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Abstract

In this paper we study the following simple and mind-puzzling prob-

lem: Can a model train car, which runs along an intricate track com-

plete a full cycle around it? In our paper a track will be represented

by a simple closed curve, and the cars of our model train by segments

whose end-points lie on the curve.

1 Introduction

Let C be a simple closed curve in the plane that can be thought of as a track.
Let us imagine a model train car with a single wheel at each end, which we
run along the track of C. We ask the following question. What lengths λ
may the car have that allow it to traverse all of C? If C is a circle, any car
whose length λ is less than or equal to the diameter of C will be able to
run around the entire length of the track. If C is an ellipse, any car with λ

greater than the length of its smallest axis will, however, get stuck.
Consider a train of n such cars linked together, traveling along the curve

C. Once again, it is interesting to ask what car lengths will allow the train
to traverse the entire curve.

We encourage the reader to try experimenting with trains of a variety
of car lengths running along different curves before proceeding to read the
remainder of the article. It is an entertaining, instructive and sometimes sur-
prising exercise to work out trajectories that will allow the train to complete
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Figure 1:

a circuit of the entire curve. For example the reader may verify by himself
that for the curve shown in Figure 1, the car represented by a line segments
with small circles at its end-points can traverse the whole curve. In a very
nice paper, Goodman, Pach and Yap [2] studied a closely related problem
and obtained similar results.

Let α : S1 → R2 be a parameterization of the simple closed curve C. We
shall require here that α be an injective, piecewise differentiable function.
Consider the function

Λ : S1 × S1 → R

given by Λ(x, y) = ‖ α(x) − α(y) ‖, for all x, y ∈ S1.

Λ−1(λ) is the space of all possible positions of cars of length λ on curve
C.

Definition. We shall say that a car of length λ traverses the entire curve C

if the following function exists:

ψ = (ψ1, ψ2): S 1→ Λ−1(λ) ⊂ S
1×S 1

such that ψ1 : S1 → S1has degree ±1, where ψ1, ψ2 : S1 → S1 are the

coordinate functions of ψ.

Informally speaking, we say that a car of length λ can traverse entirely
curve C if its back wheel traverses C essentially once.
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2 Questions About Car Paths

Question 1. Can a car of length λ traverse C without repeating a position,
but in such a way that its back wheel traverses C essentially more than once?
Question 2. Let ψ : S 1→ Λ−1(λ) ⊂ S

1×S 1 be a path by which a car of
length λ traverses the entire curve C, that is, a route in which the back
wheel traverses C essentially once. Is it true that the front wheel then also
traverses the curve once? More formally, is it true that if ψ1 : S1 → S1 has
degree ±1, then ψ2 : S1 → S1 also has degree ±1?

One possible reason why a car longer than the minor axis of an ellipse
could get stuck and be unable to traverse the entire ellipse, is if, as it turns,
its orientation would become parallel to the orientation of the minor axis of
the ellipse. This is not, however, possible; motivating the next question.

Question 3. If a train traverses entirely the curve C, is it true that the
orientations of its cars describe a complete revolution?
Question 4. If a car of length λ traverses entirely the curve C, and λ′ < λ,
then is there a car of length λ′ which can traverse C completely?
Question 5. Is traversing the entire curve C by a car of length λ a local or
a global problem? In other words, is it possible for a “nice subarc” of C to
exist that allows a car of length λ to traverse all of C (in which the definition
of “nice” involves only the the subarc itself)?

The last question arises from a situation such as that shown in Figure 2.
Furthermore, this example suggests that an affirmative answer to Question
4 is unlikely.

Our problem has aspects that make it more intriguing, as in some cases,
the starting position of the car determines if a car car traverse all of C or
not. This situation is illustrated in Figure 3.

3 Answers to Section 2

The first observation we make is that for λ > 0,

Λ−1(λ) ∩ ∆ = ∅

where ∆ = {(x, x) | x ∈ S1} = Λ−1(0) is the diagonal of S1 × S1.
A traversal of C by cars of length λ is thus a function

φ = (φ1, φ2) : S1 → Λ−1(λ) ⊂ S1 × S1 − ∆.
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Figure 2: In this figure, C is essentially a circle in which a small portion of
the circle has been replaced by a sector of a curve which can be as intricate as
we might want. It is clear that a sufficiently long car can always traverse all
of C. A small car might have problems getting out of the ”intricate” sector
of C.

(a) (b)

Figure 3: The reader can easily verify that a car starting as shown in (a) can
traverse the whole C, whereas in (b) it is stuck!.
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Functions of the circle on the torus are classified homotopically by pairs of
whole numbers. That is, a function φ has type (n,m) if it wraps around the
meridian of the torus n times and m times around its length. Two functions
of the circle are homotopic on the torus if and only if they have the same type.
Recall that the only curves of type (n,m) which are not self-intersecting are
those which have n and m relatively prime. Moreover, if the image of the
function φ does not intersect the diagonal ∆, then φ has type (n, n) for some
integer n ∈ Z. More details can be found in [2].

With this in mind, a traversal of C by a car of length λ which takes on
distinct positions is an injective function φ : S1 → Λ−1(λ) ⊂ S1 × S1 of type
±(n, n) with n = 0, 1. If n = 0, the curve deforms to a point on the torus,
and φ1 : S1 → S1 is therefore of degree 0. If n = 1, then by definition, both
φ1 : S1 → S1 and φ2 : S1 → S1 are of degree ±1. This provides a negative
answer to Question 1, an affirmative answer to Question 2, and allows us to
formulate the characterization expressed in the following theorem.

Theorem 1 The function ψ = (ψ1, ψ2) : S
1→ Λ−1(λ) ⊂ S

1×S 1 represents a

car of length λ which traverses C entirely if and only if ψ : S 1→ Λ−1(λ) ⊂ S
1×S 1

is a function of type ±(1, 1); in other words, if and only if deg(ψ1) =
deg(ψ2) = ±1.

To answer Question 3, let α be differentiable, and define the function

Θ : S1 × S1 → S1

as follows: Θ(x, y) = α(x)−α(y)
‖α(x)−α(y)‖

, if x 6= y and Θ(x, x) = α′(x)
‖α′(x)‖

.

As C is a simple closed curve, the successive directions of the tangents
to C will describe a complete revolution as C is traversed completely. That
is, the function δΘ : S1 → S1 has degree ±1 where δ : S1 → S1 × S1

is the diagonal functionδ(x) = ±(x, x), for all x ∈ S1. By Theorem 1,
ψ : S 1→ Λ−1(λ) ⊂ S

1×S 1 represents the path of a car of length λ which
traverses the entire curve if and only if ψ is homotopic to δ; therefore if and
only if ψΘ : S1 → S1 has degree ±1. This gives rise to the following

Theorem 2 A car of length λ traverses the entire smooth curve C if and

only if the orientations of its cars make a complete revolution.

We will now answer Question 4 by means of the following theorem.
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Theorem 3 If there is a car of length λ which traverses the entire curve C

and λ′ < λ then there is a car of length λ′ which traverses C entirely.

Proof: By the hypothesis, there exists a function ψ : S 1→ Λ−1(λ) ⊂ S
1×S 1

which represents the path of a car of length λ along the entire curve. By
Theorem 1, ψ is type ±(1, 1), and therefore is homotopic to the diagonal
function δ : S1 → S1 × S1. Let the homotopy be H : S1 × I → S1 × S1,
that is H(x, 1) = ψ(x) y H(x, 0) = ±(x, x) for all x ∈ S1. We note that
H(S1 × {1}) ⊂ Λ−1(λ) and H(S1 × {0}) = Λ−1(0). Now let λ′ < λ and let
us consider H−1(Λ−1(λ′)) ⊂ S1 × I. It is clear that H−1(Λ−1(λ′)) separates
S1 ×{1} from S1 ×{0} in S1 × I. As α is a piecewise differentiable function
and the function H can be chosen in such a way as to be differentiable,
H−1(Λ−1(λ′)) ⊂ S1×I is a locally connected set, and therefore H−1(Λ−1(λ′))
contains a circle in S1 × I which separates S1 × {1} from S1 × {0}. Let
ξ : S1 → S1×I be a parameterization of this circle, and let us note that Hξ :
S1 → S1 × S1 is type ±(1, 1) and Hξ(S1) ⊂ Λ−1(λ′). Then by Theorem 1,
Hξ : S1 → Λ−1(λ′) ⊂ S1 × S1 represents the path of a car of length λ along
the entire curve C.

To tackle Question 5, we need to define a λ subarc. Recall that we wish
to define it in terms of only a portion of the curve.

Definition Let C be a smooth curve. Ω ⊂ C is a λ-subarc of C if there is
a disc D with center 0 ∈ C such that: i) Ω = C ∩ D, ii) C ∩ ∂D consists
of precisely two points {a, b}, the endpoints of Ω, and iii) for all x ∈ Ω, the
normal Nx to C at x is such that Nx ∩D ∩ C = {x}.

In this definition, refering to Figure 4 the hypotheses imply that a car
[b, 0] moves along the curve C within D until it becomes [0, a] such that
both wheels move forward without stopping or backing up. This follows
immediately from the following lemma, which says that if the back wheel is
forced to back up to enable the car to keep moving forward, then the curve
C is perpendicular to the car at the back wheel.

Lemma 1 Let ϑ = (ϑ1, ϑ2) : (−ε, ε) → Λ−1(λ) be a smooth function such

that dϑ
dt

(0) 6= 0. If dαϑ1

dt
(0) = 0, then the tangent to C at the point α(y) is

perpendicular to the line passing through α(x) and α(y) where ϑ(0) = (x, y).
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Proof: It is easy to see that for δ > 0 sufficiently small, we can find a smooth
function θ : (−δ, δ) → R such that

αϑ1(t) + λ(cos θ(t), sin θ(t)) = αϑ2(t)

Differentiating, and assuming that dϑ
dt

(0) 6= 0 and dαϑ1

dt
(0) = 0, we have that

dαϑ2

dt
(0) = dϑ2

dt
(0)dα

dt
(ϑ2(0)) is parallel to (− sin θ(0) cos θ(0)) and therefore per-

pendicular to the segment λ(cos θ(0), sin θ(0)) = α(ϑ2(0)) − α(ϑ1(0)), which
implies that at the point α(x), the curve C is perpendicular to the line that
passes through α(x) and α(y).

At this point we need some elementary notions from Morse Theory and
Degree Theory which we will use below. See [1] for example.

If C is a smooth curve, then the function

Λ : S1 × S1 → R

is a smooth function. It is easy to see that the critical points of ∆ (the
points (x, y) ∈ S1 × S1 in which the derivative of ∆ is zero) are the points
of the diagonal; points in which the tangents to C at α(x) and α(y) are
both perpendicular to the line through α(x) and α(y). Then λ ∈ R is a
critical value of ∆ if ∆(x, y) = λ for (x, y) a critical point of ∆. If λ ∈ R

is not a critical value of ∆, then λ is called a regular value and ∆−1(λ) is a
finite collection of circles Σ1, ...,Σρ. Moreover, if the interval [λ′, λ] contains
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only regular values, then ∆−1([λ′, λ]) is homeomorphic to the disjoint union
Σi × [λ′, λ], since the behavior of the function ∆ changes only at the critical
values.

Finally, we recall that if f : S1 → S1 is a smooth function, then the degree
of f can be calculated on a regular point x of the image in the following way.
As f−1(x) = {a1, ..., aτ} consists of a finite set of points, then each point ai

contributes a +1 or a −1 depending on whether the function f preserves or
does not preserve orientation locally around ai. The degree of f is the sum
of all these +1’s and −1’s.

The following theorem shows that the problem of traversing the entire
curve with a car of length λ is not a local problem.

Theorem 4 If C is a simple smooth curve which contains a λ-subarc, then

for all λ′ ≤ λ, there is a car of length λ′ which traverses the entire curve C.

Proof: We begin by noting that λ can be assumed to be a regular value of
∆ without loss of generality. Thus ∆−1(λ) consists of a disjoint set of circles
Σ1, ...,Σρ, each of which is in S1 ×S1 −Λ. That is, the type of Σi ⊂ S1 ×S1

is either ±(1, 1) or (0, 0). If some of the circles Σi have type ±(1, 1), then by
Theorem 1, the theorem is proved.

Consider the cars [α−1(b), α−1(0)] and [α−1(0), α−1(a)] in ∆−1(λ). Sup-
pose first that both [α−1(b), α−1(0)] and [α−1(0), α−1(a)] are in Σj, for some
j = 1, ..., ρ. Let ψ = (ψ1, ψ2) : S1 → Σj ⊂ ∆−1(λ) ⊂ S1 × S1 be a parame-
terization. Note that the degree of ψ1 can be calculated using ψ−1

1 (α−1(0)) =
{[α−1(0), α−1(b)], [α−1(0), α−1(a)]}. By Lemma 1 and the argument in the
paragraph preceding the lemma, it is easy to see that the degree of ψ1 is
±2, which is a contradiction, as the answer to Question 1 would make this
impossible.

This implies that for some j = 1, ..., ρ the car [α−1(0), α−1(a)] is in Σj

but the car [α−1(0), α−1(b)] is not. Let φ = (φ1, φ2) : S1 → Σj ⊂ ∆−1(λ) ⊂
S1 × S1 be a parameterization. We again note that the degree of φ1 can
be calculated using φ−1

1 (α−1(0)) = {[α−1(0), α−1(a)]}. By Lemma 1 and the
argument in the paragraph preceding the lemma, it is easy to see that the
degree of φ1 es ±1, proving that there exists a car of length λ which traverses
the entire curve C. The theorem now follows easily from Theorem 3.
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4 “Model Trains”

Definition. A model train with n cars of lengths λ1, ..., λn running along the

track described by C consists of n+ 1 points {a1, ..., an+1} ⊂ C such that

i) for i = 1, ..., n, ‖ ai − ai+1 ‖= λi

ii) for i = 2, ..., n, the points ai+1, ai, ai−1 orient the curve C positively.

We also say that there exists a model train with n cars of lengths λ1, ..., λn

which traverses the curve C entirely if there exists a function

Ψ : S1 → S1 × ...× S1

such that for all x ∈ S1, {α(Ψ1(x)), ..., α(Ψn+1(x))} is a train running on C

with n cars having lengths λ1, ..., λn and

Ψ1 : S1 → S1

is a function with degree ±1, where, of course, Ψ = (Ψ1, ...,Ψn+1).
We note that in this case, the projection of Ψ on the first two coordinates

represents the path of a car of length λ1 which traverses C entirely. Therefore
Ψ2, the projection of Ψ on the second coordinate, is a function of degree ±1.
Proceeding inductively, we can verify that the projection of Ψ on coordinates
i, i+ 1 gives rise to the path of a car of length λ1 which traverses C entirely;
therefore Ψ(i + 1) is a function of degree ±1, i = 0, . . . , n.

We will now prove the following theorem.

Theorem 5 Suppose that a car of length λ traverses the entire curve C.

Then, for any integer n ≥ 1 and λ ≥ λ1 ≥ ... ≥ λn there exists a train with

n cars having lengths λ1, . . . , λn which traverses the entire curve C.

Proof: We begin by proving the theorem for two-car trains. By Theorems
1 and 3, let ϕ = (ϕ1, ϕ2) : S1 → S1 × S1 be a function of type ±(1, 1) which
represents the path of a car of length λ1. Let

E : S1 × S1 → R

be a function defined by E(x, y) =‖ αϕ2(x) − α(y) ‖.
Then E−1(λ2) is the space of all possible positions on the curve C of a

two-car train with car lengths λ1 and λ2.
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Let us consider curves ξi = {(x, ϕi(x)) ∈ S1 × S1 | x ∈ S1}, i = 1, 2.
Clearly ξ2 ⊂ E−1(0) and ξ1 ⊂ E−1(λ1) are two curves of type ±(1, 1)
in S1 × S1 which do not intersect. In fact, Γ = {(x, y) ∈ S1 × S1 |
the points αϕ1(x), αϕ2(x), α(y) orient the curve C positively } is a ring in
S1 ×S1 whose boundary is ξ1 and ξ2. If λ2 ≥ λ1, then Γ∩E−1(λ2) separates
ξ1 from ξ2 in Γ. Since α is a piecewise differentiable function and H can be
chosen to be a differentiable function, E−1(λ2) ⊂ Γ is a locally connected set
and therefore contains a curve ξ3 which separates ξ1 from ξ2 in Γ.

Let ψ : S1 → S1 × S1 be a parameterization of ξ3. We first note that
ψ = (ψ1, ψ2) is a curve of type ±(1, 1) en S1 ×S1 with the property ψ(S1) ⊂
E−1(λ2) ⊂ Γ. This implies tha the function Ψ : S1 → S1 ×S1 ×S1, given by
the coordinate functions (ϕ1ψ1,ϕ2ψ1, ψ2) represents the path of a train with
two cars of lengths λ1, λ2 along the entire curve C.

Proceeding in the same way, it is now easy to use induction to prove the
theorem true for trains with any number of cars.

Corollary 1 If C is a simple smooth closed curve which contains a λ-subarc,

then there exists for all n ≥ 1 and λ ≥ λ1 ≥ ... ≥ λn a train with n cars of

lengths λ1, ..., λn which traverses the entire curve C.

Proof: The proof follows immediately from Theorems 4 and 5.

5 Distance Traveled

Consider a polygonal P formed by two segments l1, l2 of lengths 3 and 4
respectively, and 2n − 1 short and 2n long segments of lengths 1 + ε and 1,
and 3 and 3+ ε respectively, as shown in Figure 5(a) for n = 4. Suppose that
we want to to move a car R of length 1.5 (represented with the line segment
with endpoints labeled b and f in Figure 5(a)) from l1 to l2. It is clear that
to achieve our goal R must first pass trough a position in which b is on l1
and f on the point labeled 1, Figure 5(b). Then R must move to a position
in which f lies on point 2, Figure 6(a). However to achieve this, R must pass
trough the positions shown in Figures 5(c), and 5(d), and then move to the
position shown in Figure 6(a). A similar process has to be followed to move
f to point 3, 4, . . .. In each of our iterations, b must move from a point on l1
to point 1 and back to l1. Since this has to be done n times, it follows that
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the distance traveled by b, and hence f is quadratic. Since the length of P
is 8n + 6 + 8ε, it follows that the distance travelled by the wheels of R can
be arbitrarily large compared to the length of P .

In a similar way we can see that if instead of a car we have a train T with
two cars (i.e. two segments of length 1.5 joined at one of their ends, making
l1 and l2 longer to allow T to move), to move T from l1 to l2, the wheels of
T must travel a distance proportional to n3. For trains with k cars, we can
easily see that the distance traveled by their wheels is O(nk+1) (for each car
we must repeat the same procedure that we did for R).

By completing P to a simple closed polygon we obtain:

Theorem 6 Let C be a simple closed curve and let B be a car that can

traverse C. Then the distance traversed by the wheels of R in a complete

traversal of C can be arbitrarily large with respect to the length of C. More-

over if C is a polygon with n vertices, and has lenght O(n), to complete a

whole traversal of C the wheels of a train with k cars may have to travel a

distance of O(nk+1).
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Note. Except for Theorem 2, the results given here are also valid when
α : S1 → X is a differentiable or piecewise differentiable (not necessarily
injective) function on a Riemann manifold X. Theorem 2 is the only result
in this article which depends on C being a simple curve in the plane.
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