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Abstract

The tree graph T(G) of a connected graph G has as vertices the
spanning trees of G, and two trees are adjacent if one is obtained
from the other by interchanging one edge. In this paper we study the
chromatic number of T(G) and of a related graph T*(G).

Given a connected graph G, the tree graph T(G) is defined as the graph
having as vertices the spanning trees of G, and edges joining two trees T}
and 75 whenever 7o =T — e + f for some edges e and f.

The adjacency tree graph T*(G) has the same vertices as T'(G) but now
two trees 177 and Ty are adjacent when Ty = 177 — uv 4+ uw for some adjacent
edges uv and ww. Clearly T%(G) is a (spanning) subgraph of T'(G). See
[1, 2, 3, 4] for some relevant properties of tree graphs and of some related
graphs.

The aim of this note is to study the chromatic number of tree graphs and
adjacency tree graphs. We give upper bounds on x(7'(G)) and x(7T™*(G)) in
terms of basic parameters of G. We show that in some cases our bonds are
optimal. For complete and complete bipartite graphs, our bounds are within
a constant factor from the true values.
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Our first result is the following.

Theorem 1 If G is a connected graph then x(T(G)) < |E(G)|. This bound
cannot be improved in general.

Proof. Let m = |E(G)| and let X\ : E(G) — {1,2,...,m} be any bijection
between the edges of G and the integers from 1 to m. Then for any spanning
tree T' of GG, define its colour as

e(T) = Z A(e) mod m.

T, =T —e+ f, then ¢(T1) — ¢(T2) = A(e) — A(f), which is not 0 modulo
m. Hence adjacent trees get different colours.

Finally, let G be a cycle Cy,. Then T'(G) = K,, and in this case x(T(G)) =
|E(G)| = n. O

We observe that for the case G = K, the bound given in Theorem 1 is
close to optimal. Assume for simplicity that n is even. Let V = V3 U V5
be a bipartition of the vertex set with |Vi| = |V2| = n/2, and let U; and
U, be, respectively, spanning trees of Vi and Vo. Then the family of trees
{U1UUz+e€; e € E(V1,V,)}, where E(V1, V3) is the set of edges between V)
and Vj, is clearly a clique in T(K,,) of size n2/4. This gives a lower bound
on the chromatic number. Combining this with Theorem 1, and taking into
account the case where n is odd, we arrive at upper and lower bounds within
the same order of magnitude:

[n?/4] < x(T(Ky)) < n(n—1)/2.

Observation 1. It is well-known that x(H) < A(H)+1 for every graph H.
However if H = T(K,,) then A(H) is O(n?). This follows from the fact that
the degree of a path of length n in T'(K,,) is equal to (n+3)(n—1)(n—2)/6.
This is easy to show, as well as the fact that this is the maximum degree in
T(Kp).

Observation 2. The same argument as before shows the following: if for
a given graph G there exists a bipartition V(G) = Vi U V5 such that the
graphs induced by G on V; and V5 are both connected, then T'(G) contains
a clique of size |E(V1,V2)|. However, in general these are not the larger
cliques in T'(G), as the example G = C,, demonstrates.



Let G = K, be the complete bipartite graph with vertex partition
V={v,...,vn} and W = {wy,...wp}. Let Uy = {viw1,v1wy,...v1w,_1},
Uz = {wpve,wpvs, ... wpvy}t. Then the family of trees {U; UUsz + e;e &
E(Uy)UE(Us)} is a clique in T(K,, ,,). The size of this clique is n? —2(n—1)
and Theorem 1 gives the exact asymptotic value of x(K, p):

n? —2(n—1) < x(T(Knpn)) < n

As in the case of complete graphs, it is easy to see that the maximum degree
of T(Ky,n) is O(nd).
Now we proceed to give an upper bound for x(7*(G).

Theorem 2 If G is a connected graph then x(T*(G)) < x'(GQ), where x'(G)
is the edge-chromatic number of G. This bound cannot be improved in gen-
eral.

Proof. Let r = x/(G) and let A : E(G) — {1,2,...,7} be a proper edge-
colouring of the edges of G. If T' is a spanning tree T" of GG, define its colour
as
c(T) = Z A(e) mod 7.
eeT

If 5 = Ty — uv + uw, then ¢(T1) — ¢(Ty) = AM(uv) — A(uw). Since uv and
uw are adjacent edges in G, they have different colour, i.e. A(uv) # A(uw).
Again we see that adjacent trees get different colours.

Finally, if G = C),, with n even, then T*(G) = C, and x(T*(G)) =
Y (G) =2. 0

Vizing’s theorem says that x'(G) < A(G) + 1, where A(G) is the maxi-
mum degree in G. As a corollary we get that x(T*(G)) < A(G) + 1.

Now take G = K,,. It is well-known that x/(K,) = n — 1 if n is even,
and x'(K,) = n if n is odd. Take a path spanning n — 1 vertices of K, and
join the remaining vertex to this path in n — 1 different ways. In this way
we obtain a clique in T7%(K,) of size n — 1. Now Theorem 1 almost gives the
exact value of the chromatic number:

x(T*(Kqn)) = {

n—1, 7, even;
n—1orn, n odd.

The above argument for obtaining a clique can be used to prove the following:

Theorem 3 If G is a 2-connected graph with mazimum degree A such that
X'(G) = A, then x(T*(G)) = A.



Proof. First of all, by Theorem 2 we have x(T*(G)) < A. Now let v be
a vertex of G of maximum degree A. Since G — v is connected it admits
a spanning tree 7. Now the trees obtained by joining v to its different
neighbors in T gives a clique of size A. O

By Konig’s theorem this applies to bipartite graphs. In particular, if
r,8 > 2, we have
x(T*(Kr,s)) = max(r, s).

To conclude, we remark that the colourings we have defined for T'(G)
and T*(@G) are simple and efficient. The colour of any tree is implicit in its
set of edges, and it can be computed in O(n) time, where n is the order of

G.
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