating  Cj  from  Ci+1,  1 ≤ j < i+1  has slope s(L)

contained in the interval  (Si-d, Si+d) ,  d>0,  d much smaller than e.    Observe that  s(L)  is contained

in the interval  (-d, e+d)  since  0 ≤ Si ≤ e .

Moreover, if  d  is small enough,  Ci+1  can be chosen such that:

d)   Any line separating  Cj  from  Ci,  1 ≤ j < i,  intersects  Ci+1.

It   follows that there are no different pairs of circles  {Ci, Cj}  and  {Ck, Cl}  in  Hn,   such that

there is a line separating {Ci, Cj}  from  {Ck, Cl}.  For let us assume that  i  is the smallest of   i, j, k
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and l   and that  k < l.  It now follows from  (d)  that any line separating  Ci  from  Ck  must intersect

Cl  .  Notice that in  Hn,  Ci  can be separated from  C1,…,Ci-1,  i=1,…,k,  and that  Ci  can not be

separated from any pair  Ck, Cl,   i < k < l  . ®

For any family of disjoint plane circles we have the following theorem.

Theorem 2. In any family   F of  n  disjoint circles,  there is one that can be separated from  a
subfamily of F with at least   Èn/4˘ - 1  circles.

The following lemma will be used in the proof;  the reader may wish to verify it.

Lemma 3. Let  C1',…. Cm'  be  m  disjoint circles not containing the origin. Assume  all of them

intersect the  x  and y-axes and all of their centers are in the same quadrant,  say the positive quadrant.
If they intersect the axes in increasing order  C1', C2',…, Cm',  then any line separating  Cm'  from  Cm-

1'  also separates  Cm'  from  each  Cj',  with 1≤ j < m.
    ® 

Proof of theorem 2. Start by sweeping a line  L1,  from left to right and parallel to the y-axis,  until one

circle of  F,  say  C1,  is left to the left of  L1 . Then  sweep a line  L2, from bottom to top  and parallel

to the x-axis,  until one circle,  say  C2,  is left below  L2.
If there are at least  n1 ≥ Èn/4˘ - 1  circles to the right of  L1  or  n2 ≥  Èn/4˘ - 1  circles above  L2,

the result holds.  Suppose then that  n1  and n2  are both smaller than  Èn/4˘ - 1.  Then there is a subset

H  of  F  with  n - (n1+n2+2)  circles that intersect both of  L1  and  L2 ,  and at most one of them, say

C3,  contains the intersection point of  L1  and  L2.  

Consider  L1 and  L2 as the  coordinate axes,  and  divide  H\{C3 } into four subsets as follows:

each one of the four quadrants  qi  of the plane defines a subset  Si   of H\{C3 } consisting of all of the

elements of   H\{C3 }  with center in   qi,   i=1,..,4.  Suppose,  without loss of generality,  that the union

of the subsets   S1  ={ C1',…, Cj'}   and  S2= { C1",…, Ck"},  corresponding to the first and second

quadrants  contain at least half of the elements of  H\{C3 }. Assume that the elements of  S1  and the

elements in  S2  intersect the  y-axis in increasing order  C1', C2',…, Cj'   and   C1", C2",…, Ck",  

respectively.  Let  M1 be any line separating   Cj'  from  Cj-1' and  M2  be any line separating   Ck"

from Ck-1".  By observation 1,  M1  separates   Cj'  from   S1\{ Cj'}  and   M2   separates   Ck"    from
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S1\{ Ck"}. It is easy  to verify that  either M1 separates  Cj'  from (S1\{ Cj'})»(S2\{ Ck"}) or  M2
separates  Ck"  from  (S1\{ Cj'})» (S2\{ Ck"})  and that ˙ (S1\{Cj'})»(S2\{ Ck"})˙ ≥ Èn/4˘-1.

       ® 

We now construct a family Gn  of 2n circles in which no circle in it can be separated from more

that n  circles in  Gn.  To construct   the family  Gn  let us take a copy   Hn'= {C1', C2',…, Cn'}  of the

configuration   Hn  as follows:   reflect  Hn  along the x-axis and translate it in the north-west direction

until all the lines separating  Ci  from  Cj  intersect only  Cn'  in  Hn'  and all lines separating  Ci'  from

Cj'  intersect only  Cn  in  Hn,  see figure 2.

All line segments separating
pairs of elements in F are in
an angular region containing
lines with slopes s, -   <s<      .d e+d

C  ,...,C      are all contained
in a small circle above C  .

1 n-1
n

Figure 2

Any line separating two elements  Ci, Cj  in  Hn  leaves at most  C1,…,Ci  on one side and

C1',…,Cn-1'  on the other;  similarly for any line separating two elements in  Hn'.  Then  Gn  is a

configuration with  2n  circles and none of them can be separated from any set of circles in  Gn
with more than  n  circles.       

 
® 

4. Separating Line Segments.

In [1],  the following conjecture is presented:  for any collection  F  of  n  disjoint line
segments on the plane,  there is an element   S  of  F  that can be separated from close to  n/2
elements of  F.  In this section we disprove the conjecture by producing a family  Jm  of  3m  line

segments such that no element of  Jm  can be separated from more than  m+1  elements of  Jm.

To describe  Jm  we use a configuration  due to K.P. Villanger, see [4].  He constructs a

family  T  of  m  line segments  L1 ,L2 ,...,Lm  with the property that for each  k = 3,…,m;  Lk   
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intersects the convex closure of  Li » Lj,  1≤i <j<k  and therefore  Lk  cannot be separated by  a

line from  {Li , Lj},  see figure 3.

Lk

Lj

Li

Figure 3

His construction may be reproduced in such a way that   L1 ,L2 ,...,Lm  have slopes

0=S(L1)<S(L2)<... <S(Lm)= d <π/2,  respectively;  and such that  for  i =1,2...,m,  the left endpoint of

Li+1  lies in an interior point of  Li   within distance  e  of the left endpoint of  L1.    
 Our example is a set  Jm  of  3m  line segments consisting of three copies  T0={L0,1,…, L0,k},

T1={L1,1,…, L1,k}  and   T2={L2,1,…, L2,k}  of  T  placed  around  a triangle  Q  with vertices  v0, v1,

v2.  The values of  e  and  d are chosen in such a way that any element of  Ti, when extended to be a

whole line, intersects all the elements of  Ti+1;  addition taken mod 2.

Theorem 3.   There is no element in   Jm  that can be separated from more than   m+1  elements in  

Jm.

Proof.  No element of  Ti  can be simultaneously separated by a single line from two elements of  Jm,

one in  Ti+1  and the other in  Ti+2;  addition taken mod 2.  The result follows from the properties of

T.
       ® 

Let us consider the case where the segments in F can be extended to semilines so that they remain
pairwise disjoint.

 Theorem 4.  Let  F= {L1,…, Ln}  be a family of  n  disjoint line segments,  n≥4.  If they can be

extended to form a collection of disjoint semilines,  then there is a line  L  that separates an element  Li
of  F   from a subset of  F  with at least   În/3˚+1  elements.
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Proof.  If there is an element  Li  of  F  that can be extended to a whole line without intersecting any

other element of  F, then  Li  can be separated from a subfamily of F with at least   È(n-1)/2˘  elements

of  F.  Suppose then that the line containing each  Li  intersects at least another element  Li  of  F.

Extend the elements of  F  as much as possible until  a family  F'= {L'1,…, L'n} of semilines is

obtained such that:
1) The  end point of every element of  F'  lies on  an interior point of another element of  F'.
2) No two elements of  F'  cross each other.

We say that  L'i  hits  L'j  if the  end point of  L'i  lies on  L'j.  It is easy to see that in  F'  there is a

cyclic sequence of elements, say L'1,…, L'j,  j≤n  such that  L'i+1  hits  L'i , i=1,…,j-1,  and  L'1  hits L'j.  

For the case when  j=n  we can easily show that there is an element of  F  separable from a set
with at least   În/2˚ elements of  F;  in the remainder of this section we will assume that  j<n.

For every  i=2,...,j  let  Si  be the subset of  F'  consisting of  L'i  together with all the elements of

F'  contained in the region bounded by  L'i  and  L'i-1,  and let  S1  be the subset of  L'  consisting of

L'1  and all elements of   F'  contained in the region bounded by  L'1  and  L'j. Let  i  be the smallest

index such that  the line  L  containing  L'1  intersects  L'i.  Then it is easy to see that the set  A  =

 S2»...»Si-1 is separable from  L1.   It is also easy to see that   B = Si  is separable from  L'i-1   and

that  C  =  Si+1»...»Sj»S1  may be separated from  L'i.

However,  since  A » B » C = F',  at least one of them has  În/3˚ elements; moreover if not all
their cardinalities are the same, then at least one of them has  În/3˚+1  elements and the result is proved.
Assume then that A, B and C have the same cardinality.  Since  j<n,  then at least one of the sets  Si,

without loss of generality say  S1,  contains more than one element  L'a Œ S1,  L'a ≠ L'1.  It is now easy

to see that  La  is separable from  A»{L'1}.
       ® 

The segments in the example  Jm   may be extended to semilines in such a way that they remain

pairwise disjoint.  This shows that the bound in  theorem 4  is tight.

4. Triangles and Rectangles
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Similar results to the ones presented here for families of rectangles, triangles, etc. can also be

obtained.  We list some results that are easy to obtain using sweeping line arguments.  No proofs will
br given.

Theorem 4.  In any family of n isothetic rectangles, it is always possible to separate one rectangle from
Î2n/3˚-1.  Moreover, in this case we can always separate Èn/4˘ rectangles from Èn/4˘.  These bounds
are tight.

Theorem 5.  Given any family of n disjoint homotetic triangles,  there is one that can be separated from
at least 3n/5±c triangles.  There are some families with  3m  triangles in which we cannot separate any
triangle from more than 2m triangles.

5. Conclusions

We believe that the lower bound of  Èn/12˘  sets given in  theorem 1  is far from optimal;  the best
upper bound we know is  Èn/3˘ + 1,  given by the example  Jn  in the previous section. For the case of

circles we think that the  Èn/4˘ -1  lower bound given in  theorem 2  should be improved to something
close to  n/2.  We believe that in any family  F of  n  disjoint line segments there is one that can be
separated from considerably more than  È(n-1)/4˘;  perhaps from close to  n/3  segments.  The lower
bound in Theorem 5 for homothetic triangles is not tight, we believe that the correct lower bound is
close to 2n/3.

(**) Theorem 1 was independently proved by K. Hope and M. Katchalsky [3]
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