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LIGHT SOURCES, OBSTRUCTIONS AND SPHERICAL ORDERS

by

Stephan Foldes, Ivan Rival and Jorge Urrutia

This paper is inspired by an article of Rival and Urrutia (1988) in which a computational model for
motion planning is introduced based on ordered sets.  According to this model, robots are idealized by
convex figures on the plane and their motion on the plane is studied by assigning to each a direction
along which it may be moved with some velocity.  The objective may be to separate these robots
efficiently or, perhaps, to relay messages among them.

Let   F  be a family of closed connected plane figures and  x  a point on the plane not contained in
any element of  F.  For figures  A  and  B  we say that  B obstructs  A  (or  B  blocks  A)  if there
exists a point  b  in  B  such that the line joining  x  to  b  intersects  A.  We write  AÆB.  More
generally, we write  A<B  if there is a sequence  A = A1ÆA2 Æ... Æ  Ak=B. This relation  <  is
transitive.  We call this binary relation  <  a blocking relation.  If the blocking relation has no directed
cycles then it is antisymmetric too.  In that case the blocking relation  <  is a (strict) order on the set of
these figures.  (See Figure 1.)
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An order  P  has a  light source representation if there is a (reference) point  x,  a set  T  of
pairwise disjoint figures not containing  x,  and a bijective mapping  f  of  P  to  T,  such that for every
a, b Œ P,  a < b  if and only if  f(b)  blocks  f(a).

This obstruction notion is a variant of the one-directional blocking relation presented by Rival and
Urrutia (1988) for convex figures on the plane.  According to them,  B  is a (one-directional)
obstruction of  A  if some translation of  A  in the upward vertical direction intersects  B.  

It is easy to verify that any ordered set representing a one-directional blocking relation also has a
light source representation.  (See Figure 2.)

x

Figure 2

On the other hand, not every order having a light source representation is a one-directional
blocking relation.  The order in Figure 1, for instance, does not represent a "one-directional blocking
relation".

Central to our investigations here is the usual (order) diagram of an ordered set.  We say that  b
is an upper cover of  a,  or  a  is a lower cover of  b,  or  a  is covered by  b,  if  a < b  and  a < c ≤ b
imply  b = c.

The diagram of an ordered set is the directed graph in which   a Æ b  if  a  is covered by  b.  The
covering graph of an ordered set is the undirected graph associated with its diagram.  It is convenient
and customary to represent the diagram pictorially on the plane with vertices for the elements so
arranged that the y-coordinate of a point  b  is larger than that of another point  a  if  a < b  and an edge
joins them just if  b  is an upper cover of  a.  (See Figure 3.)  In this way the arrows on the edges may
be ignored.
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A diagram is planar if it has a representation on the plane such that
i) if  b  covers  a  the y-coordinate of  a  is smaller than that of  b,
ii) the edge joining  a  to  b  is represented by the open straight line segment joining  a  to  b,  and
iii) no two edges intersect.

An order is planar if its diagram is planar.
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Figure 3

The planarity of the covering graph of an order need not imply planarity of the order itself, for 23

is a nonplanar ordered set, yet its covering graph certainly is planar (cf. Figure 3).
A spherical ordered set   (or spherical order) is a finite ordered set with bottom and top elements

whose diagram can be embedded on the surface of a sphere such that
1) the bottom is mapped to the south pole, the top to the north pole,
2) all arcs are strictly increasing northward, and
3) no pair of arcs cross except at an element of the underlying set.

A truncated spherical order is an ordered set obtained from a spherical order by removing its bottom
and top.

The ordered set  23  is a spherical order.  On the other hand, the ordered set illustrated in Figure 4
is not.  According to the ordered set of Figure 1, a spherical order need not be a lattice yet, in a
spherical order, every pair of elements has at most two minimal upper bounds and, at most two
maximal lower bounds (cf. Figure 5).  (Recall, a lattice is an ordered set in which every pair of
elements has supremum and infimum.)  Still, every lattice whose diagram is planar is a spherical order;
not every ordered set with planar diagram is spherical (cf. Figure 4).  As a planar order with top and
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bottom is actually a (planar) lattice it follows, too, that every planar order with top and bottom is
spherical (cf. Kelly and Rival [1975]).

Figure 4 Figure 5

Neither do spherical orders have bounded (order) dimension.
An ordered set constructed by "gluing"  n-2 identical copies of n-cycles (as illustrated in Figure 6) has
dimension  n  for it contains the subset of  2n  consisting of its singletons (minimals) and one-element
deleted subsets (maximals).

A spherical order with
dimension five

Figure 6
Our principal results show that the theories of orders with a light source, on the one hand, and

spherical orders on the other, are really identical.
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THEOREM 1.  An ordered set is spherical if and only if it has a bottom, a top, and its covering
graph is planar.

THEOREM 2.  An ordered set has a light source representation if and only if it is truncated
spherical.

THEOREM 3.  There is an  O(n)  algorithm to decide whether an ordered set with  n  elements has a
light source representation.

Proof of Theorem 1

The following lemma is a variant of a result of Platt [1976], and its proof is essentially the same.

LEMMA 1.  Let  L  be a lattice,  D  its diagram,   G  its covering graph, and let  h  be a strictly
increasing function from  L  to  R.  If  G  is a planar graph and can be drawn on the plane in such a
way that the bottom and the top of  L  lie on the same face  F  of  G, then  L  is a planar lattice and
may be represented in the plane with straight line arcs in such a way that

1) F  is the outer face of the representation and,
2) every element  x  of  L  is represented by a point  in  R2  whose second coordinate is  h(x).

Here is a sketch of the proof.  First, in the planar representation of  G, we may assume that  F  is the
outer face.  Second, the bottom-to-top paths, bounding this outer face  F,  correspond to directed paths
in the diagram  D.  Third, if any of these paths is of length greater than one, then it contains an inner
vertex that has degree 2 in  G.  Removing this vertex leaves us with a smaller lattice.  An induction
completes the proof.

We turn now directly to the proof of Theorem 1.

PROOF.  Clearly, the conditions are necessary.  Conversely, let  D  be the diagram of an ordered set
satisfying these conditions.  Since  D,  as a graph, is planar, it can be embedded on the sphere.
Moreover, it is easy to verify that one such embedding exists in which the bottom  (S)  and top  (N)  of
D  are on the south and north poles of the sphere.  (Arcs of the graph are of course, not necessarily
mapped with a northward orientation.)

We define a directed graph  D'  as follows.  Let  P  be any directed path from  S  to  N  with
vertices  S = x0, x1,...,xn= N.  For each internal vertex  xi   a sufficiently small neighborhood of it is
divided by  P  into a "left" and a "right" part. The arcs incident with  xi  other than  (xi-1, xi )  and  (xi,
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xi+1)  are accordingly classified as being on the left or right of  xi.  The vertex set of  D'  is obtained
from that of  D  by replacing each internal vertex  xi  of  P  by two new distinct vertices  xiL  and  xiR.
The arcs of  D'  consist of all those of  D, except those whose head or tail is an internal vertex of  P;
plus

(x0, x1L), (x1L, x2L),…,(x(n-1)L, xn),
(x0, x1R), (x1R, x2R),…,(x(n-1)R, xn),

plus, for every internal vertex  xi  of  P  and every arc of  D  incident with  xi  on the left or on the
right, a new arc defined by

arc of  D  incident with  xi on which side new arc

     (y, xi)       left   (y, xiL)
     (xi, y)       left   (xiL, y)
     (y, xi)      right   (y, xiR)
     (xi, y)      right   (xiR, y)

We may say that  D'  is obtained from  D  by splitting the path  P  into  PL = (S, x1L,…, x(n-1)L, N) and
PR = (S, x1R,…, x(n-1)R, N)  (see Figure 7).
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Figure 7
 Considered as an undirected graph, D' is planar.  A representation of  D'  (undirected) on the
sphere is obtained with   PL  and  PR  defining a new face from the original representation of  D
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(undirected)  on the sphere.  Also  D'  itself represents an order  L. Moreover, we shall show that this
order  L  is a lattice.  It will then follow, via Lemma 1, that  L  is a planar lattice.

Since  L  has bottom  S = x0  and top  N = xn,  to prove that  L  is a lattice, it suffices to show that
no pair   a, b  of elements of  L  has either two distinct minimal upper bounds  u  and  v,  or two
maximal lower bounds.  Assuming the contrary, for upper bounds, we would have four distinct
directed paths in  D',  Pau  from  a  to  u,  and similarly,  Pav,  Pbu,  Pbv.  Moreover, we may assume that
Pau  and  Pav  have only the vertex  a  in common—otherwise we would replace  a  by the last common
vertex of the two paths.  Similarly, we may assume that  Pbu  and  Pbv  have only  b  in common.

We fix a planar representation of  D'  (as undirected graph) with  PL  and  PR  bounding the outer
face.  Both  S  and  N  are then strictly in the outside region of the simple closed curve  J  determined
by  Pau,  Pbu  (reversed),  Pbv,  Pav  (reversed).

Let  o  be a maximal lower bound of  a  and  b.  As  no  S–o path can meet the curve  J,  o  is also
outside  J.  Let  Poa  and  Pob  be directed paths from  o  to  a  and  b,  respectively.  Poa,  Pau,  Pbu
(reversed),  Pob  (reversed)  define a closed curve  Ju.  Similarly, Poa,  Pav,  Pbv  (reversed),  Pob
(reversed)  define a closed curve  Jv.  Obviously either  u  is inside  Jv,  or  v  is inside  Ju.  By
symmetry, we may suppose that  u  is inside  Jv  (see Figure 8).
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Figure 8

As  N lies strictly on the outside of  Jv  and no directed  u–N  path can meet  Jv, we have a
contradiction.  The dual argument shows similarly that  a  and  b  cannot have distinct maximal
common lower bounds, and therefore  L  is a lattice.

Let  C  be a linear extension of the ordered set represented by D.  For every  x Œ L  let   r(x)  be
the rank of  x  in the chain  C.  Define a function  h  of  L  to  R  as follows.  Let  h(x) = r(x)  if  x  is
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not an internal vertex of the split path  P.  For an internal vertex  xi  within  P,  let  h(xiL) = r(xi)  and
h(xiR) = r(xi).  Clearly the lattice  L,  together with the mapping  h  and face  F  bounded by  PL  and
PR,  satisfies the conditions of Lemma 1.  The first coordinates of the lattice points in the planar
representation of  L  provided by Lemma 1 can be modified in such a way that

1) all the  x1L,…, x(n-1)L  have the same first coordinate  CL
2) all the  x1R,…, x(n-1)R  have the same first coordinate CR
3) for every  x  neither internal in  PL  nor internal in  PR,  the first coordinate of  x  is greater than

CL  and smaller than CR.
The entire representation of  L  then lies between two vertical lines.  If the region of  R2  lying

between these two lines is mapped in the obvious way to the surface of a cylinder, each internal vertex
xiL  of  PL  is again "identified" with  xiR  of  PR.  In this way we have a representation of the original
diagram  D  on the cylinder, with monotonic arcs.  A spherical representation of  D  on the sphere is
now easily obtained.

Proof of Theorem 2

 Let  P  be an order with a light source, represented by a set  T  of figures, with reference point  x
and bijection  f  of  P  to  T.  Let  uÆv  be an arc of the diagram  D  of  P,  that is,  v  covers  u  in  P.
Then  f(v)  obstructs  f(u),  and there are  a Œ f(u),  b Œ f(v)  such that  a  lies on the segment  x–b.  Let
a(u, v)  be the point of  f(u)  lying on the segment  x–b  that is closest to  b.  Similarly,  let  b(u, v)  be
the point of  f(v)  lying on the segment  x–b  that is closest to  a.  It is easy to see that if  (u', v')  is
another arc of the  diagram  D,  then

{a(u, v), b(u, v)} « {a(u', v'), b(u', v')} = ∅.
For every  u Œ P,  let

F(u) = {a(u, v): uÆv Œ D} » {b(v, u): vÆu Œ D}.
F(u)  is a subset of the boundary of  f(u).  Let  u0  be any point in the interior of  f(u).  Let  u0  be
joined to each point  z Œ F(u)  by a continuous (not necessarily straight) line`through the interior of
f(u)  in such a manner that lines corresponding to distinct points of  F(u)  meet only at  u0.  (This is
possible because  f(u)  is homeomorphic to a circular disk.)  For each  z Œ F(u),  call this continuous
line the link between  u0  and  z.  For each arc  uÆv  of  D,  let us juxtapose the link from  u0  to  a(u,
v),  the straight line segment from  a(u, v)  to  b(u, v),  and the link from  b(u, v)  to  v0.  These
juxtaposed lines, linking the various points  u0  for  u Œ  P,  form a planar representation of  D
undirected.  (See Figure 9.)



1 0

f(v)

f(u) f(w)

x

w0
u 0

v 0

a (u,v)

(u,v)b

Figure 9

Let  y  be a point  in  R2  whose distance from the reference point  x  is greater than the distance of
any point of any member of  S  from the reference  point  x.  Define the directed graph  ^D  by adding
x  and  y  to the vertex set of  D,  an arc  xÆu  for each element  u  minimal in  P,  and an arc  uÆx
for each element  u  maximal in  P.  Clearly  ^D  is also a diagram, and the planar representation of  D
undirected, constructed above can be extended to a planar representation of  ^D  undirected.
Furthermore,  x  is the unique vertex in  ^D  of indegree zero and  y  is the unique vertex of outdegree
zero.  Applying  Theorem 1,  ^D  is a spherical order.  It follows that  P,  represented by  D,  is
truncated spherical.

Conversely, let  P  be a truncated spherical order.  Let  ^P  be the spherical order obtained from  P
by adding a (new) bottom  S  and a (new) top  N.  Let  D  be the diagram of  ^P.  As in the proof of
Theorem 1, let  D'  be the directed graph obtained form  D  by splitting a directed  S–N  path

Q = (S, x1,…, xn-1, N)  into
QL = (S, x1L,…, x(n-1)L, N)  and
QR = (S, x1R,…, x(n-1)R, N).

D'  is the diagram of a planar lattice  L.  L0 = L \ {S, N}  is a truncated planar lattice.  It was shown by
Rival and Urrutia [1988]  that  L0  can be represented in the plane by a set  T  of horizontal line
segments of finite length, by means of a bijective mapping  f  of  L0  to  T  such that, for  a, b, Œ L0  a
≤ b  if and only if some upward vertical translation of  f(a)  intersects  f(b).  Indeed, their proof of this
result indicates that this representation may be made such that the left endpoints of all the segments  
f(xiL),  i = 1,…,n-1,  lie on the same vertical line, and all the right endpoints of all the segments of
f(xiR),  i = 1,…,n-1  lie on another vertical line (see Figure 10).  Notice that in the representation  T
obtained for  L0  the line segments representing the  xiL's  may be at different "heights" from these
representing the  xiR's.
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Consider any linear extension  C  of  P  and for every element  a Œ P  let  r(a)  be the rank of  a  in

C.  Shift the elements of the representation  T  of  L0  vertically in such a way that the height of the line
segment representing an element   a Œ L0  is precisely  r(a)  for elements not in the  S–N  path  Q  and
the heights of the segments representing  xiL  and  xiR in  T  are boths  r(xi) (see Figure 11).
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It is easy to see that this shifting in heights still yields a representation of  D' although the heights of
the line segments representing pairs  xiL  and  xiR  are now the same!   

If the region of  R2  lying between the two vertical lines bounding the entire representation of L0 is
mapped in the obvious way to the surface of a cylinder,  f(xiL)  and  f(xiR)  become contiguous for
each  i = 1,…,n-1.  For every  a Œ P \ {x1,…, xn-1}  let  g(a)  be the line segment  f(a)  "drawn on the
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cylinder".  For  i = 1,…,n-1  let  g(xi)  be the union of the juxtaposed line segments  f(xiL)  and  f(xiR)
drawn on the cylinder.  Clearly,  g  is injective and, for  a,b Œ P,  a<b  if and only if, on the cylinder,
some upward vertical translation of  g(a)  intersects  g(b).

Now fix a "projection point" s situated on the axis of the cylinder, above all of the  g(a),  a Œ P.
Also fix a plane orthogonal to the cylinder axis, called the "projection plane", below all of the g(a), a Œ
P.  Using s, we can now project each arc g(a) into an arc p(a) on the projection plane. (See Figure 12).
Let x be the intersection point of the cylinder axis with the projection plane.  It now follows that the set
{p(a): aŒP} with the point x form a light  source representation of P. Our result now follows.

s
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g(a)

x

Figure 12

Proof of Theorem 3
 Let us suppose that an ordered set with  n  elements is presented by the incidence matrix of its
covering graph.  According to Hopcroft and Tarjan [1974]  there is an  O(n)  algorithm to test the
planarity of this graph.  Then in  O(n)  time, too, we can locate a minimal element and test whether it is
the bottom.  Similarly we may test for the top.  Therefore, by Theorem 1, we have a linear time
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algorithm to test whether this order is spherical.  By Theorem 2, we then have a linear time algorithm
to test whether it has a light source.

In this paper we showed that all truncated spherical orders have a light source representation.  For
some of these orders, a representation using convex figures is possible.  Nevertheless this is not
necessarily true for all spherical orders.  The order presented in Figure 13 is such that in any light
source representation either one of S or N has to be represented using a nonconvex figure.
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