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Given a finite collection of disjoint, convex figures in the plane, it is always
possible to assign to each a single direction of motion so that this collection of figures
may be separated, through an arbitrarily large distance, by translating each figure one
at a time, along its assigned direction. Indeed, it is well-known that this separation
may be accomplished even if every one of the figures is assigned the same parallel
direction (cf. [L. J. Guibas and F. F. Yao (1980)], [I. Rival and J. Urrutia (1987)]).  If
the convex figures represent robots then the directions of motion may be part of a
motion planning scheme to separate the robots without collisions. Or perhaps, the
convex figures represent a cluster of figures on a computer screen to be shifted about
to clear the screen without altering their integrity and without collisions.  These are
instances of the problem known in computational geometry as the "separability
problem". Rival and Urrutia (1987) have recently initiated the study of this
separability problem using a computational model based on the theory of ordered
sets.

For figures A and B we say that B obstructs A and write A ~ B if there is a line
joining a point of A to a point of B which follows the direction assigned to A. We
write A<B and say that B blocks A if there is a sequence A=A1~A2…Ak=B. As long
as this blocking relation has no directed cycles then it is a (strict) order on the
collection of these figures. Rival and Urrutia (1987) call a collection of disjoint,
convex figures (each assigned one of m directions an (m-directional) representation
of an ordered set P if its blocking relation is identical to the ordering of  P.  Also say
that the blocking relation is  m-directional.  They proved these three fundamental
results:

F1. There is a one-to-one correspondence between the class of all one-
directional blocking relations and the class of all truncated planar lattices.

F2. Every ordered set has a subdivision with a two-directional representatation.



F3. There are ordered sets with no m-directional representation, for any
positive integer m.

We delineate two directions in the study of the representations of orders as blocking
relations:

I. The convex figures are special (eg. rectangles, line segments, points).
II. The number of directions is limited (eg. two, one).

For example, for every one-directional blocking relation, line segments (perhaps of
different lengths) suffice for the convex figures.  Moreover, for every positive integer
m there are blocking relations requiring m directions. Our aim in this paper is to
pursue the first of these two directions in what would seem to be the simplest cases of
all, point blocking relations, that is, each of the convex figures is a point, and line
blocking relations, that is, each of the convex figures is a line segment, possibly a
point.  The most immediate and obvious effect of the restriction to points, for
instance, is that if  A,  B, C are three points on the plane in a blocking relation with
A<B, A<C, and B, C are noncomparable then the points A, B and C must be
collinear, all lying along the direction assigned to A. Also, at least one of B, C must
have a direction not parallel to the direction of A, for otherwise either B<C or C<B
(see Figure 1a).

!!!!!!!!!!!A blocking relation
for the ordered set

{a<b, a<c}

(a)

A

B

C
b

a

c

An order diagram for the 
ordered set  {a<b, a<c}

(b)

Figure 1

This "collineation constraint" will come to play, as we shall see, an important role.



Such blocking relations must, of course, be carefully distinguished from order
diagrams (cf. Figure 1b), which also use points (about which more later).

Here are our results about point blocking relations.

Theorem 1.  There are finite ordered sets with no point blocking representation at
all, yet every finite ordered set has a subdivision with a point blocking representation.

For an ordered set P let Ptop stand for the ordered set with a top element adjoined,
that is, x<top for each x in P; let Pbottom stand for the ordered set with a bottom
element adjoined, that is,  bottom<x  for each  x  in  P.

Theorem 2.  If P is a finite point blocking relation then Ptop is a point blocking
relation too. However, there are finite point blocking relations  P such that Pbottom

has no point blocking relation at all.

An interesting consequence is that the dual of a point blocking relation need not be
a point blocking relation.  This contrasts with the conjecture of Rival and Urrutia
(1987) that the dual of a blocking relation is a blocking relation.

It is surprising that we have as yet no example of a blocking relation which
requires convex figures more complicated than points or line segments (cf.
Conjecture II, in Rival and Urrutia (1987)).  Our third result limits the convex
figures to line segments .

Theorem 3.  Every series parallel ordered set is a line blocking relation.

Our final result limits the number of directions to two, as well as the convex
figures to lines.

Theorem 4.  Every interval order is a line blocking relation requiring at most two
directions.

There are interval orders which are not point blocking relations and which require
at least two directions (see Figure 2).
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Point Blocking Relations

Among the many graphical representation schemes in use to represent ordered sets,
one alone is by far the most common, the "order diagram" or, more simply, the
"diagram". It is constructed as follows. For an ordered set P and elements a, b in P,
we say that b covers a or a is covered by  b,  in symbols  b >—a  or  a—< b,  if  b>a
and, for each  c  in P, b>c≥a implies c=a. We also call b an upper cover of a or a a
lower cover of b. If there is a blocking relation that corresponds to the ordered set P,
then the upper covers of a convex figure A are those convex figures obstructing A
and minimal in the blocking relation with respect to this property.  Such upper covers
B of A we shall also render with the symbol B>—A or A—<B. It is the custom to
represent P pictorially on the plane by means of a diagram in which small circles,
corresponding to the elements of P, are arranged in such a way that, for a and b in P,
the circle corresponding to b is higher than the circle corresponding to a whenever
b>a, and a straight line segment connects the two circles whenever  b covers a.



{a,b}

{a,b,c}

{b,c}

{c}{a}

{a,c}

{b}

∅

A diagram of     , the ordered set of all
subsets of  {a, b, c}  with respect to
set inclusion.

23

1

5 6 7 8

2 3 4

8A diagram of a cycle  C  .

1

2
4

3

5
8

7
6

A point blocking relation of  C  .8

Figure 3

∅ {a} {b} {c}

{a,c}
{b,c}

{a,b}

A point blocking relation of      .23

Our aim now is to prove the first part of Theorem 1. We construct an ordered set
which cannot be a blocking relation at all.  It is convenient to do this in steps. To
begin with, we consider the ordered set P with a diagram illustrated in Figure 4.  This
ordered set P is a point blocking relation. One such point blocking representation of it
is illustrated in Figure 5.
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Notice that the direction assigned to a maximal point A, B, C, etc. is arbitrary as long
as none is directed at any other point of the collection.  Moreover, while there is some
variation possible in the serial position of A, B, and A', B', C' and X, Y, Z, for
instance, the important point is that A, B, C and A', B', C' are collinear triples so,
according to the Pappus Theorem the intersection points X, Y, Z of the corresponding
pairs of lines must be collinear.

Thus, the ordered set P' obtained from P by adjoining yet another minimal element
l', with the comparabilities l'<x, l'<y, l'<z is a point blocking relation, too, for we may
locate a point for L' in Figure 5 collinear with X, Y and Z, say to the right of Z and



directed leftward along the X, Y, Z line.  Similarly, the ordered set P" obtained from
P by adjoining a minimal element l" subject only to the comparabilities l"<x and l"<y
has a point blocking representation, too, in which a point L" may be put between Y
and Z on the line joining them and assigned the direction leftward to Y.

Nevertheless, the ordered set Q illustrated in Figure 6 and obtained from P by
adjoining two minimal elements l9 and l10 subject only to l9<x, l9<y, l10<y, and l10<z
cannot have a point blocking representation.  If it did then the points X, Y, Z would,
as before, according to the Pappus Theorem, be collinear.  Now, both L9 and L10 must
lie on this line and each must be assigned a direction along this line coinciding with
X, Y and Y, Z, respectively, and, to maintain the noncomparability of l9 and l10, these
directions must be opposite.  This is impossible and so Q cannot be a point blocking
relation.
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We turn now to the proof of part II of Theorem 1.  Let P be a finite ordered set, say
P has n elements, and let L={a1, a2,…,an} be a linear extension of P. Construct an
n•n  grid and represent the elements of P along the horizontal y=0 with the points A1,
A2,…,An arranged at unit intervals.  Assign to each Ai the upward direction. As it
stands, this collection of points   Ai, each with upward direction, produces an
antichain.  Next, let 1≤i≤n be arbitrary and let ai,1, ai,2, …, ai,k   be the upper covers of
ai. Consider the vertical segment from  (i,i)  to  (i,i+1)  on the plane and place points
Si,1, Si,2,…, Si,k at 1/k intervals along this segment. Assign to each Si,j the direction
along the line from Si,j pointing toward Ai,j. It is easy to verify that the point blocking
relation so constructed consists precisely of P with an additional element along each
covering edge, that is, a subdivision of P (cf. Figure 7).
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We shall now prove Theorem 2. Let P be a finite ordered set with a point blocking
representation.  We proceed by induction on the cardinality on P to show that Ptop

also has a point blocking representation, which contains the point blocking
representation of  P, except possibly for the directions assigned to the points
corresponding to the maximal elements of P. Let A1, A2,…,Ak stand for the points
representing all maximal elements of  P. For each  1≤i≤k  construct all rays from Ai to
each other point and let  ei  stand for the least angle between pairs of rays pointing in
distinct directions. By the induction hypothesis (P–{ak})top has a point blocking
representation extending the point blocking representation for P–{ak} (as a subset of
P) chosen above. Let T stand for the point representing the top element of (P–{ak})top.
If the ray from Ak passing through T meets no other point of the representation, then



we may position a top point for P as in this point blocking representation of P–{ak}
and direct Ak toward it. Otherwise, we shift T slightly to produce a point T' which
remains within an angle e betweeen any Ai and the original T, where e=min{ei | i=1,
2,…,k. Then direct each Ai to T'. This is a point blocking representation of Ptop.

To complete the proof of Theorem 2 we show that, for the ordered set P",
constructed in the proof of Theorem 1 (cf. Figure 4), P"bottom has no point blocking
representation. Suppose, on the contrary, that P"bottom does have a point blocking
representation with bottom point O. Then the points L1, L2,…,L8, L" must be
collinear and the direction assigned to O is along this line. Suppose the serial order of
the points X, Y, Z is as illustrated in Figure 5. Then the ray from O to L" must
intersect one of the line segments ZC or YC (if O lies above the  XY  line) or, ZC' or
YC' (if O lies below the  XY  line).  Then the direction assigned to O will not pass
through L8 or L7, or else, L6 or L4. The other cases with serial order XZY, YZX,  etc.
are similar. This completes the proof of Theorem 2.

Line Blocking Relations

Call a finite ordered set P series-parallel if it can be constructed from singletons
using only the operations of disjoint sum (parallel) P1+P2 (x and y noncomparable for
each x Œ P1 and  for each y Œ P2) and linear sum (series) P1*P2 (x < y for each x Œ P1

and  for each y Œ P2).

Series-parallel A line-blocking representation

Figure 8



We shall prove Theorem 3 by induction on the cardinality. In particular, our
inductive hypothesis is that every series-parallel ordered set P has a line blocking
relation satisfying these two properties.

(i) The directions of the line segments (possibly points) representing the
maximal elements are all parallel and point in the same direction, vertical
upward.

(ii) Every minimal element of P, which is not at the same time a maximal
element, is represented by a point, whose assigned direction is not parallel to
the vertical, and the direction opposite to its direction of motion does not
meet any other line segment in the representation of P.

If P consists of a single element then such a representation is easy to construct. Let
P1, P2 be series-parallel ordered sets with line blocking representations satisfying
these two properties.  We shall show that both P1+ P2  and P1* P2 do too. For the
purposes of the construction it is convenient to assign to a line blocking
representation a convex region, on the plane, containing all line segments as well as
all intersections of the directions assigned to these line segments. Let C(P) stand for
such a convex region for P. (We may visualize it as a disk on the plane, say.)

First we consider the case P = P1+ P2. Take the infinite region R on the plane,
outside C(P1), between the rightmost direction vector assigned to a maximal of P1 and
the first ray met in the clockwise orientation, either along a direction vector, or along
an opposite direction vector, or along a (non-point) line segment. Now place C(P2)
anywhere in R so that the direction of its maximals are vertical upward, just like the
maximals of  P1. Then a translation of C(P2) in R will suffice to ensure that no
direction vector or opposite direction vector of P2 will hit C(P1) at all. By
construction no direction vector of P1 hits C(P2). The opposite direction vectors of the
minimals of P1 and P2 may now intersect only outside of C(P1)»C( P2). This then is a
line blocking representation of P1+ P2.
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To construct a line blocking representation of P1* P2 we begin again with the
infinite region R constructed for  P1. First put C(P2)  in  R,  just as above, so that the
directions of its maximals are vertical upward.  Translate C(P2) in R to ensure that no
direction vector, or opposite direction vector, of P2 hits C(P1) and, such that each
direction vector, or opposite direction vector, of P2 hits all of the extended vertical
upward direction vectors of the maximals of the blocking relation of P1. Moreover, by
taking C(P2) far enough out in R we may suppose that these direction vectors, or
opposite direction vectors, of P2 do not intersect each other among the extended
vertical upward direction vectors of the maximals of P1. Now replace each point in



C(P2) representing a minimal element of P2 by a line segment passing through the
extended vertical upward direction vectors of the maximals of P1. (C(P2) may be
placed so far away in R that no direction vector or opposite direction vector or a
minimal of P1 hits any of these new line segments, too.) To complete the construction
we must assign directions to the new line segments.  For each we choose a direction
along the line segment.  For any minimal of P2 whose opposite direction vector hits
its corresponding line segment we use the same direction vector for the new line
segment replacing it. According to the inductive hypothesis on P2 such a direction
vector for a new line segment hits only those line segments of P2 which are bigger in
the order of P2. For any minimal of P2 whose direction vector hits its corresponding
line segment we assign the opposite direction vector.  Again, the direction of such a
new line segment hits only those line segments of  P2 bigger in the order. This
completes the construction of P1*P2, and therefore the proof of the theorem.

Two Directions

A finite ordered set P is an interval order if its elements can be represented by
closed intervals along the horizontal x-axis and ordered by I1 ≤ I2 if the right endpoint
of I1 is less than or equal to the left endpoint of I2. There are, in fact, many equivalent
descriptions of interval orders.  Another useful one is that for any four-tuple of
elements a<b, c<d in P then, either a≤d or c≤b. Thus an interval order cannot contain,
up to (order) isomorphism, the disjoint sum of two chains each with at least two
elements. Here is one useful consequence. Let M1=min P stand for the minimal
elements of P, M2=min (P–M1), M3=min(P–(M1 »M2), etc. It is not hard to verify
that the elements ai

1, ai
2, ai

3  of Mi can be so labelled that the upper covers of ai
1 in

Mi+1 contain the upper covers of ai
2 in Mi+1, whose upper covers in Mi+1, in turn,

contain the upper covers of  ai
3  in Mi+1, etc. To prove Theorem 4, assign to each

minimal element of P (that is, each element of M1) a vertical unit length line segment
and enumerate these line segments from left to right according to increasing subscript
and assign to each the vertical upward direction.  Next, the elements a2

1, a2
2, a2

3 are
represented by horizontal line segments enumerated from bottom to top, according to
increasing subscript, and with lengths such that A2

j lies above the line segment A1
i

just if a1
i < a2

j. Each of these horizontal line segments is assigned the horizontal
direction to the right. The elements a3

1, a3
2, a3

3,… are then represented by vertical
line segments enumerated from left to right again, according to increasing subscript,
with lengths so chosen that A3

j lies to the right of A2
i if a2

i < a3
j. Again, these vertical



line segments are all assigned the same upward direction as the line segments for M1.
We may continue the construction in this way alternating horizontal and vertical line
segments. This completes the proof.
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