Separation of convex sets

Jurek Czyzowicz, Eduardo Rivera-Campo, Jorge Urrutia[‡]

Abstract

A line L separates a set A from a collection S of plane sets if A is contained in one of the closed half-planes defined by L, while every set in S is contained in the complementary closed half-plane. Let f(n) be the largest integer such that for any collection F of n closed disks in the plane with pairwise disjoint interiors, there is a line that separates a disk in F from a subcollection of F with at least f(n) disks. In this note we prove that there is a constant c such that $f(n) > \frac{(n-c)}{2}$. An analogous result for the d-dimensional Euclidean space is also discussed.

A line L separates a set A from a collection S of plane sets if A is contained in one of the closed half-planes defined by L, while every set in S is contained in the complementary closed half-plane.

Alon et al. proved in [1] that there is a constant a > 0 such that, for any collection F of n congruent disks in the plane with pairwise disjoint interiors, there is a line L that leaves at least $\frac{n}{2} - a\sqrt{(n \ln n)}$ disks of F on each closed half-plane defined by L.

We denote by f(n) the largest integer such that for any collection F of n closed disks in the plane with pairwise disjoint interiors and arbitrary radii, there is a line that separates a disk in F from a subcollection of F with at least f(n) disks. Czyzowicz et al. proved in [2] that $\frac{n}{2} \ge f(n) \ge \frac{(n-7)}{4}$. In this note we prove that there is a constant c such that $f(n) \ge \frac{(n-c)}{2}$.

Let A be a compact convex set in the plane with nonempty interior, we denote by e(A) the ratio $\frac{D(A)}{r(A)}$, where D(A) is the diameter of A and r(A) is the radius of the largest disk inscribed in A. We prove the following stronger result:

^{*}Département d'Informatique, Université du Québec à Hull, Hull, Qué., Canada

[†]Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, México D.F. México

[‡]Computer Science, University of Ottawa, Ottawa, ON. Canada

Theorem 1 For each positive real number e, there is a constact c(e) such that if F is a collection of n compact convex sets in the plane with pairwise disjoint interiors and such that $e(A) \leq e$ for every set A in F, then there is a line that separates a set in F from a subcollection of F with at least $\frac{(n-c(e))}{2}$ sets.

In order to prove Theorem 1 we establish some notation and a lemma. If S and T are compact sets in the plane, we denote by d(S,T) the distance between S and T; that is $d(S,T) = min\{d(s,t) : s \in S, t \in T\}$. For any nonnegative real number r, we denote by B_r the disk with radius r centered at the origin.

Lemma 1 For each positive real number e, there is a constant c(e) such that if F is a collection of c(e)+1 or more compact convex sets in the plane with pairwise disjoint interiors and such that $e(A) \leq e$ for every set A in F, then there are two sets S and T in F such that d(S,T) > D where D is the smallest diameter among the sets in F.

Proof: Let e be a positive real number and let $F = \{K_1, K_2, \ldots, K_m\}$ be a collection of m compact convex sets in the plane with pairwise disjoint interiors such that $e(A) \leq e$ for every set A in F. Without loss of generality we assume that K_1 is the set in F with the smallest diameter $D = D(K_1)$ and consider the set P given by the Minkowski sum $K_1 + B_D = \{x + y : x \in K_1, y \in B_D\}$. Suppose $d(K_i, K_j) \leq D$ for every pair of sets in F; we shall prove that m is bounded by a constant that depends only on e.

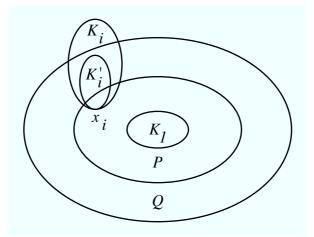


Figure 1:

Since $d(K_1, K_j) \leq D$ then every set in F intersects P. For i = 2, 3, ..., m, let x_i be any point in $K_i \cap P$ and let $K'_i = (1 - t_i)x_i + tK_i$, where $t_i = \frac{D}{D(K_i)}$. Notice that K'_i has diameter D and $x_i \in K'_i$, therefore K'_i is contained in the set $Q = P + B_D$ (see Fig. 1).

Let $K'_1 = K_1$; then for i = 1, 2, ..., m, K'_i is homothetic to K_i and therefore $e(K'_i) = e(K_i) \leq e$. Since $D(K'_i) = D$ then $r(K'_i) \geq \frac{D}{e}$ and then K'_i contains a disk of radius $\frac{D}{e}$. Since K'_i is contained in Q for i = 1, 2, ..., m, then Q contains m disks with radius $\frac{D}{e}$ and pairwise disjoint interiors. Notice that D(Q) = 5D and that the area of Q is at most $25D^2$, therefore $m\pi(\frac{D}{e})^2 \leq 25D^2$ and then $m \leq \frac{(25e^2)}{\pi}$.

Proof of Theorem 1. Let F be collection of n compact sets in the plane with pairwise disjoint interiors such that $e(A) \leq e$ for every set A in F. Let C_1 and C_2 be a pair of sets in F for which the distance $d = d(C_1, C_2)$ is maximum. Let L_i and L_2 be the parallel lines at distance d that separate C_1 and C_2 , (see Fig. 2).

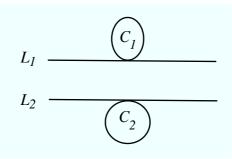


Figure 2:

Without loss of generality assume L_1 and L_2 are horizontal with L_1 above L_2 . Every set in F is in at least one of the following subcollections: X_1 consists of those sets in F that lie in the closed half-plane below L_1 , X_2 consists of those sets in F contained in the closed half-plane above L_2 and X_3 consists of those sets in F that intersect both lines L_1 and L_2 . Notice that L_1 separates C_1 from all sets in X_1 and L_2 separates C_2 from all sets in X_2 .

Since L_1 and L_2 meet every set in X_3 , then the smallest diameter among the sets in X_3 is at least d; by Lemma 2 and the choice of C_1 and C_2 , the class X_3 contains at most c(e) sets, therefore $X_1 \cup X_2$ contains at least n - c(e) sets and at least one of the collections X_1 or X_2 contains at least $\frac{(n-c(e))}{2}$ sets.

An immediate consequence of Theorem 1 is the following result:

Corollary 1 There is a constant c such that $f(n) \ge \frac{(n-c)}{2}$.

For a compact convex set A in the d-dimensional Euclidean space E^d , we denote by $e_d(A)$ the ratio $\frac{D(A)}{r_d(A)}$, where D(A) is the diameter of A and $r_d(A)$ is the radius of the largest d-dimensional ball contained in A.

The following result may be proved with arguments analogous to those of Lemma 1 and Theorem 1.

Theorem 2 For each positive real number e and every positive integer d, there is a constant c(e, d) such that if F is a collection of n compact sets in E^d with pairwise disjoint interiors and such that $e_d(A) \leq e$ for every set A in F, then there is a hyperplane that separates a set in F from a subcollection of F with at least $\frac{(n-c(e,d))}{2}$ sets.

References

- N. Alon, M. Katchalski and W.R. Pulleyblank, Cutting disjoint disks by straight lines, Discrete Comput. Geom. 4 (1989) 239-243.
- [2] J. Czyzowicz, E. Rivera-Campa, J. Urrutia and J. Zaks, Separating convex sets in the plane, Discrete Comput. Geom. 7 (1992) 189-195.