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Abstract

It is shown that if a simple Euclidean arrangement of n pseudolines has no (≥ 5)–gons, then
it has exactly n − 2 triangles and (n − 2)(n − 3)/2 quadrilaterals. We also describe how to
construct all such arrangements, and as a consequence we show that they are all stretchable.

1 Introduction

Our goal in this discussion is to analyze simple Euclidean arrangements of pseudolines in which
every bounded cell is either a triangle or a quadrilateral.

We recall that a simple noncontractible closed curve in the projective plane P is a pseudoline,
and an arrangement of pseudolines is a collection B = {P0, P1, . . . , Pn} of pseudolines that intersect
(necessarily cross) pairwise exactly once. Since P \ P0 is homeomorphic to the Euclidean plane
E, we may regard {P1, . . . , Pn} as an arrangement of pseudolines in E (and regard P1, . . . , Pn as
pseudolines in E). An arrangement is simple if no point belongs to more than two pseudolines.

The cell complex of an Euclidean arrangement has both bounded and unbounded cells. As in [5],
we are only interested in bounded cells (whose interiors are the faces). Thus it is clear what is
meant by a triangle, a quadrilateral, or, in general, an n–gon of the arrangement. In this work we
are interested in arrangements in which every bounded cell is either a triangle or a quadrilateral;
for obvious reasons we say that such an arrangement is (≥ 5)-gon—free.

One of the most interesting and widely studied problems concerning arrangements of lines and
pseudolines is the determination of upper and lower bounds for the number pk of k–sided faces. An
extensive amount of research in such problems followed Grünbaum’s seminal work [8] on arrange-
ments and spreads (see for instance [6, 13, 14]). In [5], it was proved that in every simple Euclidean
arrangement, p3 ≥ n− 2. Moreover, it immediately follows from the proof of Proposition 2.1 in [5]
that in every (≥ 5)-gon–free–arrangement, p3 = n − 2.

In this paper we describe procedure with which every (≥ 5)-gon–free simple Euclidean ar-
rangement can be recursively constructed from the (unique up to isomorphism) simple Euclidean
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lomeli@ifisica.uaslp.mx
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arrangement with 3 pseudolines. The central concept in this regard are twin pseudolines. Consider
a simple Euclidean arrangement of pseudolines B = {P1, P2, . . . , Pn}, and let Pi, Pj ∈ B. Then
the intersection point pi,j between Pi and Pj divides Pi (respectively Pj) into two subarcs, say Ai

and Bi (respectively Aj and Bj). We say that Pi and Pj are twin pseudolines (see Figure 1) if the
following hold:

P

Q

R

Figure 1: A simple Euclidean (≥ 5)-gon–free arrangement with 6 pseudolines. Pseudolines P and Q are
twin. The triangle defined by P, Q, and R, is P–critical and Q–critical, but not R–critical.

(i) One of Ai and Bi (say Bi, without any loss of generality) does not contain any intersection
point of Pi with the pseudolines in B \ {Pi, Pj}. Similarly, one of Aj and Bj (say Bj, without
any loss of generality) does not contain any intersection point of Pj with the pseudolines in
B \ {Pi, Pj}.

(ii) As we traverse each of Ai and Aj , starting at pi,j, we intersect the pseudolines in B \ {Pi, Pj}
in the exact same order.

Twin pseudolines are essential for the understanding of (≥ 5)-gon–free arrangements, as the
following statement reveals.

Theorem 1 In every simple (≥ 5)-gon–free Euclidean arrangement with at least 4 pseudolines
there are distinct pseudolines Q1, Q2, Q3, Q4 such that Q1 and Q2 are twin, and Q3 and Q4 are
twin.

Remark 2 Theorem 1 is best possible in every sense: (i) for each n ≥ 4 there is a simple (≥ 5)-
gon–free Euclidean arrangement A with n pseudolines, with exactly two pairs of twin pseudolines;
and (ii) for each n ≥ 5 there is a simple Euclidean arrangement A with n pseudolines, only one
(≥ 5)–gon, and such that A has no twin pseudolines.

The constructions that prove Remark 2 are given in Figure 2. Start by drawing P1, P2, P3, P4

as shown. Now suppose that for some r ≥ 4, {P1, P2, . . . , Pr} has been constructed. If r is even,
then add Pr+1 so that Pr−1 and Pr+1 are twin, in such a way that as we traverse Pr+1 from right
to left, the first curve in {P1, P2, . . . , Pr} we intersect is Pr−1. If r is odd, then add Pr+1 so that
Pr and Pr+1 are twin, in such a way that as we traverse Pr+1 from left to right, the first curve in
{P1, P2, . . . , Pr} we intersect is Pr. The simple Euclidean arrangement {P1, P2, . . . , Pr} obtained
at each step is (≥ 5)-gon–free, and has exactly two pairs of twin pseudolines, namely {P1, P2} and
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{Pr−1, Pr+1} if r is even, and {P1, P2} and {Pr, Pr+1} if r is odd. Now suppose that {P1, P2, . . . , Pk}
has been constructed for some k ≥ 4, and add a pseudoline Q (dashed pseudoline in this figure) as
illustrated. Then the simple Euclidean arrangement {P1, P2, . . . , Pk, Q} has no twin pseudolines at
all, and it has exactly one (≥ 5)–gon, namely the 5–gon bounded by P1, P2, Pk−1, Pk, and Q.

Q

Q

P1 P2

P3

P3

P4

P4

P5

P5

P6

P6

P7

P7

P8

P8

Pk−1

Pk−1

Pk

Pk

Figure 2: This construction shows that Theorem 1 is best possible (see Remark 2).

Theorem 1 not only gives a procedure to generate all simple (≥ 5)-gon–free Euclidean arrange-
ments, but also has a neat consequence in the realm of stretchability.

An arrangement of lines in E is a collection of straight lines, no two of them parallel. Thus
every arrangement of lines is an arrangement of pseudolines. On the other hand, not every ar-
rangement of pseudolines is stretchable, that is, equivalent to an arrangement of lines (recall that
two arrangements are equivalent if they generate isomorphic cell decompositions of E). Every ar-
rangement of 8 pseudolines is stretchable [7], but there is a simple non–stretchable arrangement
of 9 pseudolines [12] (unique up to isomorphism; see [9]). Stretchability questions are typically
difficult: deciding stretchability is NP–hard [16], even for simple arrangements [2].

The concept of stretchability is particularly relevant because of the close connection between
arrangements of pseudolines and rank 3 oriented matroids: on this ground, the problem of stretcha-
bility of arrangements is equivalent to the problem of realizability for oriented matroids (see [1, 11]).

The following consequence of Theorem 1 settles the issue of stretchability for (≥ 5)-gon–free
arrangements.

Theorem 3 Every simple (≥ 5)-gon–free Euclidean arrangement is stretchable.

The rest of this paper is organized as follows. Theorems 1, and 3, are proved in Sections 2, and 3,
respectively. In Section 4 we show that there are exponentially many nonisomorphic (≥ 5)-gon–free
arrangements.
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2 Simple Euclidean (≥ 5)-gon–free arrangements have

twin pseudolines: proof of Theorem 1

Before proceeding with the proof of Theorem 1, we establish a straightforward, yet essential, ob-
servation.

Claim 4 If B is a simple Euclidean (≥ 5)-gon–free arrangement, then every subarrangement of B
is also (≥ 5)-gon–free.

Proof. If an arrangement has an r–gon D with r ≥ 5, and we add a pseudoline P to it, then either
P leaves D untouched, or divides D into two polygons, at least one of which has at least 5 sides.
In either case, the augmentated arrangement also has an r–gon with r ≥ 5.

Proof of Theorem 1. First we show that there is at least one pair of twin pseudolines.
We proceed by induction on n. It is readily checked that the statement holds for the unique (up

to isomorphism) simple Euclidean arrangement with 4 pseudolines. Thus we assume it holds for
n = k ≥ 4, and consider a simple Euclidean (≥ 5)-gon–free arrangement B = {P1, P2, . . . , Pk+1}.

By the inductive hypothesis and Claim 4, B\{Pk+1} has a pair of twin pseudolines, say (without
any loss of generality) P1 and P2. Moreover, we may also assume without any loss of generality
that as we traverse P1 (and P2 as well, since they are twin), we meet P3, P4, P5, . . . , Pk in this order.
Thus, for each i, 3 ≤ i ≤ k − 1, P1 and P2 form a quadrilateral with Pi and Pi+1, and P1, P2, and
P3 form a triangle. We will refer to quadrilaterals formed by P1, P2, together with Pi and Pi+1, for
some i, 3 ≤ i ≤ k − 1, as basic quadrilaterals.

Thus the layout of P1, P2, . . . , Pk is as illustrated in Figure 3.

P1

P2

P3

P4Pk

Figure 3: The pseudolines P1 and P2 are twin in the arrangement {P1, P2, . . . , Pk}.

Suppose first that Pk+1 crosses P1 or P2 to enter a basic quadrilateral. Then it must cross both
P1 and P2 in the same quadrilateral (otherwise a pentagon would be formed, contradicting the
assumption that B is (≥ 5)-gon–free), and so clearly P1 and P2 are also twin in B. Thus for the
rest of the proof we assume that Pk+1 crosses neither P1 nor P2 in a basic quadrilateral.

Now suppose that Pk+1 crosses the triangle defined by P1, P2, and P3. The exchangeable role
between P1 and P2 then allows us to assume that Pk+1 crosses P1 in this triangle. If Pk+1 leaves
the triangle by intersecting P2, then we are clearly done, since then P1 and P2 are still twin in B.
Thus we assume that Pk+1 leaves the triangle by intersecting with P3. Now after intersecting P3

(and thus entering the basic quadrilateral defined by P1, P2, P3, and P4), Pk+1 must then intersect
P4, as otherwise a 5–gon would be formed, contradicting the assumption that B is (≥ 5)-gon–free.
The same reasoning shows that Pk+1 must intersect P4, P5, . . . , Pk in the given order. Thus Pk+1

intersects P2 either before intersecting P1 or after intersecting Pk. It is straightforward to check
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that in either case P2 and Pk+1 are twin in B. Thus for the rest of the proof we assume that Pk+1

does not cross the triangle defined by P1, P2, and P3.
The third case we analyze is when Pk+1 intersects both P1 and P2 after they have already

intersected Pk. That is, as we traverse P1 we intersect the other pseudolines in the order P2, P3, . . . ,
Pk, Pk+1, and as we traverse P2 we intersect the other pseudolines in the order P1, P3, . . . , Pk, Pk+1.
In this case P1 and P2 are clearly also twin in B.

The remaining possibilities to be explored are that either (i) Pk+1 intersects P1 before P2 in-
tersects P1; or (ii) Pk+1 intersects P2 before P1 intersects P2. Note that (i) and (ii) do not ex-
clude each other. These conditions are equivalently described as follows: either (i) P1 intersects
Pk+1, P2, P3, . . . , Pk in the given order; or (ii) P2 intersects Pk+1, P1, P3, . . . . , Pk in the given order.
Again the exchangeable roles of P1 and P2 allows us to assume that (i) applies. Also by exchanging
P1 and P2 if necessary we may assume that as we traverse Pk+1 in one of the two possible direc-
tions we intersect P1 and the next pseudoline we intersect is Pi with i ≥ 3. It is straightforward to
check that if i 6= 3, then P1, P2, Pk+1, Pi, and P3 contribute to a (≥ 5)–gon (see Figure 4). Thus
i = 3. The same reasoning shows that the next pseudoline that Pk+1 intersects must be P4, and
so on. Thus Pk+1 intersects P1, P3, P4, . . . , Pk in this order, and it must intersect P2 either before
intersecting P1 or after intersecting Pk. As illustrated in Figure 5, it is readily checked that in
either case P2 and Pk+1 are twin in B.

P1

P2

P3P4
Pk Pi

Pk+1

Figure 4: If Pk+1 intersects Pi before intersecting P3, then Pk+1, Pi, P3, P2, P1 contribute to a (≥ 5)–gon.

P1

P2

P3P4
Pk

Pk+1

Figure 5: If Pk+1 intersects P1, P3, P4, . . . , Pk in this order, then Pk+1 could intersect P2 as in the dashed
extension or as in the dotted extension. In either case, P2 and Pk+1 are twin.
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We have thus proved that there is at least one pair of twin pseudolines, as claimed at the
beginning of the proof.

We finally show that there are at least two distinct pairs of twin pseudolines, as claimed in
Theorem 1. Again we proceed by induction on n, and the base case n = 4 is easily checked. Thus
we assume the statement holds for n = k ≥ 4, and consider a simple Euclidean (≥ 5)-gon–free
arrangement B = {P1, P2, . . . , Pk+1}. We assume without any loss of generality that P1 and P2 are
twin pseudolines in B.

By the inductive hypothesis, B\{P1} has two disjoint pairs of twin pseudolines. Then at least one
of these pairs, say {Pi, Pj}, is disjoint from {P2}. Since Pi and Pj are twin pseudolines in B \{P1},
then as we traverse P2 and we intersect Pi, immediately after that (in B\{P1}) we intersect Pj . On
the other hand, P1 and P2 are twin in B, and so P1, P2, Pi, and Pj must form a basic quadrilateral
in B. Therefore Pi and Pj are also twin pseudolines in B. Since {P1, P2} ∩ {Pi, Pj} = ∅, this
completes the proof.

3 Simple Euclidean (≥ 5)-gon–free arrangements are stretchable:

proof of Theorem 3

We proceed inductively. The unique (up to isomorphism) simple Euclidean (≥ 5)-gon–free ar-
rangement with 3 pseudolines is clearly stretchable. Now fix k ≥ 3, and suppose that every
simple Euclidean (≥ 5)-gon–free arrangement with k pseudolines is stretchable, and let B =
{P1, P2, . . . , Pk+1} be a simple Euclidean (≥ 5)-gon–free arrangement. By Theorem 1, there is
a pair of twin pseudolines in B, say Pk and Pk+1 without any loss of generality.

By the inductive hypothesis, B \ {Pk+1} is stretchable, so it can be equivalently drawn with
P1, P2, . . . , Pk as straight lines. It now suffices to observe that since Pk and Pk+1 are twin, then
Pk+1 may be added as a straight line, if it is drawn sufficiently close to Pk.

4 On the number of nonisomorphic (≥ 5)-gon–free arrangements

Our aim in this section is to show that there are exponentially many nonisomorphic (≥ 5)-gon–free
arrangements.

We note that there are several types of isomorphism for pseudoline arrangements (see for in-
stance [10]). We will explore two natural, important types of isomorphism, and show that under
both criteria there are exponentially many nonisomorpohic (≥ 5)-gon–free arrangements.

4.1 Isomorphism by local sequences

In order to consider a standard, widely studied type of isomorphism, it is useful to work with
the representation of arrangements illustrated in Figure 6. The type of isomorphism we now
analyze arises from considering the order in which each pseudoline gets intersected by the other
pseudolines (this is the local sequence of the pseudoline). For instance, the local sequences of
the first arrangement in Figure 6 are ℓ(P1) = P2P3, ℓ(P2) = P1P3, and ℓ(P3) = P1P2, whereas
the local sequences for the second arrangement are ℓ(P1) = P2P3, ℓ(P2) = P1P3, and ℓ(P3) =
P1P2. Two arrangements are isomorphic by local sequences (for brevity, just isomorphic throughout
this subsection) if and only if they have the same local sequences. If we regard arrangements as
reflection networks, this isomorphism corresponds to the equivalence relation defined by Knuth [9]
(see also [4]).
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Figure 6: These arrangements are combinatorially equivalent, but not isomorphic by local sequences.

Let us call a simple Euclidean (≥ 5)-gon–free arrangement on n pseudolines with exactly k pairs
of twin pseudolines a (k, n)–arrangement.

A pseudoline P in arrangement A is a twin pseudoline in A if there is a pseudoline Q in A such
that P and Q are twin pseudolines in A. If no such pseudoline Q exists, then P is nontwin in A.

For integers k ≥ 1, n ≥ 4, let A(k, n) denote the number of nonisomorphic (k, n)–arrangements
(thus, in particular, it follows from Theorem 1 that A(1, n) = 0 for every n ≥ 4). Consider a
(k, n)–arrangement A, and a twin pseudoline P in A. If we add a pseudoline Q to A, so that P and
Q are twin in A∪ {Q}, the result is a (k, n + 1)–arrangement. Now there are two (nonisomorphic)
ways to add such a pseudoline Q. Since there are 2k twin pseudolines in A, it follows that there are
4k such ways to generate a (k, n + 1)–arrangement from A. Now consider a (k− 1, n)–arrangement
B, and a nontwin pseudoline P in B. If we add a pseudoline Q to B, so that P and Q are twin in
B ∪ {Q}, the result is a (k, n + 1)–arrangement. Since there are two (nonisomorphic) ways to add
such a pseudoline Q, and there are n− 2(k − 1) nontwin pseudolines in B, it follows that there are
2(n − 2(k − 1)) such ways to generate a (k, n + 1)–arrangement from B. It is not difficult to check
that if we perform the first operation on each twin pseudoline in each (k, n)–arrangement, and the
second operation on each nontwin pseudoline in each (k − 1, n)–arrangement, the global result we
obtain is that every (k, n + 1)–arrangement gets generated exactly k times. Therefore we obtain
the recurrence 4k · A(k, n) + 2(n − 2(k − 1)) · A(k − 1, n) = k · A(k, n + 1), for k ≥ 2 and n ≥ 4.

Using this recurrence we may obtain the exact number of nonisomorphic simple Euclidean (≥ 5)-
gon–free arrangements on n pseudolines, for every n. Now to obtain an easy bound, first note
that A(2, 4) = 8. This follows since all arrangements with 4 pseudolines have two pairs of twin
pseudolines, and there are 8 nonisomorphic arrangements with 4 pseudolines (see [9] or [10]). Using
the recurrence and A(2, 4) = 8, we obtain A(2, n) = 2 · 4n−3. Thus the number of nonisomorphic
simple Euclidean (≥ 5)-gon–free arrangements with exactly two pairs of twin pseudolines is already
exponential in n.

4.2 Combinatorial equivalence

Throughout this section we consider the criterion under which two arrangements are isomorphic
(or combinatorially equivalent) if there is an incidence– and dimension–preserving bijection between
their induced cell decompositions (see [3]). It is readily checked that, up to isomorphism, there is
exactly one arrangement with 3 pseudolines, and exactly one arrangement with 4 pseudolines.

For each n ≥ 3 let Tn denote the set of all rooted full binary trees on 2n−1 vertices (consequently
n leaves), in which every leaf is labeled with a 1, and the label of each internal vertex is the sum of
the labels of its two children. Thus the root of each tree in Tn is labelled n. The key observation
is that, for each n ≥ 3, there is a set An+1 of pairwise nonisomorphic (≥ 5)-gon–free arrangements
of n + 1 pseudolines, and a two–to–one mapping from the set Tn to An+1. The correspondence
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is illustrated in Figure 7. The mapping is two–to–one because the arrangements obtained from
a tree and its reflection (around the root) are equivalent. On the other hand, if T ′ is not the
reflection around the root of T , then the arrangements induced by T ′ and T are not equivalent:
this is easily checked if we view the arrangement from the perspective of the topmost horizontal
line. A standard counting argument shows that |Tn| grows exponentially with n. Thus under this
type of isomorphism there are exponentially many nonisomorphic simple Euclidean (≥ 5)-gon–free
arrangements.

1

1

1 1 1111

1

2

2

2 2

3 4

7

9

Figure 7: How to associate a (≥ 5)-gon–free arrangement with n + 1 pseudolines to each labelled tree in
Tn. Here we show a labelled tree in T9 and its associated (≥ 5)-gon–free arrangement with 10 pseudolines.
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