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Abstract

Let G be a connected plane geometric graph with n vertices. In this paper, we
study bounds on the number of edges required to be added to G to obtain 2-vertex
or 2-edge connected plane geometric graphs. In particular, we show that for G to
become 2-edge connected, 2n

3 additional edges are required in some cases and that 6n
7

additional edges are always sufficient. For the special case of plane geometric trees,
these bounds decrease to n

2 and 2n
3 , respectively.

1 Introduction

A classical problem in graph theory is that of augmenting the connectivity of a graph
G by adding to it as few edges as possible. The problem of increasing the connectivity
of a connected graph to make it 2-vertex or 2-edge connected using the smallest possible
number of edges can be solved in linear time [8]. For k = 3, 4 polynomial time algorithms
for augmenting a k − 1-vertex connected graph to a k-vertex connected graph have been
known for some time (see [24, 15]); only recently a polynomial time algorithm for this
problem has been found for any fixed k [17]. A survey in which these problems are
described within a more generic framework is given in [20].

The problem of increasing the connectivity of planar graphs was studied by Kant [18,
19]. He proved that it is NP -hard to determine the minimum number of edges required to
be added to augment a given planar graph into a 2-vertex connected planar graph. The
corresponding problem for 2-edge connectivity, i.e, determining the minimum number of
edges we have to add to augment a given planar graph into a 2-edge connected planar
graph, is open.

In this paper we study the following problem: let G be a connected plane geometric
graph. How many edges must be added to G in such a way that the plane geometric
graph we obtain is 2-edge or 2-vertex connected? We show that for G to become 2-edge
connected, 2n

3 additional edges are required in some cases and that 6n
7 additional edges are

always sufficient. If G is a plane geometric tree (a plane connected geometric graph with
n vertices and n− 1 edges), the addition of 2n

3 edges is always sufficient to make it 2-edge
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connected and n
2 edges are sometimes required. Moreover, if G has b blocks, then it can be

completed to a 2-vertex connected plane geometric graph by adding at most b− 1 edges.
A closely related problem for geometric graphs was studied by Rappaport [22]. He

proved that the problem of deciding whether a plane geometric graph G which is a set
of polygonal chains admits a simple circuit (a geometric graph which is a cycle) is NP-
complete. This paper was perhaps the first of a series of papers by several authors in which
the objective is to find planar geometric graphs that have some specific structure [2, 12,
13, 14, 16].

Let us recall some standard notations and definitions. Let G = (V, E) be a graph. A
graph is k-vertex connected (resp. k-edge connected) if the deletion of any set of at most
k − 1 vertices (resp. k − 1 edges) of G results in a connected graph. If G is a graph and
e one of its edges, G− e will denote the graph obtained by removing e from G. Similarly
G + e will denote the graph obtained by adding to G an edge e not in G. An edge e with
vertices u and v will be denoted by uv.

A vertex v of a graph G is called a cut vertex if G− v is not connected. A graph with
no cut vertices is called a block. Given a graph G, a maximal subgraph that has no cut
vertices is called a block of G. Observe that if G is a tree, the blocks of G are its edges. A
block of a graph with at least 3 vertices is 2-vertex connected. An edge e of a graph G is
called a bridge if G− e is not connected.

According to [11], a geometric graph is a graph G such that its vertex set is a set of
points on the plane in general position (no three points being collinear), and its edge set
is a set of line segments joining pairs of vertices of G. A geometric graph G is plane if
no two edges of G intersect except at a common vertex. Plane geometric graphs are also
known in the literature as plane straight line graphs.

All geometric graphs considered here will be plane. We will also assume that all our
graphs have n vertices, n ≥ 3, and that they are connected. A plane geometric graph G is
called a triangulation if all of its faces, except perhaps for the unbounded face of G, are
triangles.

The paper is organized as follows. In Section 2 we study the problem of obtaining
2-vertex connected graphs, in Section 3 we study the problem of adding edges to a plane
geometric tree to obtain a 2-edge connected plane geometric graph, and in Section 4 we
study the problem of obtaining 2-edge connected plane geometric graphs from generic
plane geometric graphs. We make some concluding remarks in Section 5.

2 Two-Vertex Connected Plane Geometric Graphs

A set of points in the plane is in convex position if the elements of the set are the vertices of
a convex polygon. Observe that if G is a plane geometric graph with at least two vertices
and whose vertices are in convex position, then G is an outerplanar graph, and thus it
has at least two vertices of degree two or less. Therefore the edge and vertex connectivity
of G are at most two. Hence we only study problems regarding the completion of plane
geometric graphs to 2-vertex and 2-edge connected graphs.

In this section, we solve the problem of finding the maximum number of edges that
must be added to a plane geometric graph to obtain a 2-vertex connected plane geometric
graph.

Theorem 1. Let G be a connected plane geometric graph with b blocks. Then G can be
completed to a 2-vertex connected plane geometric graph by adding at most b− 1 edges to
G. This bound is tight.
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Proof. The proof proceeds by induction on the number of blocks of G. Recall that G
contains at least three vertices. If G has exactly one block, then it is already 2-connected
and no edges need to be added.

Suppose, then, that G has at least two blocks, and let v be a cut vertex of G. We
now prove that we can add one edge to G so that we obtain a plane geometric graph with
fewer blocks than G. This will prove our result. Let us divide the vertices of G − v into
two disjoint sets: a set V1 formed by the vertices of one of the components of G− v, and
a set V2 containing the remaining vertices of G − v. By construction, the vertices of V1

are in a block different from those containing the elements of V2. A folklore result for
plane geometric graphs asserts that any plane geometric graph G can be completed to a
triangulation T . Observe next that no triangulation contains a cut vertex. It follows now
that there is an edge e in T that joins two vertices, one in V1 and the other in V2, for
otherwise v would be a cut vertex in T . By adding e = (v1, v2) to G we obtain a plane
geometric graph in which the edges contained in any simple path from v1 to v2 are in a
new common block.

To prove that the bound is tight, we observe that if G is a zig-zag path whose vertices
are in convex position, it has exactly n − 1 blocks (its edges), and to make it 2-vertex
connected, we need to add to G exactly n− 2 edges.

3 Two-Edge Connected Plane Geometric Graphs from Trees

We observe next that a similar idea to that used in the proof of Theorem 1 can be used
to increase the edge connectivity of a plane geometric graph.

Let e be a bridge of a plane geometric graph G, and let H1 and H2 be the components
of G− e. As in the proof of Theorem 1, if we add edges to G until we get a triangulation,
there must be an edge f 6= e joining a vertex in H1 to a vertex in H2. Clearly e is no
longer a bridge in G + f . Thus we have:

Lemma 1. Let G be a plane geometric graph with k bridges. Then G can be completed to
a 2-edge connected plane geometric graph by adding at most k edges to G.

It is straightforward to see that in some cases, k edges are necessary.

3.1 Method 1 for Trees

The next lemma will be useful for improving the previous bound for the case when G is a
tree.

Lemma 2. Let G be a plane geometric graph and e = uv a bridge of G. Let H1 and H2

be the components of G− e such that u ∈ H1. Then if H1 has more than one vertex, there
is an edge f = v′w such that G + f is planar, v′ ∈ H2, w ∈ H1, w 6= u, and thus e is no
longer a bridge of G + f .

Proof. Let T be a triangulation that contains G as a subgraph. In T we must necessarily
have at least one edge f = v′w connecting a vertex w 6= u of H1 to v, for otherwise u
would be a cut vertex of T .

We can now prove:

Lemma 3. Let G be a plane geometric tree with h leaves. Then G can be completed to a
2-edge connected plane geometric graph by adding to it at most bn+h−2

2 c edges.
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Proof. Let S be the set of edges of G such that none of its vertices is a leaf; let |S| = m,
m + h = n − 1. Observe that for any edge e ∈ S, the components of G − e have at least
two vertices.

The proof is constructive, and in each step we add a new edge creating a cycle that
contains at least two bridges of G. We start with a leaf, v, of G. Let e = uv be the edge of
G incident to v. Since the component of G− e containing u has at least two vertices, then
by Lemma 2 there is an edge f = vw such that G1 = G + f is a plane geometric graph,
u 6= w. Moreover G1 contains a cycle C1 with at least two edges of G. Let H1 = C1, the
only 2-edge connected component of G1.

If G1 is not 2-edge connected, let e = uv (if it exists) be a bridge of G1 such that v is
a vertex of H1 and the second component F of G1− e has at least two vertices. Note that
F is a tree. By Lemma 2, there is an edge f = v′w, u 6= w, such that w is a vertex of F
and G1 + f is plane. Observe that when we add f to G1 we create a cycle C2 containing
at least two bridges of G1, e and a bridge in the path from u to w in G. Let G2 = G1 + f ,
and H2 be the subgraph of G2 obtained by adding to H1 the edges of C2 not in H1. Thus,
the only 2-edge connected component of G2 is H2.

We iterate this process by adding in each step a new cycle to the 2-edge connected
component. In a generic step i, we search for a bridge e = uv of Gi such that v is a
vertex of Hi and the second component F of Gi− e has at least two vertices, and then we
define the graphs Gi+1 and Hi+1 as before. The process stops when the graph obtained,
Gi, is 2-edge connected or all the edges of Gi not in Hi are leaves, that is, until the
bridge e we were seeking above does not exist. In this last case, we use an extra edge
to eliminate the bridges on the remaining leaves. Clearly during the process we added at
most bm+1

2 c+ h− 1 = bn+h−2
2 c edges.

As a corollary we have:

Corollary 1. Let G be a plane geometric graph that is a path. Then it can always be
completed to a 2-edge connected plane geometric graph by adding at most bn/2c edges; the
bound is tight.

The bound is again achieved when G is a zig-zag path and its vertices are the vertices
of a convex polygon.

The bound given in Lemma 3 is, however, poor if G has many leaves. We present below
a different method which gives better results for this case.

3.2 Two Lemmas

Our objective now is to show that any plane geometric tree can be completed to a 2-edge
connected plane geometric graph with the addition of at most 2n

3 edges.
Before we prove this result, some remarks are in order. In general, we want to increase

the edge connectivity of a plane geometric graph G. To achieve this we will take a second
plane geometric graph H (not necessarily connected) and consider the union of G and H.
The main requirement is that G∪H also be a plane geometric graph. We will also use the
following technical trick that will allow us to simplify our proofs. In what follows it could
happen that H has some edges in common with G. If an edge uv is an edge in G and H,
we will consider u and v to be joined by two edges, i.e. we will admit multiple edges. We
will color the edges of G black, and the edges of H red. Thus if u and v are joined by two
edges, one will be black, and the other red. The black edges will always remain, while the
red edges may be deleted and inserted throughout the procedures.
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Figure 1: Illustration of Lemma 5.

In all of the figures here, red edges will be represented by dashed curves. We stress
that the edge represented by the dashed curve is in fact a straight line segment, and that
for our purposes we will consider double edges as non-intersecting.

For a trivial example, to obtain a 2-edge connected plane geometric graph from a plane
geometric tree G, we can proceed as follows. Let H be isomorphic to G, and let G′ = G∪H.
Then G′ is 2-edge connected. Indeed any two vertices in G′ are joined by two edge disjoint
paths, a black path in G, and a red path in H.

The next lemma will prove useful and will allow duplicated edges to be eliminated.

Lemma 4. Let G′ = G∪H be a planar geometric graph such that G′ is 2-edge connected.
Edges of G are coloured black and edges of H are coloured red. Let u and v be two vertices
of G′ that are joined by a black and a red edge, e and e′ respectively. Then we can either
eliminate e′ or substitute it by another red edge f such that G′− e′ or G′− e′+ f is 2-edge
connected. In the second case, f can be chosen such that it does not create a new double
edge.

Proof. If there is a cycle which uses e and bypasses e′, we can eliminate e′, and G′ − e′

remains 2-edge connected. Suppose there is no such cycle. Then e is a bridge of G′ − e′.
By Lemma 2, there is an edge f 6= e such that G′− e′+ f is a plane geometric graph. It is
easy to see that G′− e′+ f is 2-edge connected. Clearly f is not part of a double edge.

A plane geometric perfect matching of a point set P with 2m elements is a set of m
disjoint segments joining pairs of elements of P . We will use the two following results
which are interesting in themselves.

Lemma 5. Let P be a simple polygon and let R = {r1, . . . , rl} be the set of reflex vertices
of P . Let A be a subset of the vertex set of P with an even number of elements such
that R ⊂ A. Then there is a plane geometric perfect matching M of A such that the line
segments determined by M are contained in the interior or lie on the boundary of P .

Proof. The proof is by induction on the number of reflex vertices of P . The result is clearly
true if P is convex. Suppose then that P has at least one reflex vertex r. Let ` be an open
line segment contained in the interior of P such that ` splits P into two polygons P1 and
P2 such that one endpoint of ` is r, and r is a convex vertex in both of P1 and P2; see
Figure 1.

Let A1 and A2 be the subsets of A−{r} that are vertices of P1 and P2 respectively. One
of them, say A1, has an even number of elements, while A2 has an odd number of elements.
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Figure 2: Part a) shows the given tree. Part b) shows the weakly simple polygon P ′ =
(u, u1, u2, u, v5, v7, v5, v6, v5, v4, v3, v4, v5, u, v2, v1, v2, u). Part c) shows the simple polygon
P obtained from P ′. The copies chosen to form the matching M are in black. Part d)
shows the tree augmented with M. Edges of M are represented by dashed curves.

Since r is no longer a reflex vertex, both A1 and A2 have fewer reflex elements than A. By
adding r to A2, and applying induction on P1 and A1, and P2 and A2, respectively, the
result follows.

Lemma 6. Let G be a plane geometric tree with an even number of vertices. Then there
is a perfect matching M on the set of vertices of G such that the graph G′ obtained by
adding to G the edges of M is a plane geometric graph, possibly with multiple edges. If
two vertices of G′ are joined by two edges, one of them belongs to G and the other to M.

Proof. Let G be the given plane geometric tree and 4 a triangle that encloses all the
vertices of G, such that one vertex of G, say u = vn is also a vertex of 4. By duplicating
the edges of G and traversing externally the edges, starting at u, we obtain a weakly simple
polygon P ′ with 2(n − 1) + 3 edges (a weakly simple polygon is a closed polygonal chain
without self-crossings). Figure 2b shows how this weakly simple polygon P ′ is built.

It is well-known that any weakly simple polygon P ′ can be transformed into a simple
polygon P very close to it (see for example [3, 6, 14]). In our case, we proceed as follows.
Each time that a vertex v of the tree appears in P ′, if it appears in the sequence vi, v, vk,
then substitute vertex v by a vertex v′ on the bisector of the clockwise angle vivvk and
placed it at a distance arbitrarily small ε from v. Linking these new vertices in the same
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order as they are created we obtain the simple polygon P being sought (see Figure 2c).
Note that G lies on the complement of P .

Let us call these added vertices v′ copies of v. If v has degree k, the set Sv of copies of
v has k elements, except for Su that contains as many copies of u as the degree of u plus
one. Notice that, by construction, at most one copy of each vertex v can be reflex in P .

Therefore, by choosing in each set Sv the reflex copy of v, if it exists, or an arbitrary
copy of v otherwise, we can form a perfect matching of these n copies in the interior of
P . Besides, if ε is small enough we can substitute each segment v′w′ between copies by
the segment vw between vertices of G, without producing crosses (but perhaps producing
duplicated edges), thus obtaining the matching sought (see Figure 2d).

3.3 Method 2 for Trees

We now outline how to complete a plane geometric tree G to a 2-edge connected plane
geometric graph using few edges. Remember that the edges of G are coloured black and
the other edges are coloured red. In a nutshell, the algorithm used to accomplish this task
is as follows:

Algorithm 1

Phase 1. Matching
Given G, construct M and G′ as in Lemma 6. Let C1, . . . , Cs be the 2-edge con-
nected components of G′.

Phase 2. Merging components with 2 and 4 vertices
Add and delete some suitable red edges of G′ to obtain a geometric graph G′′ such
that G is still a subgraph of G′′, G′ and G′′ have the same number of edges, and
all the 2-edge connected components of G′′ contain at least 6 nodes.

Phase 3. Merging components with at least 6 edges
Add some extra edges to G′′ by using the techniques described in Lemma 2 to
eliminate all bridges.

End Algorithm 1

Observe that at the end of Phase 1, the components C1, . . . , Cs have the following
properties:

1. They are vertex disjoint.

2. They are joined by exactly s− 1 bridges. Moreover, the graph T ′ whose vertices are
C1, . . . , Cs, two of which are adjacent if there is a bridge that joins them, is a tree.

3. If we add an edge joining a vertex of Ci to a vertex in Cj , the resulting graph has
a new 2-edge connected component containing all the vertices of the components in
the path joining Ci to Cj in T ′.

4. If a component Ci of G′ has k edges of M, then Ci has exactly 2k nodes, since M
is a perfect matching. Moreover, these nodes are connected by exactly 2k − 1 edges
of G.
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For the tree shown in Figure 3 (left), the graph G′ obtained by adding M to it has two
2-edge connected components, one of which has two vertices, and the other six. They are
joined by the bridge uw.

u

v

u

v

w

f

e’

w

Figure 3: The 2-edge component uv can be joined to another component by deleting edge
e′ and adding edge f .

Now we show the details of Phase 2. Complete G′ to a triangulation T . Given any
2-edge component Ci of G′, as T has to be 2-edge connected, then there must exist in T
at least one empty triangle uvw such that u, v ∈ Ci and w 6∈ Ci. These empty triangles
uvw will be used in the process of merging components, where some of the red edges of G′

will be changed for other edges of T , using the method given in the following lemma.

Lemma 7. Let G′ be a plane geometric graph obtained by adding a set E of red edges to
a plane geometric tree G (the black edges). Let Ci be a 2-edge connected component of G′.
Suppose that there is an empty triangle uvw such that u, v ∈ Ci, w 6∈ Ci, and that in the
path Π from u to v in G (a path formed by black edges contained in Ci) there is a double
edge, i.e., a black edge e = u′v′ and a red copy e′. Then we can join Ci with the component
containing the vertex w, using the same number of red edges as G′.

Proof. Without loss of generality, suppose that, when edge u′v′ is deleted from the tree G,
u, u′ and w are in the same component of G, and v and v′ are in the other component.
Let Π1 be the path joining u′ and w in G and let Π2 be the path joining v′ and v in G.
As Π1, edge u′v′, Π2 and edge vw form a cycle, necessarily vw is neither an edge of G nor
an edge of E. Then, by adding the new red edge vw to G′ and deleting the red copy e′ we
keep the 2-edge connectivity of Ci and we join it to the 2-edge component containing w.

As a component Ci of G′ with two vertices consists of a double edge, a black edge
uv and a red copy e′, and there is an empty triangle uvw in T , then we can apply the
previous lemma to join Ci to the 2-edge component containing w, by adding f = uw (or
f = vw) and deleting e′. See Figure 3 for an example. Note that G′ + f − e′ is a plane
geometric graph. This process can be applied to the new graph obtained, to successively
eliminate all the 2-edge connected components with two vertices. Thus, a new graph G′′ is
obtained with the same number of edges as G′ and no 2-edge connected components with
two vertices.

We now show how to join the 2-edge connected components of G′′ with four vertices
to other components of G′′ without increasing the number of edges of G′′. Let Ci be a
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2-edge connected component of G′′ with four vertices. There are five different ways (up to
isomorphisms) in which the black and red edges are distributed in Ci. These are depicted
in Figure 4. Cases a), b) and c) correspond to the different ways in which Ci can appear in
G′ or G′′, knowing that the red edges are in M. Cases d) and e) can occur when we join a
2-edge connected component with two vertices to another one using the previous method.

In cases b) and d) we can eliminate the red edges u′v and u′v′, respectively, retaining
the 2-edge connectivity of Ci. We can then join Ci to another component of G′′ by using
an extra edge of T . In case a) we can eliminate edge uu′ and add a red edge connecting u
to v, reducing the configuration to case e).

a

u v

u’ v’

b

u v u’ v’

c

u

v

u’

v’

d
u v u’ v’

u v

u’ v’

u v u’ v’

u

v

u’

v’

u v u’ v’

triangle emptyuvu’

e

u

v

u’

v’

u

v

u’

v’

triangle emptyuvu’

Figure 4: Components with four vertices.

We now show how to deal with cases c) and e). In both cases, Ci consists of a triangle
together with a double edge. Let us assume that the vertices of Ci are labelled as in c)
and e) in Figure 4, where the triangle is, counterclockwise, uu′v′, and the double edge is
uv.

Case c) We know that there is at least one empty triangle ∆ of T with two vertices in
Ci and the other vertex w 6∈ Ci. Then, if the two vertices of ∆ in Ci are vu, or vu′ or
vv′, we can apply the method given in the previous lemma. Otherwise, since segment uv
must belong to at least one empty triangle of T (or two of them if uv is not an edge on
the external face of T ), then uvv′, or uvu′, or both must be empty triangles of T . Hence,
without loss of generality, suppose that uvu′ is an empty triangle of T . Then, we can
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modify the red edges of Ci by taking as new red edges vu′ and uv′ (this last edge becoming
a double edge), instead of u′v′ and uv. This is the case shown in Figure 4c.

Again, if the two vertices of ∆ in Ci are v′u, or v′u′, we can apply the method of the
previous lemma. Otherwise, necessarily uv′u′, or uv′v, or both, are empty triangles of T
and the only possibility left for ∆ is to be a triangle of type uu′w. However, we have the
two empty triangles uvu′ and uu′w, and since it is impossible to have three empty triangles
with the same side uu′ in T , then uv′u′ cannot be an empty triangle and necessarily uv′v
must be the empty triangle. Then taking as new red edges of Ci the edges vv′ and uu′, we
can apply the method of Lemma 7.

Case e) This is solved in a similar way. Without loss of generality, suppose that the red
edge in the triangle uu′v′ is the edge uv′. If the two vertices of ∆ in Ci are vu, or vu′ or
vv′, we apply the previous lemma. Otherwise, uvv′, or uvu′, or both, are empty triangles
of T . If the triangle uvv′ is empty, then we can delete the two red edges of Ci, add the red
edge vv′ and use an extra red edge to join Ci with another 2-edge component. Suppose
then, that uvu′ is an empty triangle of T . We can modify the red edges of Ci by taking
as new red edges vu′ and u′v′, this last edge becoming a double edge (see Figure 4e).

Again, if the two vertices of ∆ in Ci are v′u, or v′u′, we can apply the previous lemma.
Otherwise, necessarily v′u′u, or v′u′v, or both, are empty triangles, and ∆ must be a
triangle of type uu′w. As before, triangles uu′w, uu′v and u′uv′ cannot be empty at the
same time, so the empty triangle is v′u′v. But then, we can delete the red edges vu′

and u′v′, add the red edge vv′ and use an extra red edge to join Ci with another 2-edge
component.

Summarizing, we have just proved:

Lemma 8. Let G be a plane geometric tree with n vertices. If n is even, then by adding
at most n

2 edges to G, we can obtain a plane geometric graph all of whose 2-edge connected
components have at least six vertices.

We can now prove:

Theorem 2. Any plane geometric tree G with n ≥ 6 vertices can be completed to a 2-edge
connected plane geometric graph by adding at most b2n/3c − 1 edges if n is even, and at
most b2(n + 1)/3c − 1 edges if n is odd.

Proof. For n even, and using Lemma 8, by adding at most n
2 edges to G we can obtain

a plane geometric graph such that all its 2-edge connected components have at least 6
vertices. We then have at most s = bn/6c components joined by exactly s − 1 bridges.
Each of the bridges can be eliminated by adding an extra edge to G′′ as in Lemma 2.

For n odd, we choose an arbitrary vertex v and we add a new vertex v′ (as if v had
been duplicated) connected to v by an edge of length ε, arbitrarily small. We apply the
lemma for this new tree and then we delete v′ and we connect to v the edges adjacent to
v′.

Observe that at this point we may have some double edges, which can now be eliminated
as in Lemma 4 without increasing the total number of edges.

With respect to the computational complexity of the proposed method, notice that
phase 1 of Algorithm 1, building a matching using vertices of a simple polygon P , as
described in Lemma 5, can be theoretically done in linear time. First, triangulate P , and
delete some diagonals to obtain a convex partition of P . This process can be done in linear
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time. The other two steps, the assignment of an even number of vertices to each convex
region and the matching among vertices in each region, can be done again with the same
complexity.

Similarly, phases 2 and 3 of the algorithm are linear. This is clear for phase 3 because
we can obtain a compatible triangulation in linear time, and also the 2-edge-connected
components and the bridges can be calculated with the same complexity. In phase 2,
merging components with 2 or 4 vertices, some of the edges of the triangulation are chosen
as new red edges, but the number of changes and candidates for changes are again O(n).
In order to choose one of these new edges, we have to decide, given an empty triangle uvw,
whether the duplicated edge u′v′ is in the black path from w to v or not. However, by
doing a linear time preprocessing step in the tree, this decision can be made in constant
time.

4 Connectivity for Arbitrary Plane Geometric Graphs

In the previous section, we provided a bound on the maximum number of edges that need
to be added to a plane geometric tree to obtain a 2-edge connected plane geometric graph.
In this section we study the same problem for arbitrary plane connected geometric graphs.

We now construct plane geometric graphs that need at least 2n−2
3 added edges to make

them 2-edge connected.
Let G1 be a triangulation with n1 vertices, k1 of which belong to the external face of

G. Then G1 has f1 = 2n1− k1− 1 faces and e1 = 3n1− k1− 3 edges. In each internal face
of G1, place an extra vertex adjacent to a vertex of the face. We also add k1 vertices in
the external face, close enough to the edges of the external face of G1. Each added vertex
is adjacent to one vertex of G1 as shown in Figure 5. Let G2 be the graph thus obtained.
G2 has n = 3n1− 2 vertices, 2n1− 2 of which have degree one. Clearly, to make G2 2-edge
connected, we need to add an edge for each of the 2n1 − 2 vertices of G2 of degree one.
We have proved:

Lemma 9. There are plane geometric graphs with n vertices that need at least 2n−2
3 added

edges to make them 2-edge connected.

Figure 5: A graph that requires 2n−2
3 extra edges.

We can also prove:
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Lemma 10. Any plane geometric graph G can be completed to a 2-edge connected plane
geometric graph by adding at most 6n

7 edges.

Proof. Observe first that any plane geometric graph with n vertices, c ≥ 2 faces, a edges,
and b bridges satisfies: 3c + 2b ≤ 2a. Using the Euler’s formula, n + c = a + 2, we obtain
2b ≤ 3n − a − 6. Then any geometric graph with at least a ≥ 9n

7 edges has at most 6n
7

bridges, and thus can be completed to a 2-edge connected graph by adding at most one
edge per bridge.

Suppose then that a is less than 9n
7 . Choose any spanning tree T of G. For any edge

e = uv of G not in T , choose a new vertex ve close enough to v, in the edge uv, remove
e from G and add the new edge uve (essentially edge uve is the same as edge uv). The
graph thus obtained is a tree with exactly a + 1 vertices. Then by Theorem 2 the graph
can be completed by adding to it at most

2(9n
7 + 1)
3

− 1 ≤ 6n

7
edges. Lastly, by deleting each added vertex ve and reconnecting the adjacent edges to ve

to v, where v is the endpoint of the edge e = uv closest to ve, we obtain the desired result.

Let k(n) be the smallest integer such that any connected plane geometric graph with
n vertices can be augmented to a 2-edge connected plane geometric graph by adding at
most k(n) edges. Combining Lemmas 9 and 10 we have:

Theorem 3. For n ≥ 6,
2n− 2

3
≤ k(n) ≤ 6n

7
.

We conclude by presenting a result that can in some instances help to reduce the
number of edges that need to be added to some plane geometric graphs to make them
2-edge connected. We say that a vertex of a graph G is odd if it has odd degree. A simple
polygon such that some of its edges belong to G and the others are line segments joining
pairs of visible vertices of G will be called a compatible cycle.

Lemma 11. Let G be a plane geometric graph. If there is a compatible cycle that contains
all the odd vertices of G, then G can be completed to a 2-edge connected plane geometric
graph by adding at most bn/2c edges.

Proof. Recall first that any graph has an even number of odd vertices. Let e = uv be a
bridge of G, and let G1 and G2 be the components of G−e, u ∈ G1. Since G1 and G2 must
have an even number of odd vertices, and u and v are the only vertices that change their
degrees in G1 and G2 with respect to the degrees in G of the vertices, then necessarily G1

and G2 contain an odd number of odd vertices of G. In particular, each of them contains
at least one odd vertex of G.

Suppose that G contains 2k odd vertices, k ≥ 1, and let P be a compatible cycle of
G containing all the odd vertices of G. Suppose that the odd vertices of G appear in the
order i0, . . . , i2k−1 along P . For j = 0, . . . , 2k−1, let Pj be the path contained in P joining
ij to ij+1, addition taken mod 2k.

Let S0 be the set containing all Pj for j even, and S1 the set of paths Pj , j odd. We
claim that if we add to G a red edge for each edge of a path in S0, the resulting graph
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G′ contains no bridges, and is therefore 2-edge connected. Observe that double edges are
allowed as before.

Suppose otherwise that G′ contains a bridge e. As we proved above, each of the
components of G− e, G1 and G2, has an odd number of odd vertices of G. It follows that
at least one of the paths in S0 must join an odd vertex of G1 to one in G2. This path
generates a red path in G′ from G1 to G2 that bypasses e, contradicting the assumption
that e is a bridge.

By symmetry, the graph obtained from G by adding a red edge for each edge in a path
of S1 contains no bridges, and thus is 2-edge connected. Observe that by Lemma 4, double
edges can be eliminated without increasing the total number of edges, keeping the graphs
2-edge connected.

Since either S0 or S1 contains at most bn
2 c edges, the result follows.

In particular, this result implies that any connected plane geometric graph whose ver-
tices are in convex position can be completed to a 2-edge connected plane geometric graph
with at most bn

2 c edges.

5 Conclusions

In this paper we have considered the problem of calculating the minimum number of edges
that can make every connected plane geometric graph with n vertices 2-edge or 2-vertex
connected. Upper and lower bounds were obtained for arbitrary connected plane geometric
graphs, and for plane geometric graphs which are trees.

Finally, we close with two conjectures:

Conjecture 1. Any plane geometric tree with n vertices can be completed to a 2-edge
connected plane geometric graph by adding at most n

2 ± c edges, c being a constant.

Conjecture 2. Any connected plane geometric graph with n vertices can be completed to a
2-edge connected plane geometric graph by adding at most 2n

3 ± c edges, c being a constant.
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