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Abstract

Let P be a set of points in R? in general position such that each
point is coloured with one of k colours. An alternating path of P
is a simple polygonal whose edges are straight line segments joining
pairs of elements of P with different colors. In this paper we prove
the following: Suppose that each colour class has cardinality s and
P is the set of vertices of a convex polygon. Then P always has an
alternating path with at least (k — 1)s elements. Our bound is sharp
for odd values of k.

1 Introduction

Let P be a collection of 2s points in general position on the plane. Suppose
that s elements of P are colored red, and s blue. An alternating path of
P is a simple polygonal whose edges are straight line segments joining pairs
of elements of P with different colors, see Figure 1. Alternating paths of
point sets were first studied in Akiyama and Urrutia [3]. In that paper, an
algorithm that decides if an alternating path that covers all the elements of
P exists is given when the elements of P are in convex position, i.e. the
elements of P are the vertices of a convex polygon.
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In [1] they study the problem of finding an alternating path for a point set
in general position. They show that if all the red elements of P are separated
from all the blue elements by a line or if all the blue points are contained
in the convex hull of the red points, then there is an alternating path that
covers all the elements of P. Later, in [2], this result is used this to prove
that any point set P in general position always has an alternating path that
covers at least half of the elements of P. There it is also proved that there
are point sets in convex position such that any alternating path covers at
most % of the elements of P and it is conjectured that this bound is sharp.

Here we consider the following generalization of the later problem. Let P
be a point set in convex position with 3s elements s red, s blue, and s black.
We show that P always admits an alternating path, defined as before, that
covers 2s elements of P and that this bound is sharp. In general we show
that if P has ks points, and for each 1 <7 < k it has s points colored i, then
P admits an alternating path of length at least (k — 1)s, and this bound is
sharp for odd values of k. In Section 2 we prove our main tool for analyzing
the length of alternating paths in a collection of points P in convex position.
We then return to the problem stated in this introduction in Section 3. We
revise the case for two colours in Section 4 and in Section 5 we give some
final remarks and some problems.

Figure 1: On the left-hand side, we have an alternating path and on the
right-hand side we have a zig-zag path, a particular type of alternating path.



2 Point sets with k£ colours

Let Py,..., P, k > 1, be a collection of disjoint non-empty point sets such
that the points in P = P; U...U Py are in convex position and |P| = n. We
consider that points in P; have colour ¢; and that c(u) is the colour of the
point v € P. An alternating path of points in P is a simple polygonal whose
edges are straight line segments joining elements of P with different colour,
see Figure 1. We assume that |P;| > 2.

An alternating path Z of P will be called a zig-zag path if there is a
line [ that intersects all the edges of Z, see Figure 1 for an example. If
|Pi| =...=|Py|, P will be called a k-balanced point set.

Suppose that the elements of P are labelled with the integers {0,...,n —
1} such that consecutive points in the convex hull of P receive consecutive
integers (assuming that n — 1 and 0 are consecutive). We construct the
zig-zag path Z as follows:

e The first vertex of Z is 0.

e Let i; be the smallest integer such that c¢(i1) # ¢(0). The second vertex
of Z is ;.

e Let j; be the largest integer such that c(ji) # ¢(i1). the point j; is the
third vertex of Z.

e Suppose that the first 2k + 1 (respectively 2k + 2) vertices of Z, 0, i1,
J1,--+,0k, jr have been chosen. Then the next vertex of Z corresponds
to the smallest integer iy 1, if exists, such that c(ix1) # c(jx) and i <
ik+1 < Jx (respectively, the largest ji.1, if exists, such that c(ix1) #
c(Jr+1) and g1 < Jrr1 < J)-

Now, for a given element u of P, we define two zig-zag paths for it. The
first one ZF is obtained by the above procedure when relabelling the elements
of P in the clockwise direction with the integers {0,...,n — 1} starting from
u. The second one Z, is obtained in the same way but we relabel in an
counterclockwise direction starting from u. See Figure 2 for an example.
Here we consider that two alternating paths are the same if they have the
same set, of segments.

Remark 2.1. Z;' and Z; are different zig zag paths.
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Figure 2: On the left-hand side we have Z, the zig-zag path in the clockwise
direction starting from u; and u™, the antipode of u with respect to Z;. On
the right-hand side we have Z_ and u™.

The zig-zag path Z; has two endpoints, u itself and a unique point v = u™

different from u, which we called the antipode of u with respect to Z;. During
the procedure to define Z;, u™ receives a label i and its (only) neighbour w
in Z} alabel j. If i < j, the Z;f = Z*,. If i > j, then Z} = Z .. We denote
this unique zig-zag path Zéﬁr. We define similarly fo_. See Figure 3 for an
example.

Remark 2.2. Zlﬁ (respectively Z;t_) is the same as either Z7 or Z but not
both, for some unique w € P different from u.

Consider the set Z = {Z}, Z |u € P} of zig-zag paths. We have the
following lemmas.

Lemma 2.3. The cardinality of Z equals | P|.

Proof. Construct the graph G on V' = ZUP by adding all the edges {u, Z,}
and {u, Z;} for all u € P. Thus G is a bipartite graph. Also the degree of
any u in P is 2, by Remark 2.1. And, by the Remark 2.2, the degree of any
Z in Z is also 2. So (G is a 2-regular bipartite graph and, by the marriage
theorem, see [4], |P| = | Z]. O



Figure 3: On the left-hand side we have the case when Z is also a Z! for
some w # u. We denote this unique Z by Z;—:. On the right-hand side we
have the case when Z is a Z, for some w # wu. Similarly, we denote this
path by Z= .

Lemma 2.4. For any given segment uv with endpoints u and v with different
colours, there are exactly two elements of Z that use uv.

Proof. Let u and v be points in P with different colours. The segment
uv splits P into two sets of points P; and P, in convex position such that
PlﬂPQZ{U,’U}.

In P, u and v are next to each other. Suppose w.l.o.g. that in P, v
follows u in the clockwise direction. Lets take Z; = ZF in P, and Zy, = Z
in P,. The segment uw is the only one that is shared by Z; and Z,. Lets take
Zjir in P, as constructed before. By Remark 2.2, we can suppose w.l.o.g.
that Zjﬂr = Z for some unique w € P;. Clearly, Z in P is precisely the
zig-zag path that consists of the segments of Z; U Zs.

In a similar fashion, Z] = Z, in P, and Zj = Z, in P, define a unique
zig-zag path of the form either Z!, or Z_, in P that consists of the segments
of Z{ U Z,. As at least one of P; or P, are not empty, we have that Z; # Z]
or Zy # Z3. Thus the two paths defined above are different.

Finally, lets suppose that there exists Z = Z, such that uv belongs to
7. Suppose w.l.o.g. that w” € P; and that u is before v when traversing P
in the clockwise direction starting from w”.

We have two cases. If v is before u in Z when starting from w”, then
Z=Z1UZ2, where Zl :Z;— in P1 and ZQZZ,:— in PQ. Else, Z:Z{UZQ,

5



where Z] = Z in P, and Z) = Z, in P,. In both cases Z was already
constructed. The case when Z = Z_,, is similar.
We conclude that for each segment uv with endpoints coloured different,

there are exactly two elements of Z that use it. O

We compute now ), I(Z), where [(Z) is the length (number of seg-
ments) of Z.

Proposition 2.5. Let Py, ..., P, be a collection of points such that the points
m Py U. ..U Py are in conver position. Then there exists a set Z of zig-zag

paths such that
Z l(Z) =2 Z ninj,

zZeZ 1<, <k
1#J

where n; = |Py.

Proof. Construct Z as before. The result follows from Lemma 2.4 as any
segment that joins two points of different sets F; and P; is in exactly two
elements of Z. O

Theorem 2.6. Let Py,..., P, be a collection of points such that P = P, U
...UDPy is in convex position and |Py| > |Py| > ... > |P| . Then there exists
an alternating path of length at least |P| — | Py|.

Proof. Let n; = |Py|, 1 <i <k, and let Z be the set of zig-zag paths in P as
constructed before. From Proposition 2.5 and Lemma 2.3 the average length
of the elements in Z is

ZeZ 1<i,j<k
1#J
k
1

= —(n? —an) >n—ny.

n
i=1

By the basic principle of the probabilistic method, see [6], there exists an
element of Z of length at least n — n;. O

Corollary 2.7. Let P be a k-balanced point set with ks points. Then there
exists an alternating path of length (k — 1)s.

Proof. Follows directly from Theorem 2.6. 0J



3 Point sets with an odd number of colours

From the previous section we know that if we have a (2r 4 1)-balanced point
set P with (27 + 1)s points, there is an alternating path that covers at least
2rs + 1 points. For the case r = 1 we have the following example.

Figure 4: An example of a 3-balanced point set with 24 points and where
the maximum alternating path has length 16.

Let P be a point in convex position and with 3s points, s red, s blue and
s black. Furthermore, the red points are consecutive, the same as the blue
and black points. See Figure 4.

Then, any alternating path will cover at most 2s+1 points. So, our lower
bound is tight in the case r = 1. For r > 1, lets take P with n = (2r + 1)s
elements labelled with the integers {0,...,n — 1}. We color the point 7 with
colour j if (j —1)s < i < js, for some 1 < j < 2r 4 1.

Any alternating path induces a planar matching in P, where two points
are matched just if they have different colours. The maximum planar match-
ing with this property saturates (2r)s points. One of these maximum match-
ings is the one with edges {i,n — 1 — i} for 0 < i < rs — 1. This matching
induces a ziz-zag alternating path Z with endpoints 0 and (r + 1)s. We
can extend this alternating path Z to Z’ by adding the segment (r + 1)s,rs
but cannot be extended further. Thus, the alternating path Z’ is clearly
of maximum length and covers 2rs 4+ 1 points of P. We have the following
result.

Theorem 3.1. For any integer k > 1 odd, there exists a k-balanced point set
P with ks points such that any alternating path has length at most (k —1)s.

Therefore, the bound given in Corollary 2.7 is tight.
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4 Two colors revisited

In [2] it is proved that any 2-balanced point set in general position admits
an alternating path which covers at least half of the elements of P and starts
from any given point lying on the convex hull of P. Their proof is based on
the following lemma from [1]:

Lemma 4.1. Let Q be a point set with 2m points, m red such that there is
a line | that separates the blue from the red elements of Q. Then there is an
alternating path that covers all the elements of Q.

If the points in P are in convex position, the previous result implies that
we can find an alternating path which covers at least half of the elements
of P and starts from any given point of P. We give another proof of this
without using Lemma 4.1.

Theorem 4.2. Let P be a 2-balanced point set in convex position with 2s
points, and u be any element of P. Then there is a zig-zag alternating path
starting at u that covers at least s elements of P.

Indeed we will show that there are two zig-zag alternating paths starting
at u that together cover all the elements of P. See Figure 5.

30 4 3‘ 40

10° 9°

Figure 5: On the left-hand side we have Z] and on the right-hand side we
have Z, . Together they form a cycle that uses al the points.

Lemma 4.3. Z U Z; is a cycle that covers all the vertices of P.



Proof. Let [ be the line joining u with its antipode u™ with respect to Z;}.
Observe that if this line leaves k red points above it (unused by Z;), it leaves
exactly £ + 1 blue points below it (unused by Z;). Together with the first
and last vertices of Z," these points are the ones used by Z,. Our lemma
follows. O

The proof of Theorem 4.2 follows immediately.

5 Conclusions

If P is 2r-balanced, deciding if P has an alternating path which covers P can
be done in O(|P|?) by using a similar algorithm as in [3]. In general, finding
the maximum length of an alternating path in P can be done also in O(|P[?)
by dynamic programming as in [2].

Let P be a k-balanced point set with n = ks points. If k£ is odd, we have
shown that the lower bound (k — 1)s for the length of an alternating path
on P is tight. However the case k£ even appears to be more difficult and even
the case k = 2 has not been settled. The results in [2] indicate that probably
the right value for the lower bound is %n For k£ even, k£ > 2, our results give
a lower bound of %n, but further improvement could be expected in this
case.

The case when P is a set of points in general position is almost unexplored.
Some results are given in [2, 5] when P is coloured with 2 colours.
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