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Polygon Area Problems

Ralph P. Boland*

Abstract

In this paper we study the problem of preprocessing
a simple polygon so that, for any query chord of the
polygon, the area of the subpolygons determined by the
chord can be determined quickly. We give a solution to
this problem requiring linear space and preprocessing
time and constant query time. This is an improve-
ment by a factor of O (logn) in space, preprocessing
time, and query time over the best known algorithm.
Furthermore our solution is simpler as well; the most
complex operation involves the computation of the area
below a chain of length three. Finally we show that our
algorithm can be used to solve a number of closely re-
lated problems in the same time complexities.

1 Introduction

One of the basic problems of geometry is the compu-
tation of the area or volume of geometric objects. In
[2] a number of problems and algorithms are described
relating to the computation of the area or volume of
geometric objects. We focus on one these problems.

Let P = {uvg,...,v,_1} be a polygon and o be a
chord of P. We denote by P, the subpolygon of P
determined by o that contains vg on its boundary un-
less both of the subpolygons contain vy in which case
P, denotes the subpolygon that contains v, 1 on its
boundary.

Problem 1.1. Let P = {vg,...,v,_1} be a simple
polygon. Preprocess P so that for a query chord o
of P we can quickly determine the area of P, .

The solution to this problem presented in [2] re-
quires O (nlogn) preprocessing, O (nlogn) space and
O (logn) query time; see also [3]. In this paper we
present a solution to this problem that requires linear
preprocessing and space and O (1) query time and fur-
thermore our solution is much simpler. We also show
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Figure 1.1: A polygon P with a chord o and a pseudo
chord o (P, is simple).

that our algorithm can be used to solve several gener-
alizations of problem 1.1 with the same preprocessing,
space, and query complexities. Clearly, for all of these
problems, our solutions are optimal.

Our first step is to generalize Problem 1.1. We call
a line segment whose endpoints are on the boundary of
a polygon P a pseudo chord of P. Note that, unlike
a chord of P, a pseudo chord of P may intersect the
boundary of P at points other than the endpoints of
the pseudo chord and may do so multiple times. A
pseudo chord of P may also intersect the exterior of P.

Problem 1.2. Let P = {vg,...,vp—1} be a simple
polygon. Preprocess P so that for a query pseudo chord
o of P, such that P, is a simple polygon, we can quickly
determine the area of P,.

This problem includes Problem 1.1 as a special case.
However, the algorithm in [2] for solving Problem 1.1
cannot be used to solve Problem 1.2. In fact, at first
glance, this problem appears to require linear time since
o may intersect O (n) edges of P; see Figure 1.1. We
show however, that like Problem 1.1, this problem can
be solved with linear preprocessing and space and O (1)
query time. Furthermore the algorithm we present to
solve this problem is very simple; it doesn’t even require
the triangulation of P. We also show that the algorithm
can be generalized to work on self-overlapping polygons
(see [4]) once the area for such polygons is defined.
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2 Calculating the Area of a Poly-
gon

There are numerous methods of calculating the area
of a simple polygon; for a survey see [2]. Of particular
interest to us is the method known as the polar formula.
For any line segment 0 = (x4,¥,) (T, ys) we denote
A (0) = z,yp — Tpy,. We point out that A (o) equals
twice the area of the triangle whose vertices are the
origin and the endpoints of ¢ if a > b and the negative
of this value if a < b.

We denote the area of a polygon P by A (P). Let P =
{vo, €0,v1,€1,...,en_1} be a simple polygon. Then the
polar formula for the area of P can be written:

A(P) =

N | =

i A () (2.1)
=0

Note that the right hand side of equation 2.1 can be
applied to any polygon; that is the simplicity of P is
not assumed. We now turn equation 2.1 around and
say that equation 2.1 defines the area of P. Thus the
area of every polygon is defined and if the polygon is
simple then our definition of area corresponds to the
normal definition.

Now to solve Problem 1.2 and thus also Problem 1.1
we use the idea of partial sums. For each edge ej €
V (P) we denote:

k
Sk = ZK(%) (2-2)
i=0

We say that a pseudo chord ¢ of P is a pseudo diag-
onal of P if the endpoints of ¢ are vertices of P. Let o
be a pseudo diagonal of P with endpoints v;, vy where
j < k —1. Then by equations 2.1 and 2.2 we have:

A(P;) = l<1_ K(ei)+A(U)+n_ A(ei))

=0 i=k
= a(p)4 Bt A0
_ Sp—1 — 8p—1t+Sj-1+ K(O’)
- ' (2.3)

Consider now a chain C' with the same endpoints as
o. Let
C= {U] = w07h07w17h17 - - '7hm717wm = Uk:}

where the vertices of C are {w; : 0 <4 < m} C and the
edges of C are {h; : 0 <i < m}. Consider the polygon

Figure 2.1: Using methods similar to those described
here the polygons P, and P, can be preprocessed in
linear time so that the area of a query polygon P; de-
termined by line segments ¢; and o2 can be computed
in constant time.

PC = {1)0,60,’1)1,...,Uj,ho,wl,hl,WQ,...,

Wm—1, hm717 Vk€k, Vk+15---5Un—1, enfl}-

By equations 2.1 and 2.3 we have:

Sp—1 — Sk—1 — Sj—1 + E;:ol A (h;)
2

A(Po) = (2.4)
Consider now that o is a pseudo chord of P with end-
points p;,py such that p; € v;u;47 and pp € Up_10%.
Then we can compute A(P,) by computing A (P¢)
where the vertices of C in order are vj, pj, Pk, V-

We now have a method to compute A (P,); use C
in equation 2.4. What will be the cost to compute
A(P,)? Note first that, for 0 < i < n — 2, clearly
siy1 = 8; + A (e;). Therefore the values s;, for 0 < i <
n, can easily be computed in linear time in total. From
these facts and Equation 2.4 we obtain the following
result:

Theorem 2.1. Problem 1.2 (and thus also Problem
1.1) can be solved with linear preprocessing, linear
space, and a query complexity of O (1).

We can apply the results of this section to situations
involving more than one polygon. Consider for example
the following problem.

Problem 2.2. Let P, P, be two disjoint simple poly-
gons. Preprocess P; and P, so that for a query simple
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Figure 2.2:

A self-overlapping polygon may have multiple distinct trapezoidizations.
Howewver the total area of all trapezoids in a trapezoidization is independent

of the trapezoidization chosen.

polygon P; whose boundary is constructed from a sub-
chain Cy of Py, a subchain C5 of P,, and pair of line
segments oy, g5 joining C; and C5 the area of P; can
be computed quickly.

It can be shown by methods similar to the above that
Problem 2.2 can be solved with linear preprocessing and
space and a query complexity of O (1). See Figure 2.1.

3 Areas of
Polygons.

Self-overlapping

Self-overlapping polygons [4] have the interesting prop-
erty that, even though they are not generally sim-
ple polygons, they can, by the definition of triangu-
lation given in [4], be triangulated. Equivalently we
can construct a horizontal trapezoidization of a self-
overlapping polygon. However, in contrast to simple
polygons, a self-overlapping polygon may have multi-
ple distinct horizontal trapezoidizations; see Figure 2.2
and also [4]. This fact makes the question of the area
of a self-overlapping polygon an interesting one.

We note first that the following observation follows
directly from equation 2.1.

Lemma 3.1. Let P be a (not necessarily simple) poly-
gon and let o be a pseudo chord of P. Let P, and P»
be the two subpolygons of P determined by o. Then
A(P) =A(P) + A(P).

It is easily shown using induction and Observation
3.1 that the sum of the areas of the trapezoids of a

horizontal trapezoidization of a self-overlapping poly-
gon is equal to the area computed for the polygon by
Equation 2.1. Thus no matter which horizontal trape-
zoidization is used (assuming that there is more than
one) the sum of the areas of the trapezoids will be the
same. We summarize with the following result:

Lemma 3.2. Let P be a self-overlapping polygon with
more than one distinct horizontal trapezoidization and
let Ty, Ts be two distinct horizontal trapezoidizations of
P. Let Ay and Ay be the sum of the areas of the trape-
zoids of trapezoidization Ty and T respectively. Then
A=A,

In a straightforward manner we can generalize
Lemma 3.2 to apply to self-overlapping curves [4, 6].

A comment about computing volumes of polyhedrons
in three or higher dimensions is worthwhile. We point
out that Equation 2.1 and Observation 3.1 can be gen-
eralized to apply to (not necessarily simple) polyhe-
drons of any fixed dimension; see [2, 5, 1]. Furthermore
the concept of self-overlapping polygons can also be
generalized to self-overlapping polyhedrons of any fixed
dimension. It must therefore be the case that Lemma
3.2 also generalizes to self-overlapping polyhedrons of
any fixed dimension.

A final nice point about Equations 2.1 through 2.4
is that the only operations are multiplications, addi-
tions, subtractions, and at most one divide (by two).
Thus if the vertices of P and the endpoints of o have
only integer coordinates and all the z-coordinates (say)
are a multiple of two then no floating point operations
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are required to compute the area of P,. Under these
conditions A (P,) is computed exactly using only basic
integer arithmetic.
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